Skip to main content
IUCrData logoLink to IUCrData
. 2023 May 5;8(Pt 5):x230378. doi: 10.1107/S2414314623003784

N-Methyl­serotonin hydrogen oxalate

Marilyn Naeem a, Nicholas A Anas b, Andrew R Chadeayne b, James A Golen a, David R Manke a,*
Editor: I Britoc
PMCID: PMC10242732  PMID: 37287863

The structure of the natural product N-methyl­serotonin is reported as its hydrogen oxalate salt.

Keywords: crystal structure, tryptamines, indoles, hydrogen bonding

Abstract

The solid-state structure of N-methyl­serotonin {systematic name: [2-(5-hy­droxy-1H-indol-3-yl)eth­yl](meth­yl)aza­nium hydrogen oxalate}, C11H15N2O+·C2HO4 , is reported. The structure possesses a singly protonated N-methylserotonin cation and one hydrogen oxalate anion in the asymmetric unit. In the crystal, the mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network. graphic file with name x-08-x230378-scheme1-3D1.jpg

Structure description

Serotonin (5-hy­droxy­tryptamine) is a ubiquitous neurotransmitter that is integral in regulating mood, anxiety and happiness in humans (Young & Leyton, 2002). Methyl­ating the ethyl­amine nitro­gen atom of serotonin provides three serotonin analogues: (i) N-methyl­serotonin, (ii) 5-hy­droxy-N,N-di­methyl­tryptamine (bufotenine) and (iii) 5-hy­droxy-N,N,N-tri­methyl­tryptammonium (bufotenidine). Of these, bufotenine is probably most widely known as a natural product found in the secretions of Bufo alvarius toads. Bufotenine is a potent agonist of serotonin receptors and is one of several compounds to which the psychedelic effects of toad secretions are attributed (Egan et al., 2000).

Replacing three hydrogen atoms with methyl groups in the ethyl­amine group of serotonin provides 5-hy­droxy-N,N,N-tri­methyl­tryptammonium, or bufotenidine, which is also a natural product found in toad secretions. Bufotenidine differs from the other analogues by virtue of its quaternary ammonium cation and selective affinity for the serotonin 3 receptor. Due to its charge, bufotenidine is unable to cross the blood–brain barrier, restricting its activity to the periphery, where it has been shown to have paralytic properties (Bhattacharya & Sanyal, 1972).

The title compound is the mono-methyl­ated variant 5-hy­droxy-N-methyl­tryptamine, which is a naturally occurring derivative of serotonin that has garnered attention due to its potential applications in biological and medical contexts. Endogenous N-methyl­serotonin has been observed both in plants and mammals, including in rodents colonized with human gut bacterial strains (Han et al., 2022). The biosynthesis of N-methyl­serotonin most likely occurs via N-methyl­ation of serotonin by the enzyme indole­thyl­amine-N-methyl­transferase (Thompson et al., 2001). This enzyme, originally discovered as the enzyme responsible for the synthesis of the endogenous hallucinogen di­methyl­tryptamine (Barker et al., 2012), has recently been shown to have a broader substrate scope, including serotonin, which likely leads to the formation of N-methyl­serotonin (Chu et al., 2014).

The pharmacological properties of N-methyl­serotonin have been a subject of increasing inter­est. It is reported to have significant binding affinity for the serotonin 1 A and 7 receptors, in addition to being a potent serotonin reuptake inhibitor (Powell et al., 2008). These activities suggest that N-methyl­serotonin may have a unique pharmacological profile different from parent serotonin and may provide novel therapeutic opportunities for various psychiatric and neurological disorders. The title compound was first synthesized by Hofmann in 1955 and characterized by IR and elemental analysis (Stoll et al., 1955). Herein, the crystal structure of 5-hy­droxy-N-methyl­tryptamine is presented as its hydrogen oxalate salt.

The asymmetric unit of 5-hy­droxy-N-methyl­trypt­ammonium hydrogen oxalate contains one tryptammonium cation and one hydrogen oxalate anion (Fig. 1). The trypt­ammonium cation has a near planar indole unit with an r.m.s. deviation from planarity of 0.014 Å. The ethyl­amino arm is turned away from the indole plane with a C7—C8—C9—C10 torsion angle of −83.1 (3)°. The N-methyl group of this arm possesses a gauche configuration , with a C9—C10—N2—C11 torsion angle of 57.2 (3)°. The hydrogen oxalate anion varies significantly from planarity, with a CO2-to-CO2 plane-to-plane twist angle of 24.2 (1)°. The ions are linked together through a series of N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional framework (Fig. 2, Table 1). The hydrogen oxalate ions are linked together through O—H⋯O hydrogen bonds into chains along (100).

Figure 1.

Figure 1

The mol­ecular structure of 5-hy­droxy-N-methyl­tryptammonium hydrogen oxalate showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2.

Figure 2

The crystal packing of 5-hy­droxy-N-methyl­tryptammonium hydrogen oxalate shown along the a-axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.87 (1) 2.08 (2) 2.928 (3) 164 (3)
N2—H2A⋯O1i 0.91 (1) 2.30 (3) 2.862 (3) 120 (2)
N2—H2A⋯O2ii 0.91 (1) 2.35 (2) 3.150 (3) 147 (3)
N2—H2B⋯O3iii 0.90 (1) 2.15 (2) 2.906 (3) 141 (3)
N2—H2B⋯O5iii 0.90 (1) 2.34 (2) 3.117 (3) 145 (3)
O1—H1⋯O3iv 0.77 (4) 2.00 (4) 2.768 (2) 172 (4)
O5—H5⋯O2v 0.84 (4) 1.76 (4) 2.595 (2) 177 (4)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

The most closely related mono­alkyl­tryptamine structure to the title compound is 5-meth­oxy-N-methyl­tryptamine [Cambridge Structural Database (Groom et al., 2016) refcode QQQAHA; Bergin et al., 1968]. There are six other mono­alkyl­tryptamine structures reported in the literature. These are the natural product norpsilocin, 4-hy­droxy-N-methyl­tryptamine, which has been reported as its free base and its fumarate salt (MULXAV and MULXEZ; Chadeayne et al., 2020), the natural product baeocystin (FEJBAB; Naeem et al., 2022b ), 4-acet­oxy-N-methyl­tryptamine (Glatfelter et al., 2022), 4-benz­yloxy-N-iso­propyl­tryptammonium chloride and 4-hy­droxy-N-iso­propyl­tryptamine (CCDC 2246619 and 2246620; Laban et al., 2023). The 5-hy­droxy­tryptamine structures that are known include the natural products serotonin (JECDII; Naeem et al., 2022a ), bufotenine (BUFTEN; Falkenberg, 1972) and bufotenidine (ILUVET; Pham et al., 2021). The structure of serotonin has also been determined as its hydrogen oxalate salt (SERHOX: Amit et al., 1978).

Synthesis and crystallization

Single crystals suitable for X-ray diffraction studies were grown from an aqueous solution of a commercial sample (Sigma-Aldrich).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C11H15N2O+·C2HO4
M r 280.28
Crystal system, space group Monoclinic, P n
Temperature (K) 300
a, b, c (Å) 5.7044 (4), 9.9485 (7), 11.7687 (7)
β (°) 90.321 (2)
V3) 667.87 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.30 × 0.22 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.715, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 29160, 2730, 2670
R int 0.032
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.077, 1.10
No. of reflections 2730
No. of parameters 202
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.12, −0.21
Absolute structure Flack x determined using 1280 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.2 (2)

Computer programs: APEX4 and SAINT (Bruker, 2021), SHELXT2014 (Sheldrick 2015a ), SHELXL2018 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623003784/bx4024sup1.cif

x-08-x230378-sup1.cif (875.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623003784/bx4024Isup2.hkl

x-08-x230378-Isup2.hkl (218.3KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623003784/bx4024Isup3.cml

CCDC reference: 2259219

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

full crystallographic data

Crystal data

C11H15N2O+·C2HO4 F(000) = 296
Mr = 280.28 Dx = 1.394 Mg m3
Monoclinic, Pn Mo Kα radiation, λ = 0.71073 Å
a = 5.7044 (4) Å Cell parameters from 9870 reflections
b = 9.9485 (7) Å θ = 2.7–26.4°
c = 11.7687 (7) Å µ = 0.11 mm1
β = 90.321 (2)° T = 300 K
V = 667.87 (8) Å3 Block, brown
Z = 2 0.30 × 0.22 × 0.06 mm

Data collection

Bruker D8 Venture CMOS diffractometer 2670 reflections with I > 2σ(I)
φ and ω scans Rint = 0.032
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 26.4°, θmin = 3.5°
Tmin = 0.715, Tmax = 0.745 h = −7→7
29160 measured reflections k = −12→12
2730 independent reflections l = −14→14

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.0849P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.12 e Å3
2730 reflections Δρmin = −0.21 e Å3
202 parameters Absolute structure: Flack x determined using 1280 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
5 restraints Absolute structure parameter: −0.2 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atoms H1, H1A, H2A, H2B and H5 were found in a difference-Fourier map. These H atoms were refined isotropically, using DFIX restraints with NH(indole) distances of 0.87 (1) Å and NH(ammonium) distances of 0.90 (1) Å. Isotropic displacement parameters were set to 1.2Ueq of the parent nitrogen atoms and 1.5Ueq of the parent oxygen atoms. All other H atoms were placed in calculated positions [C—H = 0.93 Å (sp2), 0.97 Å (CH2), 0.96 Å (CH3)].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6078 (3) 0.04614 (17) 0.56240 (16) 0.0420 (4)
N1 0.4085 (4) 0.5480 (2) 0.39536 (18) 0.0393 (5)
N2 −0.1882 (3) 0.1720 (2) 0.12931 (17) 0.0349 (4)
C1 0.2113 (5) 0.5182 (2) 0.3334 (2) 0.0380 (5)
H1B 0.127417 0.579809 0.289859 0.046*
C2 0.4845 (4) 0.4328 (2) 0.44898 (18) 0.0300 (4)
C3 0.6748 (4) 0.4108 (2) 0.5213 (2) 0.0354 (5)
H3 0.772969 0.480992 0.543043 0.043*
C4 0.7131 (4) 0.2820 (2) 0.55953 (19) 0.0349 (5)
H4 0.840919 0.264578 0.606681 0.042*
C5 0.5629 (4) 0.1764 (2) 0.52871 (19) 0.0324 (5)
C6 0.3690 (4) 0.1982 (2) 0.46036 (19) 0.0312 (4)
H6 0.267239 0.128191 0.442551 0.037*
C7 0.3287 (4) 0.3280 (2) 0.41840 (18) 0.0286 (4)
C8 0.1551 (4) 0.3856 (2) 0.34432 (18) 0.0322 (5)
C9 −0.0508 (4) 0.3163 (3) 0.29002 (19) 0.0357 (5)
H9A −0.170818 0.382400 0.272639 0.043*
H9B −0.116215 0.252428 0.343399 0.043*
C10 0.0157 (4) 0.2435 (2) 0.18230 (19) 0.0307 (4)
H10A 0.078092 0.307744 0.128362 0.037*
H10B 0.138068 0.178790 0.199422 0.037*
C11 −0.3888 (4) 0.2595 (3) 0.1022 (2) 0.0506 (7)
H11A −0.495409 0.212713 0.052715 0.076*
H11B −0.333959 0.339444 0.065125 0.076*
H11C −0.468021 0.283580 0.171023 0.076*
C12 0.4759 (3) 0.9157 (2) 0.30591 (18) 0.0279 (4)
C13 0.7233 (4) 0.8699 (2) 0.34523 (19) 0.0291 (4)
O2 0.3103 (3) 0.86964 (18) 0.36400 (16) 0.0392 (4)
O3 0.4636 (3) 0.98887 (17) 0.22060 (15) 0.0390 (4)
O4 0.7505 (3) 0.76747 (19) 0.39757 (19) 0.0493 (5)
O5 0.8902 (3) 0.95034 (18) 0.31279 (16) 0.0389 (4)
H1A 0.487 (5) 0.623 (2) 0.399 (3) 0.054 (9)*
H2A −0.142 (5) 0.135 (3) 0.0625 (17) 0.046 (8)*
H2B −0.234 (6) 0.107 (2) 0.177 (2) 0.048 (8)*
H1 0.715 (7) 0.040 (3) 0.602 (3) 0.054 (10)*
H5 1.024 (7) 0.922 (4) 0.330 (3) 0.067 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0454 (10) 0.0325 (9) 0.0478 (10) −0.0060 (8) −0.0167 (8) 0.0050 (7)
N1 0.0501 (12) 0.0251 (9) 0.0427 (11) −0.0081 (9) 0.0002 (9) −0.0014 (8)
N2 0.0249 (9) 0.0442 (11) 0.0355 (10) −0.0037 (8) 0.0011 (7) −0.0082 (9)
C1 0.0485 (13) 0.0315 (11) 0.0341 (11) 0.0033 (10) −0.0005 (9) 0.0013 (9)
C2 0.0357 (11) 0.0251 (9) 0.0292 (10) −0.0062 (9) 0.0059 (8) −0.0047 (8)
C3 0.0379 (12) 0.0342 (11) 0.0342 (11) −0.0142 (9) 0.0012 (9) −0.0113 (9)
C4 0.0338 (11) 0.0405 (12) 0.0304 (10) −0.0041 (9) −0.0042 (8) −0.0043 (9)
C5 0.0354 (11) 0.0303 (11) 0.0314 (10) −0.0034 (9) −0.0001 (8) −0.0009 (8)
C6 0.0325 (11) 0.0268 (10) 0.0344 (11) −0.0084 (9) −0.0008 (8) −0.0027 (8)
C7 0.0298 (10) 0.0276 (10) 0.0282 (9) −0.0035 (8) 0.0028 (8) −0.0054 (8)
C8 0.0347 (11) 0.0329 (11) 0.0292 (10) 0.0007 (9) 0.0010 (8) −0.0043 (9)
C9 0.0301 (11) 0.0427 (12) 0.0344 (11) −0.0006 (9) 0.0001 (9) −0.0059 (9)
C10 0.0223 (9) 0.0335 (10) 0.0364 (11) −0.0011 (8) 0.0000 (8) −0.0040 (8)
C11 0.0285 (12) 0.074 (2) 0.0487 (15) 0.0014 (12) −0.0078 (10) 0.0122 (13)
C12 0.0192 (9) 0.0255 (9) 0.0389 (11) −0.0006 (7) −0.0053 (8) −0.0010 (9)
C13 0.0215 (9) 0.0296 (10) 0.0361 (10) −0.0024 (8) −0.0052 (7) 0.0010 (9)
O2 0.0187 (7) 0.0423 (9) 0.0567 (10) −0.0034 (6) −0.0011 (7) 0.0103 (8)
O3 0.0264 (7) 0.0443 (9) 0.0463 (9) −0.0007 (7) −0.0098 (6) 0.0118 (8)
O4 0.0290 (8) 0.0397 (10) 0.0790 (13) −0.0060 (7) −0.0172 (8) 0.0244 (9)
O5 0.0170 (7) 0.0445 (10) 0.0554 (10) −0.0019 (6) −0.0011 (7) 0.0172 (8)

Geometric parameters (Å, º)

O1—C5 1.378 (3) C6—H6 0.9300
O1—H1 0.77 (4) C6—C7 1.401 (3)
N1—C1 1.370 (3) C7—C8 1.435 (3)
N1—C2 1.377 (3) C8—C9 1.501 (3)
N1—H1A 0.873 (14) C9—H9A 0.9700
N2—C10 1.496 (3) C9—H9B 0.9700
N2—C11 1.472 (3) C9—C10 1.510 (3)
N2—H2A 0.910 (14) C10—H10A 0.9700
N2—H2B 0.898 (14) C10—H10B 0.9700
C1—H1B 0.9300 C11—H11A 0.9600
C1—C8 1.363 (3) C11—H11B 0.9600
C2—C3 1.393 (3) C11—H11C 0.9600
C2—C7 1.415 (3) C12—C13 1.551 (3)
C3—H3 0.9300 C12—O2 1.256 (3)
C3—C4 1.375 (4) C12—O3 1.242 (3)
C4—H4 0.9300 C13—O4 1.200 (3)
C4—C5 1.402 (3) C13—O5 1.303 (3)
C5—C6 1.381 (3) O5—H5 0.84 (4)
C5—O1—H1 113 (3) C6—C7—C8 133.9 (2)
C1—N1—C2 108.64 (19) C1—C8—C7 106.3 (2)
C1—N1—H1A 129 (2) C1—C8—C9 126.0 (2)
C2—N1—H1A 122 (2) C7—C8—C9 127.6 (2)
C10—N2—H2A 109 (2) C8—C9—H9A 109.2
C10—N2—H2B 108 (2) C8—C9—H9B 109.2
C11—N2—C10 114.2 (2) C8—C9—C10 112.22 (18)
C11—N2—H2A 106.4 (19) H9A—C9—H9B 107.9
C11—N2—H2B 109 (2) C10—C9—H9A 109.2
H2A—N2—H2B 110 (3) C10—C9—H9B 109.2
N1—C1—H1B 124.7 N2—C10—C9 112.32 (17)
C8—C1—N1 110.6 (2) N2—C10—H10A 109.1
C8—C1—H1B 124.7 N2—C10—H10B 109.1
N1—C2—C3 130.8 (2) C9—C10—H10A 109.1
N1—C2—C7 107.5 (2) C9—C10—H10B 109.1
C3—C2—C7 121.7 (2) H10A—C10—H10B 107.9
C2—C3—H3 121.0 N2—C11—H11A 109.5
C4—C3—C2 117.9 (2) N2—C11—H11B 109.5
C4—C3—H3 121.0 N2—C11—H11C 109.5
C3—C4—H4 119.4 H11A—C11—H11B 109.5
C3—C4—C5 121.2 (2) H11A—C11—H11C 109.5
C5—C4—H4 119.4 H11B—C11—H11C 109.5
O1—C5—C4 121.2 (2) O2—C12—C13 114.59 (18)
O1—C5—C6 117.5 (2) O3—C12—C13 117.46 (18)
C6—C5—C4 121.3 (2) O3—C12—O2 127.91 (19)
C5—C6—H6 120.7 O4—C13—C12 121.18 (19)
C5—C6—C7 118.7 (2) O4—C13—O5 125.39 (19)
C7—C6—H6 120.7 O5—C13—C12 113.40 (18)
C2—C7—C8 106.89 (19) C13—O5—H5 113 (3)
C6—C7—C2 119.2 (2)
O1—C5—C6—C7 −175.6 (2) C3—C4—C5—O1 176.8 (2)
N1—C1—C8—C7 0.1 (3) C3—C4—C5—C6 −1.1 (3)
N1—C1—C8—C9 179.3 (2) C4—C5—C6—C7 2.3 (3)
N1—C2—C3—C4 −177.7 (2) C5—C6—C7—C2 −1.2 (3)
N1—C2—C7—C6 178.9 (2) C5—C6—C7—C8 177.6 (2)
N1—C2—C7—C8 −0.2 (2) C6—C7—C8—C1 −178.9 (3)
C1—N1—C2—C3 −179.7 (2) C6—C7—C8—C9 1.9 (4)
C1—N1—C2—C7 0.3 (3) C7—C2—C3—C4 2.3 (3)
C1—C8—C9—C10 97.9 (3) C7—C8—C9—C10 −83.1 (3)
C2—N1—C1—C8 −0.2 (3) C8—C9—C10—N2 178.81 (19)
C2—C3—C4—C5 −1.3 (3) C11—N2—C10—C9 57.2 (3)
C2—C7—C8—C1 0.1 (2) O2—C12—C13—O4 24.3 (3)
C2—C7—C8—C9 −179.1 (2) O2—C12—C13—O5 −157.6 (2)
C3—C2—C7—C6 −1.1 (3) O3—C12—C13—O4 −153.7 (2)
C3—C2—C7—C8 179.8 (2) O3—C12—C13—O5 24.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4 0.87 (1) 2.08 (2) 2.928 (3) 164 (3)
N2—H2A···O1i 0.91 (1) 2.30 (3) 2.862 (3) 120 (2)
N2—H2A···O2ii 0.91 (1) 2.35 (2) 3.150 (3) 147 (3)
N2—H2B···O3iii 0.90 (1) 2.15 (2) 2.906 (3) 141 (3)
N2—H2B···O5iii 0.90 (1) 2.34 (2) 3.117 (3) 145 (3)
O1—H1···O3iv 0.77 (4) 2.00 (4) 2.768 (2) 172 (4)
O5—H5···O2v 0.84 (4) 1.76 (4) 2.595 (2) 177 (4)

Symmetry codes: (i) x−1/2, −y, z−1/2; (ii) x−1/2, −y+1, z−1/2; (iii) x−1, y−1, z; (iv) x+1/2, −y+1, z+1/2; (v) x+1, y, z.

Funding Statement

Funding for this research was provided by: National Science Foundation (grant No. CHE-1429086).

References

  1. Amit, A., Mester, L., Klewe, B. & Furberg, S. (1978). Acta Chem. Scand. 32a, 267–270.
  2. Barker, S. A., McIlhenny, E. H. & Strassman, R. (2012). Drug Test. Anal. 4, 617–635. [DOI] [PubMed]
  3. Bergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.
  4. Bhattacharya, S. K. & Sanyal, A. K. (1972). Naturwissenshcaften, 59, 650-651. [DOI] [PubMed]
  5. Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 514–517. [DOI] [PMC free article] [PubMed]
  7. Chu, U. B., Vorperian, S. K., Satyshur, K., Eickstaedt, K., Cozzi, N. V., Mavlyutov, T., Hajipour, A. R. & Ruoho, A. E. (2014). Biochemistry, 53, 2956–2965. [DOI] [PMC free article] [PubMed]
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Egan, C., Grinde, E., Dupre, A., Roth, B. L., Hake, M., Teitler, M. & Herrick-Davis, K. (2000). Synapse, 35, 144–150. [DOI] [PubMed]
  10. Falkenberg, G. (1972). Acta Cryst. B28, 3219–3228.
  11. Glatfelter, G. C., Pottie, E., Partilla, J. S., Sherwood, A. M., Kaylo, K., Pham, D. N. K., Naeem, M., Sammeta, V. R., DeBoer, S., Golen, J. A., Hulley, E. B., Stove, C. P., Chadeayne, A. R., Manke, D. R. & Baumann, M. H. (2022). ACS Pharmacol. Transl. Sci. 5, 1181–1196. [DOI] [PMC free article] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Han, N. D., Cheng, J., Delannoy-Bruno, O., Webber, D., Terrapon, N., Henrissat, B., Rodionov, D. A., Arzamasov, A. A., Osterman, A. L., Hayashi, D. K., Meynier, A., Vinoy, S., Desai, C., Marion, S., Barratt, M. J., Heath, A. C. & Gordon, J. I. (2022). Cell, 185, 2495–2509.e11. [DOI] [PMC free article] [PubMed]
  14. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  15. Laban, U., Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2023). Acta Cryst. E79, 280–286. [DOI] [PMC free article] [PubMed]
  16. Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022a). Acta Cryst. E78, 365–368. [DOI] [PMC free article] [PubMed]
  17. Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022b). Acta Cryst. E78, 550–553. [DOI] [PMC free article] [PubMed]
  18. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  19. Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). IUCrData, 6, x210123. [DOI] [PMC free article] [PubMed]
  20. Powell, S. L., Gödecke, T., Nikolic, D., Chen, S.-N., Ahn, S., Dietz, B., Farnsworth, N. R., van Breemen, R. B., Lankin, D. C., Pauli, G. F. & Bolton, J. L. (2008). J. Agric. Food Chem. 56, 11718–11726. [DOI] [PMC free article] [PubMed]
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Stoll, A., Troxler, F., Peyer, J. & Hofmann, A. (1955). Helv. Chim. Acta, 38, 1452–1472.
  24. Thompson, M. A., Weinshilboum, R. M., El Yazal, J., Wood, T. C. & Pang, Y.-P. (2001). J. Mol. Model. 7, 324–333.
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Young, S. N. & Leyton, M. (2002). Pharmacol. Biochem. Behav. 71, 857–865. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623003784/bx4024sup1.cif

x-08-x230378-sup1.cif (875.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623003784/bx4024Isup2.hkl

x-08-x230378-Isup2.hkl (218.3KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623003784/bx4024Isup3.cml

CCDC reference: 2259219

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES