Skip to main content
IUCrData logoLink to IUCrData
. 2023 May 12;8(Pt 5):x230354. doi: 10.1107/S2414314623003541

5-[(4-Methyl­phen­yl)sulfon­yl]-1-phenyl­thio­pyrano[4,3-b]indole-3(5H)-thione di­chloro­methane monosolvate

Benjamin Dassonneville a, Dieter Schollmeyer a, Heiner Detert a,*
Editor: M Bolteb
PMCID: PMC10242727  PMID: 37287857

Rhodium-catalyzed [2+2+2] cyclo­addition of carbon di­sulfide to o,N-dialkynyl­tosyl­anilines gives two isomeric indolo­thio­pyran­thio­nes as violet and red isomers. This is the first crystal structure of a red isomer, which crystallizes with one mol­ecule of di­chloro­methane in the asymmetric unit.

Keywords: crystal structure, sulfur, annulated heterocycles

Abstract

Rhodium-catalyzed [2+2+2] cyclo­addition of carbon di­sulfide to o,N-dialkynyl­tosyl­anilines gives two isomeric indolo­thio­pyran­thio­nes, a violet and a red isomer. This is the first crystal structure of a red isomer, which crystallizes with one solvent mol­ecule of di­chloro­methane in the asymmetric unit, C24H17NO2S3·CH2Cl2. In the extended structure, centrosymmetric pairs of the planar annulated system are arranged in strands and solvent mol­ecules fill the space between the strands. graphic file with name x-08-x230354-scheme1-3D1.jpg

Structure description

Transition-metal-catalyzed [2+2+2] cyclo­additions are an atom-economic route to aromatic rings (Reppe et al., 1948; Bönnemann, 1978; Vollhardt, 1984). With tethered diynes, annulated systems are accessible, e.g. carbazoles and carbolines (Heller & Hapke; 2007; Dassonneville et al., 2011). The first thio­pyran­thione was reported in 1973 (Wakatsuki & Yamazaki, 1973), followed by rare examples of this heterocycle. The [RhCl(C8H14)2]2–BINAP [BINAP is 2,2′-bis­(di­phenyl­phosphan­yl)-1,1′-binaphth­yl] (Tanaka et al., 2006) catalyzed [2+2+2] cyclo­addition of carbon di­sulfide to o,N-di­alkynyl­tosyl­amides gives mainly the violet indolo­thio­pyran­thio­nes with a [3,4-b] annulation, in some cases accompanied by their red isomers differing in the annulation pattern (Dassonneville et al., 2023). While the structure of the violet indolo­thio­pyran­thio­nes has been proven exemplarily in a single-crystal XRD study (Dassonneville et al., 2010), the structures of the red isomers were hitherto only based on spectroscopic data. This report gives the first crystal structure of a red isomer. The moderate stability of the red thio­pyran­thione allowed crystals to be grown by slow evaporation of a solution in di­chloro­methane/petroleum ether. The title compound (Fig. 1) crystallizes with one mol­ecule of the solvent. Centrosymmetric pairs with a distance of 3.5556 (13) Å between the centroids of the N1/C2/C7/C8/C13 and C8–C13 π-systems are arranged in strands along the a axis (Fig. 2). The solvent mol­ecules fill the volume between the strands. The heterocyclic framework is essentially planar, the maximum deviation from the mean plane of the π-system is 0.043 (2) Å at the thio­carbonyl C4 atom. With a dihedral angle of 82.44 (8)°, the phenyl ring is close to being orthogonal to the fused-ring system. The tolyl ring is also almost perpendicular [dihedral angle = 83.08 (8)°] to the plane of the three-membered ring system. The N—S—C angle of the sulfonyl group is 103.79 (9)°. The C—N bonds in the pyrrole ring are significantly different, with the N–phenyl bond [1.436 (3) Å] significantly longer than the N–thio­pyrane bond [1.405 (3) Å]. This and alternating bond lengths between the indole-N atom and the thio­carbonyl are an indication of an electronic coupling between the nitro­gen thio­carbonyl group. Other structural features of the tricyclic core are similar to those of the isomeric system with a methyl instead of phenyl substitutuent. The two isomers differ in color and in the relative position of the indole-N atom to the thiocarbonyl group. In the violet isomer, these units are in perfect conjugation whereas the meta-conjunction in the red isomer restricts electronic interaction, thus shifting the absorption maximum about 60 nm to higher energies.

Figure 1.

