Skip to main content
IUCrData logoLink to IUCrData
. 2023 May 19;8(Pt 5):x230418. doi: 10.1107/S2414314623004182

1-Benzyl-3-[(4-meth­oxy­phen­yl)imino]­indolin-2-one

Omobola A Odedokun a,b, Adebomi A Ikotun a,c,*, Chijioke J Ajaelu a, Nattamai Bhuvanesh c
Editor: S Bernèsd
PMCID: PMC10242729  PMID: 37287861

The title Schiff base was obtained from the reaction of N-benzyl­isatin with p-arnisidine. The imino C=N double bond, exists in an E conformation.

Keywords: crystal structure, N-benzyl­isatin, p-arnisidine, Schiff base

Abstract

The title compound, C22H18N2O2, is a Schiff base obtained by condensing p-arnisidine (4-meth­oxy­aniline) with N-benzyl­isatin (1-benzyl-1H-indole-2,3-dione), which crystallizes in the triclinic P Inline graphic space group. The benzyl and phenyl rings subtend dihedral angles of 76.08 (7) and 60.70 (6)°, respectively, with the isatin group. The imino C=N double bond exists in an E conformation. graphic file with name x-08-x230418-scheme1-3D1.jpg

Structure description

Isatin (1H, indole-2,3-dione), an indole, and its analogs are an important class of heterocyclic compounds due to the presence of the indole ring structure, which is common to many pharmaceutical agents (Visagaperumal et al., 2018). Isatin and its derivatives have served as starting materials for several organic, metal–organic and organometallic syntheses (Garima & Sumitra 2014; Ikotun et al., 2015, 2019). These compounds attract great inter­est because of their potent pharmacological and biological activities (Guo, 2019; Czeleń et al., 2022; Ikotun et al., 2022). N-Benzyl­isatin is a bio­logically potent derivative of isatin that has been used to prepare many new biologically potent Schiff bases and complexes suitable for medicinal purposes (Shakir & Al-Mudhafar, 2020; Banerjee, 2021). The crystal structure of N-benzyl­isatin has been determined (Akkurt et al., 2006; Schutte et al., 2012). We have previously reported the synthesis and crystal structure of the Schiff base prepared from N-benzyl­isatin and p-toluidine (Ikotun et al., 2012). The crystal structure of 1-benzyl-3-[(4-meth­oxy­phen­yl)imino]­indolin-2-one (Fig. 1) is hereby reported.

Figure 1.

Figure 1

The mol­ecular structure of 1-benzyl-3-[(4-meth­oxy­phen­yl)imino]­indolin-2-one showing the atomic labelling; displacement ellipsoids are drawn at the 50% probability level.

In the title compound, the asymmetric unit of compound contains one independent mol­ecule crystallizing in the triclinic space group P Inline graphic . The crystal disintegrated at 300 K and the X-ray structure was acquired at room temperature. The benzyl and phenyl rings subtend dihedral angles of 76.08 (7) and 60.70 (6)°, respectively, with the isatin group.

Synthesis and crystallization

N-benzyl­isatin was prepared according to a literature method (Ikotun et al., 2012). N-Benzyl­isatin (1.000 g, 4.2194 mmol) was dissolved in 20 ml of methanol. 4-Meth­oxy­laniline (0.5196 g, 4.2194 mmol) was also dissolved in 10 ml of methanol. The two solutions were mixed together while stirring at room temperature with the addition of 6 drops of glacial acetic acid for 8 h. The precipitate was filtered under vacuum, dried and the weight was determined to be 1.0566 g (73%). X-ray-suitable crystals were obtained by recrystallization from di­methyl­formamide solution after about two weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Table 1. Experimental details.

Crystal data
Chemical formula C22H18N2O2
M r 342.38
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 300
a, b, c (Å) 8.8872 (19), 8.8922 (19), 11.772 (3)
α, β, γ (°) 94.374 (6), 110.139 (6), 93.747 (6)
V3) 866.7 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.55 × 0.53 × 0.44
 
Data collection
Diffractometer Bruker APEXII DUO (PHOTON 100)
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.358, 0.431
No. of measured, independent and observed [I > 2σ(I)] reflections 24116, 4003, 3219
R int 0.049
(sin θ/λ)max−1) 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.109, 1.03
No. of reflections 4003
No. of parameters 237
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.18

Computer programs: APEX2 and SAINT (Bruker, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623004182/bh4074sup1.cif

x-08-x230418-sup1.cif (710.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623004182/bh4074Isup2.hkl

x-08-x230418-Isup2.hkl (319KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623004182/bh4074Isup3.cml

CCDC reference: 2262787

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The US National Science Foundation (CHE-1900549) is thanked for supporting the X-ray analysis carried out at Texas A & M University, College Station, Texas, USA.

full crystallographic data

Crystal data

C22H18N2O2 Z = 2
Mr = 342.38 F(000) = 360
Triclinic, P1 Dx = 1.312 Mg m3
a = 8.8872 (19) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.8922 (19) Å Cell parameters from 9907 reflections
c = 11.772 (3) Å θ = 2.5–27.5°
α = 94.374 (6)° µ = 0.09 mm1
β = 110.139 (6)° T = 300 K
γ = 93.747 (6)° Block, orange
V = 866.7 (3) Å3 0.55 × 0.53 × 0.44 mm

Data collection

Bruker APEXII DUO (PHOTON 100) diffractometer 3219 reflections with I > 2σ(I)
φ and ω scans Rint = 0.049
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 27.5°, θmin = 1.9°
Tmin = 0.358, Tmax = 0.431 h = −11→11
24116 measured reflections k = −11→11
4003 independent reflections l = −15→15

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2626P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.28 e Å3
4003 reflections Δρmin = −0.18 e Å3
237 parameters Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.184 (7)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Systematic reflection conditions and statistical tests of the data suggested the space group P-1. A solution was obtained readily using XT/XS in APEX2. Hydrogen atoms were placed in idealized positions and were set riding on the respective parent atoms. All non-hydrogen atoms were refined with anisotropic thermal parameters. Absence of additional symmetry and voids were confirmed using PLATON. The structure was refined (weighted least squares refinement on F2) to convergence (Sheldrick, 2008, 2015; Dolomanov, et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.32465 (13) 0.09548 (11) 0.17890 (9) 0.0467 (3)
O2 0.15900 (14) 0.09727 (14) 0.84290 (10) 0.0546 (3)
N1 0.33951 (14) 0.35590 (13) 0.20515 (10) 0.0367 (3)
N2 0.28029 (13) 0.11348 (12) 0.40997 (10) 0.0340 (3)
C1 0.32025 (15) 0.21291 (15) 0.23706 (12) 0.0336 (3)
C2 0.28984 (14) 0.23196 (14) 0.35726 (11) 0.0290 (3)
C3 0.29136 (14) 0.39654 (14) 0.38541 (11) 0.0295 (3)
C4 0.32480 (15) 0.46621 (15) 0.29236 (12) 0.0324 (3)
C5 0.34166 (17) 0.62236 (16) 0.29431 (14) 0.0429 (3)
H5 0.363199 0.667768 0.232234 0.051*
C6 0.32539 (17) 0.70910 (16) 0.39198 (15) 0.0455 (4)
H6 0.335311 0.814188 0.394595 0.055*
C7 0.29483 (17) 0.64298 (16) 0.48527 (14) 0.0429 (3)
H7 0.286015 0.703664 0.550177 0.051*
C8 0.27719 (16) 0.48616 (15) 0.48251 (12) 0.0355 (3)
H8 0.256098 0.441593 0.545095 0.043*
C9 0.37347 (17) 0.38347 (18) 0.09473 (13) 0.0426 (3)
H9A 0.352646 0.486352 0.076706 0.051*
H9B 0.300810 0.315234 0.027033 0.051*
C10 0.54526 (17) 0.36126 (16) 0.10615 (12) 0.0364 (3)
C11 0.5760 (2) 0.24368 (17) 0.03577 (14) 0.0458 (4)
H11 0.490557 0.178863 −0.017936 0.055*
C12 0.7322 (2) 0.2210 (2) 0.04411 (17) 0.0576 (4)
H12 0.751328 0.142265 −0.004234 0.069*
C13 0.8587 (2) 0.3160 (2) 0.12445 (18) 0.0634 (5)
H13 0.963785 0.301025 0.130876 0.076*
C14 0.8301 (2) 0.4332 (2) 0.19530 (17) 0.0612 (5)
H14 0.916046 0.496349 0.250138 0.073*
C15 0.67396 (19) 0.45734 (19) 0.18531 (14) 0.0484 (4)
H15 0.655276 0.538342 0.231865 0.058*
C16 0.24553 (15) 0.11827 (14) 0.51921 (11) 0.0311 (3)
C17 0.10870 (16) 0.17623 (15) 0.52979 (12) 0.0360 (3)
H17 0.039392 0.220029 0.465081 0.043*
C18 0.07458 (16) 0.16936 (16) 0.63595 (13) 0.0372 (3)
H18 −0.017670 0.207542 0.641944 0.045*
C19 0.17839 (17) 0.10545 (15) 0.73296 (12) 0.0370 (3)
C20 0.31359 (17) 0.04389 (16) 0.72204 (13) 0.0403 (3)
H20 0.382694 −0.000043 0.786762 0.048*
C21 0.34513 (16) 0.04796 (15) 0.61558 (12) 0.0360 (3)
H21 0.433457 0.003537 0.607830 0.043*
C22 0.0133 (2) 0.1394 (2) 0.85474 (16) 0.0595 (5)
H22A −0.076403 0.080458 0.793597 0.089*
H22B 0.005243 0.245081 0.844710 0.089*
H22C 0.012674 0.121264 0.933923 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0621 (7) 0.0413 (6) 0.0439 (6) 0.0032 (5) 0.0297 (5) −0.0034 (5)
O2 0.0610 (7) 0.0759 (8) 0.0391 (6) 0.0185 (6) 0.0293 (5) 0.0136 (5)
N1 0.0435 (6) 0.0387 (6) 0.0353 (6) 0.0060 (5) 0.0217 (5) 0.0099 (5)
N2 0.0413 (6) 0.0296 (6) 0.0364 (6) 0.0042 (5) 0.0197 (5) 0.0051 (4)
C1 0.0334 (7) 0.0367 (7) 0.0335 (7) 0.0044 (5) 0.0151 (5) 0.0045 (5)
C2 0.0283 (6) 0.0302 (6) 0.0306 (6) 0.0040 (5) 0.0125 (5) 0.0035 (5)
C3 0.0267 (6) 0.0293 (6) 0.0335 (6) 0.0047 (5) 0.0109 (5) 0.0060 (5)
C4 0.0285 (6) 0.0342 (7) 0.0368 (7) 0.0063 (5) 0.0130 (5) 0.0084 (5)
C5 0.0419 (8) 0.0374 (8) 0.0553 (9) 0.0070 (6) 0.0212 (7) 0.0185 (7)
C6 0.0401 (8) 0.0275 (7) 0.0694 (10) 0.0055 (6) 0.0193 (7) 0.0067 (7)
C7 0.0409 (8) 0.0341 (7) 0.0533 (9) 0.0053 (6) 0.0175 (7) −0.0032 (6)
C8 0.0370 (7) 0.0341 (7) 0.0374 (7) 0.0035 (5) 0.0159 (6) 0.0017 (5)
C9 0.0452 (8) 0.0564 (9) 0.0318 (7) 0.0070 (7) 0.0178 (6) 0.0154 (6)
C10 0.0448 (7) 0.0424 (8) 0.0281 (6) 0.0042 (6) 0.0188 (6) 0.0116 (5)
C11 0.0556 (9) 0.0420 (8) 0.0424 (8) 0.0003 (7) 0.0214 (7) 0.0037 (6)
C12 0.0699 (11) 0.0520 (10) 0.0632 (11) 0.0179 (8) 0.0368 (9) 0.0071 (8)
C13 0.0488 (9) 0.0777 (13) 0.0722 (12) 0.0166 (9) 0.0287 (9) 0.0157 (10)
C14 0.0473 (9) 0.0743 (12) 0.0554 (10) −0.0031 (8) 0.0124 (8) 0.0016 (9)
C15 0.0524 (9) 0.0552 (9) 0.0375 (8) 0.0015 (7) 0.0179 (7) −0.0024 (7)
C16 0.0382 (7) 0.0240 (6) 0.0341 (6) 0.0004 (5) 0.0172 (5) 0.0031 (5)
C17 0.0364 (7) 0.0363 (7) 0.0376 (7) 0.0058 (5) 0.0142 (6) 0.0096 (6)
C18 0.0329 (7) 0.0392 (7) 0.0442 (8) 0.0048 (5) 0.0193 (6) 0.0043 (6)
C19 0.0429 (7) 0.0380 (7) 0.0336 (7) 0.0012 (6) 0.0183 (6) 0.0027 (5)
C20 0.0449 (8) 0.0434 (8) 0.0349 (7) 0.0121 (6) 0.0143 (6) 0.0099 (6)
C21 0.0391 (7) 0.0323 (7) 0.0415 (7) 0.0082 (5) 0.0191 (6) 0.0055 (6)
C22 0.0575 (10) 0.0811 (13) 0.0523 (10) 0.0020 (9) 0.0361 (8) 0.0053 (9)

Geometric parameters (Å, º)

O1—C1 1.2147 (16) C10—C15 1.387 (2)
O2—C19 1.3697 (16) C11—H11 0.9300
O2—C22 1.4197 (19) C11—C12 1.387 (2)
N1—C1 1.3695 (17) C12—H12 0.9300
N1—C4 1.4102 (17) C12—C13 1.376 (3)
N1—C9 1.4663 (17) C13—H13 0.9300
N2—C2 1.2753 (16) C13—C14 1.376 (3)
N2—C16 1.4205 (16) C14—H14 0.9300
C1—C2 1.5286 (17) C14—C15 1.384 (2)
C2—C3 1.4739 (17) C15—H15 0.9300
C3—C4 1.4056 (18) C16—C17 1.3915 (18)
C3—C8 1.3895 (18) C16—C21 1.3966 (19)
C4—C5 1.3843 (19) C17—H17 0.9300
C5—H5 0.9300 C17—C18 1.3884 (19)
C5—C6 1.390 (2) C18—H18 0.9300
C6—H6 0.9300 C18—C19 1.386 (2)
C6—C7 1.381 (2) C19—C20 1.3934 (19)
C7—H7 0.9300 C20—H20 0.9300
C7—C8 1.3897 (19) C20—C21 1.3776 (19)
C8—H8 0.9300 C21—H21 0.9300
C9—H9A 0.9700 C22—H22A 0.9600
C9—H9B 0.9700 C22—H22B 0.9600
C9—C10 1.513 (2) C22—H22C 0.9600
C10—C11 1.384 (2)
C19—O2—C22 118.34 (12) C10—C11—C12 121.00 (15)
C1—N1—C4 110.94 (10) C12—C11—H11 119.5
C1—N1—C9 122.28 (12) C11—C12—H12 120.2
C4—N1—C9 126.77 (12) C13—C12—C11 119.51 (16)
C2—N2—C16 122.11 (11) C13—C12—H12 120.2
O1—C1—N1 125.81 (12) C12—C13—H13 119.9
O1—C1—C2 127.73 (12) C14—C13—C12 120.16 (16)
N1—C1—C2 106.44 (11) C14—C13—H13 119.9
N2—C2—C1 117.81 (11) C13—C14—H14 119.9
N2—C2—C3 136.54 (12) C13—C14—C15 120.28 (16)
C3—C2—C1 105.47 (10) C15—C14—H14 119.9
C4—C3—C2 106.74 (11) C10—C15—H15 119.9
C8—C3—C2 133.75 (12) C14—C15—C10 120.27 (15)
C8—C3—C4 119.38 (12) C14—C15—H15 119.9
C3—C4—N1 110.38 (11) C17—C16—N2 122.85 (12)
C5—C4—N1 128.15 (12) C17—C16—C21 118.87 (12)
C5—C4—C3 121.46 (12) C21—C16—N2 117.96 (11)
C4—C5—H5 121.1 C16—C17—H17 119.7
C4—C5—C6 117.89 (13) C18—C17—C16 120.69 (12)
C6—C5—H5 121.1 C18—C17—H17 119.7
C5—C6—H6 119.2 C17—C18—H18 120.1
C7—C6—C5 121.59 (13) C19—C18—C17 119.80 (12)
C7—C6—H6 119.2 C19—C18—H18 120.1
C6—C7—H7 119.9 O2—C19—C18 124.58 (12)
C6—C7—C8 120.26 (13) O2—C19—C20 115.57 (12)
C8—C7—H7 119.9 C18—C19—C20 119.85 (12)
C3—C8—C7 119.41 (13) C19—C20—H20 119.9
C3—C8—H8 120.3 C21—C20—C19 120.15 (13)
C7—C8—H8 120.3 C21—C20—H20 119.9
N1—C9—H9A 109.0 C16—C21—H21 119.7
N1—C9—H9B 109.0 C20—C21—C16 120.53 (12)
N1—C9—C10 112.92 (11) C20—C21—H21 119.7
H9A—C9—H9B 107.8 O2—C22—H22A 109.5
C10—C9—H9A 109.0 O2—C22—H22B 109.5
C10—C9—H9B 109.0 O2—C22—H22C 109.5
C11—C10—C9 119.80 (13) H22A—C22—H22B 109.5
C11—C10—C15 118.76 (14) H22A—C22—H22C 109.5
C15—C10—C9 121.44 (13) H22B—C22—H22C 109.5
C10—C11—H11 119.5
O1—C1—C2—N2 6.2 (2) C5—C6—C7—C8 −0.9 (2)
O1—C1—C2—C3 −177.95 (13) C6—C7—C8—C3 0.3 (2)
O2—C19—C20—C21 −179.24 (13) C8—C3—C4—N1 178.07 (11)
N1—C1—C2—N2 −174.78 (11) C8—C3—C4—C5 −0.95 (19)
N1—C1—C2—C3 1.07 (13) C9—N1—C1—O1 −1.9 (2)
N1—C4—C5—C6 −178.48 (13) C9—N1—C1—C2 179.07 (11)
N1—C9—C10—C11 113.49 (15) C9—N1—C4—C3 179.82 (12)
N1—C9—C10—C15 −67.07 (18) C9—N1—C4—C5 −1.2 (2)
N2—C2—C3—C4 172.91 (14) C9—C10—C11—C12 179.78 (14)
N2—C2—C3—C8 −2.5 (2) C9—C10—C15—C14 179.05 (14)
N2—C16—C17—C18 175.73 (12) C10—C11—C12—C13 0.6 (3)
N2—C16—C21—C20 −177.48 (12) C11—C10—C15—C14 −1.5 (2)
C1—N1—C4—C3 −1.19 (15) C11—C12—C13—C14 −0.4 (3)
C1—N1—C4—C5 177.75 (13) C12—C13—C14—C15 −0.7 (3)
C1—N1—C9—C10 −74.72 (17) C13—C14—C15—C10 1.7 (3)
C1—C2—C3—C4 −1.74 (13) C15—C10—C11—C12 0.3 (2)
C1—C2—C3—C8 −177.20 (13) C16—N2—C2—C1 −177.27 (11)
C2—N2—C16—C17 56.00 (18) C16—N2—C2—C3 8.6 (2)
C2—N2—C16—C21 −130.53 (13) C16—C17—C18—C19 0.6 (2)
C2—C3—C4—N1 1.84 (14) C17—C16—C21—C20 −3.7 (2)
C2—C3—C4—C5 −177.19 (12) C17—C18—C19—O2 177.83 (13)
C2—C3—C8—C7 175.61 (13) C17—C18—C19—C20 −2.1 (2)
C3—C4—C5—C6 0.4 (2) C18—C19—C20—C21 0.7 (2)
C4—N1—C1—O1 179.06 (13) C19—C20—C21—C16 2.3 (2)
C4—N1—C1—C2 0.02 (14) C21—C16—C17—C18 2.3 (2)
C4—N1—C9—C10 104.17 (15) C22—O2—C19—C18 8.2 (2)
C4—C3—C8—C7 0.60 (19) C22—O2—C19—C20 −171.81 (14)
C4—C5—C6—C7 0.6 (2)

Funding Statement

The authors thank the Tertiary Education Trust Fund (TETFund), Nigeria for sponsoring this work.

References

  1. Akkurt, M., Türktekin, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1575–o1577.
  2. Banerjee, S. (2021). Int. J. Biol. Macromol. 187, 341–349. [DOI] [PubMed]
  3. Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Czeleń, P., Skotnicka, A. & Szefler, B. (2022). Int. J. Mol. Sci. 23, 8046. [DOI] [PMC free article] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Garima, M. & Sumitra, N. (2014). Med. Chem. 4, 417–427.
  7. Guo, H. (2019). Eur. J. Med. Chem. 164, 678–688. [DOI] [PubMed]
  8. Ikotun, A. A., Adelani, P. O. & Egharevba, G. O. (2012). Acta Cryst. E68, o2098. [DOI] [PMC free article] [PubMed]
  9. Ikotun, A. A., Babajide, E. E., Omolekan, T. O. & Ajaelu, C. J. (2022). Trop. J. Nat. Prod. Res., 6, 1723-1726.
  10. Ikotun, A. A., Coogan, M. P., Owoseni, A. A., Bhuvanesh, N. & Egharevba, G. O. (2015). Acta Cryst. E71, m106–m107. [DOI] [PMC free article] [PubMed]
  11. Ikotun, A. A., Coogan, M. P., Owoseni, A. A. & Egharevba, G. O. (2019). J. Chem Soc. Nigeria, 44, 948–958.
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Schutte, M., Visser, H. G., Roodt, A. & Braband, H. (2012). Acta Cryst. E68, o777. [DOI] [PMC free article] [PubMed]
  14. Shakir, T. H. & Al-Mudhafar, M. M. J. (2020). Sys. Rev. Pharm. 11, 1950–1955.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  18. Visagaperumal, S., Ezekwem, J. E., Munji, H. & Chandy, V. (2018). Pharma Tutor. 6, 38-47.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623004182/bh4074sup1.cif

x-08-x230418-sup1.cif (710.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623004182/bh4074Isup2.hkl

x-08-x230418-Isup2.hkl (319KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623004182/bh4074Isup3.cml

CCDC reference: 2262787

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES