The triazole ring in the title molecule is not quite coplanar with the six-membered ring to which it is fused, the dihedral angle between the two least-squares planes being 2.52 (6)°. In the crystal, a layer structure is formed by N—H⋯N and C—H⋯O hydrogen bonds plus slipped π-stacking interactions, with the fused cyclohexene rings projecting to either side.
Keywords: crystal structure, π-stacking, hydrogen bonding, triazole, tetrahydroquinazoline
Abstract
The triazole ring in the title molecule, C9H10N4O, is not quite coplanar with the six-membered ring to which it is fused, the dihedral angle between the two least-squares planes being 2.52 (6)°. In the crystal, a layered structure is formed by N—H⋯N and C—H⋯O hydrogen bonds plus slipped π-stacking interactions, with the fused cyclohexene rings projecting to either side.
Structure description
Compounds containing nitrogen heterocycles make up a significant portion (approximately 60%) of small drug molecules that have been approved by the FDA (Ramli & Essassi, 2015 ▸; Martins et al., 2015 ▸). Quinazoline is a frequently occurring structural feature in natural products and pharmaceutically active molecules., which possess a range of useful biological properties, including anti-SARS-CoV-2 (e.g. Karan et al., 2021 ▸), anticancer (e.g. Zhao et al., 2021 ▸), antiviral (e.g. El-Shershaby et al., 2021 ▸), antimicrobial, anti-inflammatory (e.g. Zhang et al., 2020 ▸), and antifungal activities (e.g. Ibrahim et al., 2021 ▸).
A puckering analysis of the C2–C7 ring of the title compound (Fig. 1 ▸) gave the parameters Q = 0.4922 (12) Å, θ = 129.71 (14)° and φ = 326.36 (18)°. This conformation is quite similar to a half-chair form. The C8/N2/C9/N3/N4 ring is closer to planarity than is the C1/C2/C7/N1/C8/N4 ring (r.m.s. deviations of the fitted atoms are 0.0128 and 0.0042 Å, respectively) and the dihedral angle between their mean planes is 2.52 (6)°. In the crystal, N1—H1⋯N3 hydrogen bonds (Table 1 ▸) form chains of molecules extending along the c-axis direction, which are linked into layers parallel to the bc plane by weak C—H⋯O hydrogen bonds (Table 1 ▸ and Fig. 2 ▸). The layer formation is assisted by slipped π-stacking interactions between inversion-related C1/C2/C7/N1/C8/N4 rings [centroid–centroid distance = 3.4033 (6) Å, slippage = 0.96 Å]. The layers pack along the a-axis direction with van der Waals contacts between them (Fig. 3 ▸).
Figure 1.
The title molecule with labeling scheme and 50% probability ellipsoids.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1⋯N3i | 0.919 (15) | 1.907 (15) | 2.8208 (12) | 173.1 (13) |
| C9—H9⋯O1ii | 0.95 | 2.57 | 3.3282 (12) | 137 |
Symmetry codes: (i)
; (ii)
.
Figure 2.
A portion of one layer viewed along the a-axis direction with N—H⋯N and C—H⋯O hydrogen bonds depicted by blue and black dashed lines, respectively. The slipped π-stacking interactions are depicted by orange dashed lines and non-interacting hydrogen atoms are omitted for clarity.
Figure 3.
Packing viewed along the c-axis direction giving edge views of portions of three layers. Intermolecular interactions are depicted as in Fig. 2 ▸ and non-interacting hydrogen atoms are omitted for clarity.
Synthesis and crystallization
1H-1,2,4-Triazol-5-amine (0.5 g, 5.95 mmol) and ethyl 2-oxo-cyclohexanecarboxylate (0.951 ml, 5.95 mmol) were combined and heated under reflux in 10 ml of acetic acid for 1 h. The solid product obtained was recrystallized from ethanol solution to afford colorless crystals.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C9H10N4O |
| M r | 190.21 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 150 |
| a, b, c (Å) | 9.7925 (3), 7.9648 (3), 11.8039 (4) |
| β (°) | 113.553 (1) |
| V (Å3) | 843.95 (5) |
| Z | 4 |
| Radiation type | Cu Kα |
| μ (mm−1) | 0.86 |
| Crystal size (mm) | 0.36 × 0.15 × 0.12 |
| Data collection | |
| Diffractometer | Bruker D8 VENTURE PHOTON 3 CPAD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.84, 0.91 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 18079, 1657, 1626 |
| R int | 0.021 |
| (sin θ/λ)max (Å−1) | 0.618 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.030, 0.080, 1.07 |
| No. of reflections | 1657 |
| No. of parameters | 131 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.24, −0.19 |
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623004091/tk4091sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623004091/tk4091Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314623004091/tk4091Isup3.cml
CCDC reference: 2259950
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The support of NSF-MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. Author contributions are as follows. Conceptualization, MT and AB; methodology, WE and AB; investigation, WE, AD; writing (original draft), JTM and YR; writing (review and editing of the manuscript), YR; formal analysis, YR; supervision, YR and MT; crystal-structure determination and validation, JTM.
full crystallographic data
Crystal data
| C9H10N4O | F(000) = 400 |
| Mr = 190.21 | Dx = 1.497 Mg m−3 |
| Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
| a = 9.7925 (3) Å | Cell parameters from 9958 reflections |
| b = 7.9648 (3) Å | θ = 4.1–72.3° |
| c = 11.8039 (4) Å | µ = 0.86 mm−1 |
| β = 113.553 (1)° | T = 150 K |
| V = 843.95 (5) Å3 | Column, colourless |
| Z = 4 | 0.36 × 0.15 × 0.12 mm |
Data collection
| Bruker D8 VENTURE PHOTON 3 CPAD diffractometer | 1657 independent reflections |
| Radiation source: INCOATEC IµS micro—-focus source | 1626 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.021 |
| Detector resolution: 7.3910 pixels mm-1 | θmax = 72.4°, θmin = 7.4° |
| φ and ω scans | h = −12→12 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −9→9 |
| Tmin = 0.84, Tmax = 0.91 | l = −14→14 |
| 18079 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: dual |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: mixed |
| wR(F2) = 0.080 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.07 | w = 1/[σ2(Fo2) + (0.0413P)2 + 0.2836P] where P = (Fo2 + 2Fc2)/3 |
| 1657 reflections | (Δ/σ)max = 0.001 |
| 131 parameters | Δρmax = 0.24 e Å−3 |
| 0 restraints | Δρmin = −0.19 e Å−3 |
Special details
| Experimental. The diffraction data were obtained from 18 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was θ-dependent and ranged from 4 to 15 sec/frame. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and was refined independently. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.26314 (8) | 0.43095 (10) | 0.61185 (6) | 0.0244 (2) | |
| N1 | 0.41264 (9) | 0.32811 (10) | 0.34454 (7) | 0.0175 (2) | |
| H1 | 0.4489 (16) | 0.3032 (18) | 0.2857 (14) | 0.034 (4)* | |
| N2 | 0.59918 (9) | 0.16425 (10) | 0.50516 (7) | 0.0183 (2) | |
| N3 | 0.51360 (9) | 0.22338 (11) | 0.65438 (7) | 0.0189 (2) | |
| N4 | 0.42719 (9) | 0.30291 (10) | 0.54577 (7) | 0.0168 (2) | |
| C1 | 0.30105 (11) | 0.40365 (12) | 0.52669 (9) | 0.0180 (2) | |
| C2 | 0.22902 (11) | 0.46080 (12) | 0.40036 (9) | 0.0180 (2) | |
| C3 | 0.08681 (11) | 0.55964 (13) | 0.36710 (10) | 0.0227 (2) | |
| H3A | 0.111393 | 0.675596 | 0.398974 | 0.027* | |
| H3B | 0.025843 | 0.507898 | 0.407433 | 0.027* | |
| C4 | −0.00393 (12) | 0.56563 (14) | 0.22750 (10) | 0.0245 (3) | |
| H4A | −0.050592 | 0.454782 | 0.198573 | 0.029* | |
| H4B | −0.084433 | 0.649834 | 0.208425 | 0.029* | |
| C5 | 0.09473 (12) | 0.61123 (13) | 0.15965 (9) | 0.0236 (2) | |
| H5A | 0.142182 | 0.721576 | 0.189077 | 0.028* | |
| H5B | 0.032941 | 0.620358 | 0.069973 | 0.028* | |
| C6 | 0.21483 (11) | 0.47830 (13) | 0.18183 (9) | 0.0215 (2) | |
| H6A | 0.169975 | 0.379239 | 0.129506 | 0.026* | |
| H6B | 0.292459 | 0.523786 | 0.156502 | 0.026* | |
| C7 | 0.28651 (11) | 0.42377 (12) | 0.31498 (9) | 0.0172 (2) | |
| C8 | 0.48158 (10) | 0.26443 (12) | 0.45921 (8) | 0.0160 (2) | |
| C9 | 0.61124 (11) | 0.14311 (12) | 0.62317 (9) | 0.0185 (2) | |
| H9 | 0.686309 | 0.073934 | 0.680293 | 0.022* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0287 (4) | 0.0296 (4) | 0.0208 (4) | 0.0032 (3) | 0.0161 (3) | −0.0006 (3) |
| N1 | 0.0201 (4) | 0.0205 (4) | 0.0139 (4) | 0.0001 (3) | 0.0089 (3) | −0.0007 (3) |
| N2 | 0.0187 (4) | 0.0190 (4) | 0.0178 (4) | −0.0010 (3) | 0.0079 (3) | −0.0009 (3) |
| N3 | 0.0206 (4) | 0.0212 (4) | 0.0143 (4) | −0.0004 (3) | 0.0063 (3) | 0.0019 (3) |
| N4 | 0.0188 (4) | 0.0193 (4) | 0.0133 (4) | −0.0007 (3) | 0.0076 (3) | 0.0002 (3) |
| C1 | 0.0195 (5) | 0.0171 (5) | 0.0196 (5) | −0.0020 (4) | 0.0102 (4) | −0.0016 (4) |
| C2 | 0.0190 (5) | 0.0170 (5) | 0.0186 (5) | −0.0019 (4) | 0.0083 (4) | −0.0008 (4) |
| C3 | 0.0218 (5) | 0.0230 (5) | 0.0254 (5) | 0.0030 (4) | 0.0115 (4) | 0.0009 (4) |
| C4 | 0.0194 (5) | 0.0222 (5) | 0.0283 (6) | 0.0025 (4) | 0.0057 (4) | −0.0001 (4) |
| C5 | 0.0258 (5) | 0.0211 (5) | 0.0189 (5) | 0.0010 (4) | 0.0037 (4) | 0.0013 (4) |
| C6 | 0.0239 (5) | 0.0240 (5) | 0.0157 (5) | 0.0000 (4) | 0.0069 (4) | 0.0004 (4) |
| C7 | 0.0178 (5) | 0.0161 (5) | 0.0175 (5) | −0.0030 (3) | 0.0067 (4) | −0.0011 (4) |
| C8 | 0.0182 (4) | 0.0164 (5) | 0.0152 (4) | −0.0036 (3) | 0.0087 (4) | −0.0025 (3) |
| C9 | 0.0182 (5) | 0.0188 (5) | 0.0176 (5) | −0.0015 (4) | 0.0063 (4) | 0.0006 (4) |
Geometric parameters (Å, º)
| O1—C1 | 1.2222 (12) | C3—C4 | 1.5287 (14) |
| N1—C8 | 1.3471 (12) | C3—H3A | 0.9900 |
| N1—C7 | 1.3724 (13) | C3—H3B | 0.9900 |
| N1—H1 | 0.919 (15) | C4—C5 | 1.5247 (15) |
| N2—C8 | 1.3258 (13) | C4—H4A | 0.9900 |
| N2—C9 | 1.3605 (12) | C4—H4B | 0.9900 |
| N3—C9 | 1.3192 (13) | C5—C6 | 1.5253 (14) |
| N3—N4 | 1.3762 (11) | C5—H5A | 0.9900 |
| N4—C8 | 1.3625 (12) | C5—H5B | 0.9900 |
| N4—C1 | 1.4135 (13) | C6—C7 | 1.5066 (13) |
| C1—C2 | 1.4449 (14) | C6—H6A | 0.9900 |
| C2—C7 | 1.3687 (14) | C6—H6B | 0.9900 |
| C2—C3 | 1.5087 (13) | C9—H9 | 0.9500 |
| C8—N1—C7 | 120.21 (8) | C3—C4—H4B | 109.5 |
| C8—N1—H1 | 119.2 (9) | H4A—C4—H4B | 108.1 |
| C7—N1—H1 | 120.5 (9) | C4—C5—C6 | 110.58 (8) |
| C8—N2—C9 | 101.49 (8) | C4—C5—H5A | 109.5 |
| C9—N3—N4 | 101.96 (7) | C6—C5—H5A | 109.5 |
| C8—N4—N3 | 108.42 (8) | C4—C5—H5B | 109.5 |
| C8—N4—C1 | 125.93 (8) | C6—C5—H5B | 109.5 |
| N3—N4—C1 | 125.63 (8) | H5A—C5—H5B | 108.1 |
| O1—C1—N4 | 120.21 (9) | C7—C6—C5 | 112.64 (8) |
| O1—C1—C2 | 127.54 (9) | C7—C6—H6A | 109.1 |
| N4—C1—C2 | 112.23 (8) | C5—C6—H6A | 109.1 |
| C7—C2—C1 | 121.15 (9) | C7—C6—H6B | 109.1 |
| C7—C2—C3 | 121.96 (9) | C5—C6—H6B | 109.1 |
| C1—C2—C3 | 116.88 (9) | H6A—C6—H6B | 107.8 |
| C2—C3—C4 | 112.04 (8) | C2—C7—N1 | 121.71 (9) |
| C2—C3—H3A | 109.2 | C2—C7—C6 | 123.29 (9) |
| C4—C3—H3A | 109.2 | N1—C7—C6 | 114.96 (8) |
| C2—C3—H3B | 109.2 | N2—C8—N1 | 129.96 (9) |
| C4—C3—H3B | 109.2 | N2—C8—N4 | 111.37 (8) |
| H3A—C3—H3B | 107.9 | N1—C8—N4 | 118.66 (9) |
| C5—C4—C3 | 110.87 (8) | N3—C9—N2 | 116.74 (9) |
| C5—C4—H4A | 109.5 | N3—C9—H9 | 121.6 |
| C3—C4—H4A | 109.5 | N2—C9—H9 | 121.6 |
| C5—C4—H4B | 109.5 | ||
| C9—N3—N4—C8 | −0.54 (10) | C1—C2—C7—C6 | 179.19 (9) |
| C9—N3—N4—C1 | 177.90 (9) | C3—C2—C7—C6 | 0.39 (15) |
| C8—N4—C1—O1 | −179.38 (9) | C8—N1—C7—C2 | 1.57 (14) |
| N3—N4—C1—O1 | 2.46 (15) | C8—N1—C7—C6 | −176.34 (8) |
| C8—N4—C1—C2 | 1.78 (14) | C5—C6—C7—C2 | 13.45 (14) |
| N3—N4—C1—C2 | −176.39 (8) | C5—C6—C7—N1 | −168.67 (8) |
| O1—C1—C2—C7 | 178.33 (10) | C9—N2—C8—N1 | −178.78 (10) |
| N4—C1—C2—C7 | −2.93 (13) | C9—N2—C8—N4 | 0.72 (10) |
| O1—C1—C2—C3 | −2.81 (15) | C7—N1—C8—N2 | 176.72 (9) |
| N4—C1—C2—C3 | 175.93 (8) | C7—N1—C8—N4 | −2.74 (14) |
| C7—C2—C3—C4 | 16.83 (14) | N3—N4—C8—N2 | −0.13 (11) |
| C1—C2—C3—C4 | −162.02 (9) | C1—N4—C8—N2 | −178.56 (8) |
| C2—C3—C4—C5 | −47.48 (12) | N3—N4—C8—N1 | 179.43 (8) |
| C3—C4—C5—C6 | 62.20 (11) | C1—N4—C8—N1 | 1.00 (14) |
| C4—C5—C6—C7 | −43.86 (11) | N4—N3—C9—N2 | 1.08 (11) |
| C1—C2—C7—N1 | 1.46 (15) | C8—N2—C9—N3 | −1.16 (11) |
| C3—C2—C7—N1 | −177.34 (9) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1···N3i | 0.919 (15) | 1.907 (15) | 2.8208 (12) | 173.1 (13) |
| C9—H9···O1ii | 0.95 | 2.57 | 3.3282 (12) | 137 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+3/2.
References
- Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
- Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
- El-Shershaby, M. H., Ghiaty, A., Bayoumi, A. H., Ahmed, H. E., El-Zoghbi, M. S., El-Adl, K. & Abulkhair, H. S. (2021). New J. Chem. 45, 11136–11152.
- Ibrahim, O. F., Bakhite, E. A., Metwally, S. A. M., El-Ossaily, Y. A., Abdu-Allah, H. H. M., Al-Taifi, E. A. & Kandel, M. (2021). Russ. J. Bioorg. Chem. 47, 918–928.
- Karan, R., Agarwal, P., Sinha, M. & Mahato, N. (2021). ChemEngineering 5, 73.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Martins, P., Jesus, J., Santos, S., Raposo, L. R., Roma-Rodrigues, C., Baptista, P. V. & Fernandes, A. R. (2015). Molecules, 20, 16852–16891. [DOI] [PMC free article] [PubMed]
- Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109–160.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Zhang, G., Wang, M., Zhao, J., Wang, Y., Zhu, M., Wang, J., Cen, S. & Wang, Y. (2020). Eur. J. Med. Chem. 206, 112706. [DOI] [PubMed]
- Zhao, J., Zhang, Y., Wang, M., Liu, Q., Lei, X., Wu, M. & Cen, S. (2021). Infect. Dis. 7, 1535–1544. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623004091/tk4091sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623004091/tk4091Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314623004091/tk4091Isup3.cml
CCDC reference: 2259950
Additional supporting information: crystallographic information; 3D view; checkCIF report