Figure 1

View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

Part of the packing diagram, viewed along the a axis.

Synthesis and crystallization

The synthetic and spectroscopic details for the title compound have been reported previously (Dassonneville et al., 2023).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed at calculated positions and refined in the riding-model approximation, with aromatic C—H = 0.95 Å, methyl­ene C—H = 0.99 Å and methyl C—H = 0.98 Å, and with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) otherwise.

Table 1. Experimental details.

Crystal data
Chemical formula C24H17NO2S3·CH2Cl2
M r 532.49
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 193
a, b, c (Å) 9.8368 (14), 10.2783 (15), 13.2857 (18)
α, β, γ (°) 97.689 (9), 108.305 (8), 108.103 (8)
V3) 1171.6 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.20
Crystal size (mm) 0.40 × 0.20 × 0.08
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction Numerical (CORINC; Dräger & Gattow, 1971)
T min, T max 0.24, 0.68
No. of measured, independent and observed [I > 2σ(I)] reflections 4706, 4431, 4039
R int 0.029
(sin θ/λ)max−1) 0.609
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.107, 1.02
No. of reflections 4431
No. of parameters 299
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.42

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314623003541/bt4137sup1.cif

x-08-x230354-sup1.cif (181.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623003541/bt4137Isup2.hkl

x-08-x230354-Isup2.hkl (352.9KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623003541/bt4137Isup3.cml

CCDC reference: 2077250

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C24H17NO2S3·CH2Cl2 Z = 2
Mr = 532.49 F(000) = 548
Triclinic, P1 Dx = 1.509 Mg m3
a = 9.8368 (14) Å Cu Kα radiation, λ = 1.54178 Å
b = 10.2783 (15) Å Cell parameters from 25 reflections
c = 13.2857 (18) Å θ = 65–70°
α = 97.689 (9)° µ = 5.20 mm1
β = 108.305 (8)° T = 193 K
γ = 108.103 (8)° Plate, red
V = 1171.6 (3) Å3 0.40 × 0.20 × 0.08 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 4039 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.029
Graphite monochromator θmax = 70.0°, θmin = 3.6°
ω/2θ scans h = −11→0
Absorption correction: numerical (CORINC; Dräger & Gattow, 1971) k = −11→12
Tmin = 0.24, Tmax = 0.68 l = −15→16
4706 measured reflections 3 standard reflections every 60 min
4431 independent reflections intensity decay: 2%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.8284P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4431 reflections Δρmax = 0.49 e Å3
299 parameters Δρmin = −0.42 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.30399 (19) 0.17913 (18) 0.10488 (13) 0.0247 (4)
C2 0.3290 (2) 0.2383 (2) 0.01978 (15) 0.0225 (4)
C3 0.4616 (2) 0.2740 (2) −0.00101 (16) 0.0257 (4)
H3 0.546346 0.256542 0.044845 0.031*
C4 0.4787 (2) 0.3357 (2) −0.08731 (16) 0.0260 (4)
S5 0.32556 (6) 0.36665 (6) −0.17392 (4) 0.02863 (14)
C6 0.1753 (2) 0.3113 (2) −0.12982 (16) 0.0233 (4)
C7 0.1890 (2) 0.2571 (2) −0.04071 (15) 0.0217 (4)
C8 0.0808 (2) 0.2101 (2) 0.01257 (16) 0.0232 (4)
C9 −0.0709 (2) 0.2027 (2) −0.01054 (17) 0.0274 (4)
H9 −0.121736 0.232427 −0.071261 0.033*
C10 −0.1450 (3) 0.1512 (2) 0.05678 (19) 0.0325 (5)
H10 −0.248258 0.144580 0.041628 0.039*
C11 −0.0704 (3) 0.1089 (2) 0.1464 (2) 0.0343 (5)
H11 −0.123337 0.075406 0.192183 0.041*
C12 0.0799 (3) 0.1145 (2) 0.17078 (18) 0.0306 (5)
H12 0.130386 0.085282 0.231982 0.037*
C13 0.1528 (2) 0.1643 (2) 0.10218 (16) 0.0242 (4)
S14 0.43707 (6) 0.13882 (5) 0.19537 (4) 0.02610 (14)
O15 0.51358 (18) 0.08036 (17) 0.13778 (13) 0.0340 (4)
O16 0.35700 (18) 0.05745 (16) 0.25269 (13) 0.0348 (4)
C17 0.5680 (2) 0.3040 (2) 0.28468 (16) 0.0255 (4)
C18 0.7232 (2) 0.3448 (2) 0.30206 (17) 0.0292 (4)
H18 0.758342 0.286801 0.262936 0.035*
C19 0.8268 (2) 0.4717 (2) 0.37757 (18) 0.0300 (5)
H19 0.933551 0.500361 0.389998 0.036*
C20 0.7767 (2) 0.5579 (2) 0.43548 (17) 0.0283 (4)
C21 0.6195 (3) 0.5153 (2) 0.41441 (17) 0.0296 (4)
H21 0.583515 0.574240 0.451815 0.036*
C22 0.5146 (2) 0.3889 (2) 0.34013 (17) 0.0293 (4)
H22 0.407732 0.360408 0.327132 0.035*
C23 0.8899 (3) 0.6957 (3) 0.5167 (2) 0.0407 (6)
H23A 0.864225 0.774195 0.492812 0.061*
H23B 0.994618 0.707837 0.521106 0.061*
H23C 0.884507 0.694728 0.589017 0.061*
S24 0.63754 (6) 0.38421 (7) −0.11578 (5) 0.03617 (16)
C25 0.0371 (2) 0.3359 (2) −0.19783 (16) 0.0241 (4)
C26 0.0170 (2) 0.4602 (2) −0.16453 (17) 0.0296 (4)
H26 0.086969 0.525949 −0.096614 0.035*
C27 −0.1056 (3) 0.4880 (2) −0.23081 (19) 0.0314 (5)
H27 −0.119603 0.572988 −0.208273 0.038*
C28 −0.2076 (2) 0.3919 (2) −0.32976 (18) 0.0314 (5)
H28 −0.291812 0.410854 −0.374891 0.038*
C29 −0.1870 (3) 0.2687 (2) −0.36283 (19) 0.0347 (5)
H29 −0.257127 0.203008 −0.430764 0.042*
C30 −0.0641 (2) 0.2401 (2) −0.29718 (18) 0.0307 (5)
H30 −0.049704 0.155542 −0.320298 0.037*
C1L 0.4146 (3) 0.1202 (3) 0.6269 (2) 0.0428 (6)
H1L1 0.497653 0.085655 0.659362 0.051*
H1L2 0.444766 0.217600 0.670815 0.051*
Cl1 0.39459 (7) 0.12334 (6) 0.49086 (4) 0.03707 (15)
Cl2 0.24155 (10) 0.01018 (8) 0.63246 (7) 0.0643 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0217 (8) 0.0301 (9) 0.0224 (8) 0.0102 (7) 0.0071 (7) 0.0091 (7)
C2 0.0227 (9) 0.0237 (9) 0.0193 (9) 0.0093 (8) 0.0057 (7) 0.0043 (7)
C3 0.0196 (9) 0.0334 (11) 0.0231 (10) 0.0117 (8) 0.0053 (8) 0.0071 (8)
C4 0.0223 (10) 0.0309 (10) 0.0223 (9) 0.0099 (8) 0.0068 (8) 0.0031 (8)
S5 0.0234 (3) 0.0407 (3) 0.0251 (3) 0.0134 (2) 0.0100 (2) 0.0135 (2)
C6 0.0208 (9) 0.0260 (9) 0.0217 (9) 0.0094 (8) 0.0066 (8) 0.0039 (7)
C7 0.0186 (9) 0.0221 (9) 0.0214 (9) 0.0068 (7) 0.0061 (7) 0.0025 (7)
C8 0.0215 (9) 0.0231 (9) 0.0227 (9) 0.0069 (8) 0.0083 (8) 0.0025 (7)
C9 0.0235 (10) 0.0272 (10) 0.0293 (10) 0.0101 (8) 0.0087 (8) 0.0016 (8)
C10 0.0233 (10) 0.0323 (11) 0.0392 (12) 0.0074 (9) 0.0148 (9) 0.0009 (9)
C11 0.0353 (12) 0.0315 (11) 0.0389 (12) 0.0082 (9) 0.0228 (10) 0.0065 (9)
C12 0.0332 (11) 0.0310 (11) 0.0290 (10) 0.0106 (9) 0.0146 (9) 0.0088 (8)
C13 0.0230 (10) 0.0222 (9) 0.0251 (9) 0.0070 (7) 0.0088 (8) 0.0026 (7)
S14 0.0270 (3) 0.0274 (3) 0.0231 (2) 0.0119 (2) 0.0059 (2) 0.00851 (19)
O15 0.0368 (9) 0.0359 (8) 0.0311 (8) 0.0212 (7) 0.0083 (7) 0.0065 (6)
O16 0.0364 (9) 0.0340 (8) 0.0311 (8) 0.0104 (7) 0.0087 (7) 0.0158 (6)
C17 0.0249 (10) 0.0295 (10) 0.0205 (9) 0.0101 (8) 0.0059 (8) 0.0086 (8)
C18 0.0282 (11) 0.0358 (11) 0.0283 (10) 0.0171 (9) 0.0108 (9) 0.0105 (9)
C19 0.0209 (10) 0.0388 (12) 0.0316 (11) 0.0132 (9) 0.0079 (8) 0.0131 (9)
C20 0.0268 (10) 0.0320 (11) 0.0246 (10) 0.0107 (9) 0.0063 (8) 0.0114 (8)
C21 0.0299 (11) 0.0347 (11) 0.0272 (10) 0.0136 (9) 0.0130 (9) 0.0080 (9)
C22 0.0228 (10) 0.0359 (11) 0.0294 (11) 0.0109 (9) 0.0107 (8) 0.0074 (9)
C23 0.0306 (12) 0.0359 (12) 0.0424 (13) 0.0075 (10) 0.0049 (10) 0.0022 (10)
S24 0.0232 (3) 0.0523 (3) 0.0324 (3) 0.0119 (2) 0.0123 (2) 0.0099 (2)
C25 0.0207 (9) 0.0302 (10) 0.0236 (9) 0.0107 (8) 0.0085 (8) 0.0105 (8)
C26 0.0259 (10) 0.0337 (11) 0.0267 (10) 0.0128 (9) 0.0067 (8) 0.0040 (8)
C27 0.0295 (11) 0.0330 (11) 0.0360 (12) 0.0171 (9) 0.0121 (9) 0.0101 (9)
C28 0.0203 (10) 0.0405 (12) 0.0357 (11) 0.0133 (9) 0.0093 (9) 0.0157 (9)
C29 0.0235 (10) 0.0380 (12) 0.0294 (11) 0.0072 (9) 0.0000 (9) 0.0023 (9)
C30 0.0262 (11) 0.0293 (10) 0.0321 (11) 0.0108 (9) 0.0059 (9) 0.0051 (9)
C1L 0.0435 (14) 0.0464 (14) 0.0294 (12) 0.0120 (11) 0.0072 (10) 0.0091 (10)
Cl1 0.0385 (3) 0.0410 (3) 0.0320 (3) 0.0176 (2) 0.0107 (2) 0.0099 (2)
Cl2 0.0688 (5) 0.0593 (4) 0.0611 (5) 0.0072 (4) 0.0338 (4) 0.0209 (4)

Geometric parameters (Å, º)

N1—C2 1.405 (3) C18—C19 1.389 (3)
N1—C13 1.436 (3) C18—H18 0.9500
N1—S14 1.6771 (17) C19—C20 1.395 (3)
C2—C3 1.367 (3) C19—H19 0.9500
C2—C7 1.446 (3) C20—C21 1.391 (3)
C3—C4 1.412 (3) C20—C23 1.506 (3)
C3—H3 0.9500 C21—C22 1.382 (3)
C4—S24 1.665 (2) C21—H21 0.9500
C4—S5 1.732 (2) C22—H22 0.9500
S5—C6 1.721 (2) C23—H23A 0.9800
C6—C7 1.361 (3) C23—H23B 0.9800
C6—C25 1.494 (3) C23—H23C 0.9800
C7—C8 1.453 (3) C25—C30 1.386 (3)
C8—C9 1.401 (3) C25—C26 1.388 (3)
C8—C13 1.402 (3) C26—C27 1.388 (3)
C9—C10 1.381 (3) C26—H26 0.9500
C9—H9 0.9500 C27—C28 1.385 (3)
C10—C11 1.391 (3) C27—H27 0.9500
C10—H10 0.9500 C28—C29 1.380 (3)
C11—C12 1.391 (3) C28—H28 0.9500
C11—H11 0.9500 C29—C30 1.391 (3)
C12—C13 1.383 (3) C29—H29 0.9500
C12—H12 0.9500 C30—H30 0.9500
S14—O15 1.4257 (16) C1L—Cl2 1.757 (3)
S14—O16 1.4274 (16) C1L—Cl1 1.761 (2)
S14—C17 1.758 (2) C1L—H1L1 0.9900
C17—C18 1.384 (3) C1L—H1L2 0.9900
C17—C22 1.391 (3)
C2—N1—C13 109.41 (16) C17—C18—C19 119.0 (2)
C2—N1—S14 123.30 (14) C17—C18—H18 120.5
C13—N1—S14 127.27 (14) C19—C18—H18 120.5
C3—C2—N1 126.56 (18) C18—C19—C20 121.1 (2)
C3—C2—C7 126.24 (18) C18—C19—H19 119.5
N1—C2—C7 107.19 (17) C20—C19—H19 119.5
C2—C3—C4 123.21 (18) C21—C20—C19 118.5 (2)
C2—C3—H3 118.4 C21—C20—C23 120.8 (2)
C4—C3—H3 118.4 C19—C20—C23 120.6 (2)
C3—C4—S24 125.67 (16) C22—C21—C20 121.3 (2)
C3—C4—S5 119.70 (15) C22—C21—H21 119.4
S24—C4—S5 114.63 (12) C20—C21—H21 119.4
C6—S5—C4 107.18 (10) C21—C22—C17 119.0 (2)
C7—C6—C25 126.27 (18) C21—C22—H22 120.5
C7—C6—S5 121.92 (15) C17—C22—H22 120.5
C25—C6—S5 111.76 (14) C20—C23—H23A 109.5
C6—C7—C2 121.71 (18) C20—C23—H23B 109.5
C6—C7—C8 130.91 (18) H23A—C23—H23B 109.5
C2—C7—C8 107.38 (17) C20—C23—H23C 109.5
C9—C8—C13 119.53 (19) H23A—C23—H23C 109.5
C9—C8—C7 132.47 (19) H23B—C23—H23C 109.5
C13—C8—C7 108.00 (17) C30—C25—C26 120.25 (19)
C10—C9—C8 118.6 (2) C30—C25—C6 120.14 (18)
C10—C9—H9 120.7 C26—C25—C6 119.45 (18)
C8—C9—H9 120.7 C27—C26—C25 119.8 (2)
C9—C10—C11 120.9 (2) C27—C26—H26 120.1
C9—C10—H10 119.6 C25—C26—H26 120.1
C11—C10—H10 119.6 C28—C27—C26 120.1 (2)
C10—C11—C12 121.6 (2) C28—C27—H27 120.0
C10—C11—H11 119.2 C26—C27—H27 120.0
C12—C11—H11 119.2 C29—C28—C27 120.0 (2)
C13—C12—C11 117.3 (2) C29—C28—H28 120.0
C13—C12—H12 121.4 C27—C28—H28 120.0
C11—C12—H12 121.4 C28—C29—C30 120.3 (2)
C12—C13—C8 122.10 (19) C28—C29—H29 119.8
C12—C13—N1 129.92 (19) C30—C29—H29 119.8
C8—C13—N1 107.98 (17) C25—C30—C29 119.5 (2)
O15—S14—O16 120.02 (10) C25—C30—H30 120.2
O15—S14—N1 108.03 (9) C29—C30—H30 120.2
O16—S14—N1 105.28 (9) Cl2—C1L—Cl1 111.26 (14)
O15—S14—C17 109.01 (10) Cl2—C1L—H1L1 109.4
O16—S14—C17 109.45 (10) Cl1—C1L—H1L1 109.4
N1—S14—C17 103.79 (9) Cl2—C1L—H1L2 109.4
C18—C17—C22 121.13 (19) Cl1—C1L—H1L2 109.4
C18—C17—S14 119.48 (16) H1L1—C1L—H1L2 108.0
C22—C17—S14 119.34 (16)
C13—N1—C2—C3 176.94 (19) C2—N1—C13—C8 2.0 (2)
S14—N1—C2—C3 −1.4 (3) S14—N1—C13—C8 −179.75 (14)
C13—N1—C2—C7 −2.0 (2) C2—N1—S14—O15 −39.63 (18)
S14—N1—C2—C7 179.68 (13) C13—N1—S14—O15 142.36 (17)
N1—C2—C3—C4 −178.83 (18) C2—N1—S14—O16 −169.00 (16)
C7—C2—C3—C4 −0.1 (3) C13—N1—S14—O16 12.99 (19)
C2—C3—C4—S24 178.86 (16) C2—N1—S14—C17 76.01 (17)
C2—C3—C4—S5 −1.0 (3) C13—N1—S14—C17 −102.00 (18)
C3—C4—S5—C6 0.5 (2) O15—S14—C17—C18 −10.2 (2)
S24—C4—S5—C6 −179.37 (11) O16—S14—C17—C18 122.83 (17)
C4—S5—C6—C7 1.1 (2) N1—S14—C17—C18 −125.19 (17)
C4—S5—C6—C25 178.86 (14) O15—S14—C17—C22 172.41 (16)
C25—C6—C7—C2 −179.66 (18) O16—S14—C17—C22 −54.52 (19)
S5—C6—C7—C2 −2.2 (3) N1—S14—C17—C22 57.47 (18)
C25—C6—C7—C8 −0.2 (3) C22—C17—C18—C19 1.0 (3)
S5—C6—C7—C8 177.20 (16) S14—C17—C18—C19 −176.29 (16)
C3—C2—C7—C6 1.9 (3) C17—C18—C19—C20 −0.1 (3)
N1—C2—C7—C6 −179.21 (17) C18—C19—C20—C21 −1.3 (3)
C3—C2—C7—C8 −177.69 (19) C18—C19—C20—C23 −179.6 (2)
N1—C2—C7—C8 1.2 (2) C19—C20—C21—C22 1.7 (3)
C6—C7—C8—C9 1.2 (4) C23—C20—C21—C22 −179.9 (2)
C2—C7—C8—C9 −179.3 (2) C20—C21—C22—C17 −0.8 (3)
C6—C7—C8—C13 −179.5 (2) C18—C17—C22—C21 −0.6 (3)
C2—C7—C8—C13 0.0 (2) S14—C17—C22—C21 176.71 (16)
C13—C8—C9—C10 0.5 (3) C7—C6—C25—C30 −100.3 (3)
C7—C8—C9—C10 179.7 (2) S5—C6—C25—C30 82.0 (2)
C8—C9—C10—C11 0.7 (3) C7—C6—C25—C26 84.2 (3)
C9—C10—C11—C12 −1.1 (3) S5—C6—C25—C26 −93.4 (2)
C10—C11—C12—C13 0.2 (3) C30—C25—C26—C27 0.4 (3)
C11—C12—C13—C8 1.1 (3) C6—C25—C26—C27 175.86 (19)
C11—C12—C13—N1 −178.4 (2) C25—C26—C27—C28 0.1 (3)
C9—C8—C13—C12 −1.4 (3) C26—C27—C28—C29 −0.3 (3)
C7—C8—C13—C12 179.21 (18) C27—C28—C29—C30 0.0 (3)
C9—C8—C13—N1 178.17 (17) C26—C25—C30—C29 −0.7 (3)
C7—C8—C13—N1 −1.2 (2) C6—C25—C30—C29 −176.1 (2)
C2—N1—C13—C12 −178.4 (2) C28—C29—C30—C25 0.4 (3)
S14—N1—C13—C12 −0.2 (3)

References

  1. Bönnemann, H. (1978). Angew. Chem. Int. Ed. Engl. 17, 505–515.
  2. Dassonneville, B., Hinkel, F. & Detert, H. (2023). Int. J. Org. Chem. 13, 16–39.
  3. Dassonneville, B., Schollmeyer, D., Witulski, B. & Detert, H. (2010). Acta Cryst. E66, o2665. [DOI] [PMC free article] [PubMed]
  4. Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. 2011, 2836–2844.
  5. Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.
  6. Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
  7. Heller, B. & Hapke, M. (2007). Chem. Soc. Rev. 36, 1085–1094. [DOI] [PubMed]
  8. Reppe, W., Schlichting, O., Klager, K. & Toepel, T. (1948). Justus Liebigs Ann. Chem. 560, 1–92.
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  11. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  12. Tanaka, K., Wada, A. & Noguchi, K. (2006). Org. Lett. 8, 907–909. [DOI] [PubMed]
  13. Vollhardt, K. P. C. (1984). Angew. Chem. 96, 525–541.
  14. Wakatsuki, Y. & Yamazaki, H. (1973). J. Chem. Soc. Chem. Commun. p. 280a.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314623003541/bt4137sup1.cif

x-08-x230354-sup1.cif (181.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623003541/bt4137Isup2.hkl

x-08-x230354-Isup2.hkl (352.9KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623003541/bt4137Isup3.cml

CCDC reference: 2077250

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES