The structure of the natural product N-methylserotonin is reported as its hydrogen oxalate salt.
Keywords: crystal structure, tryptamines, indoles, hydrogen bonding
Abstract
The solid-state structure of N-methylserotonin {systematic name: [2-(5-hydroxy-1H-indol-3-yl)ethyl](methyl)azanium hydrogen oxalate}, C11H15N2O+·C2HO4
−, is reported. The structure possesses a singly protonated N-methylserotonin cation and one hydrogen oxalate anion in the asymmetric unit. In the crystal, the molecules are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network.
Structure description
Serotonin (5-hydroxytryptamine) is a ubiquitous neurotransmitter that is integral in regulating mood, anxiety and happiness in humans (Young & Leyton, 2002 ▸). Methylating the ethylamine nitrogen atom of serotonin provides three serotonin analogues: (i) N-methylserotonin, (ii) 5-hydroxy-N,N-dimethyltryptamine (bufotenine) and (iii) 5-hydroxy-N,N,N-trimethyltryptammonium (bufotenidine). Of these, bufotenine is probably most widely known as a natural product found in the secretions of Bufo alvarius toads. Bufotenine is a potent agonist of serotonin receptors and is one of several compounds to which the psychedelic effects of toad secretions are attributed (Egan et al., 2000 ▸).
Replacing three hydrogen atoms with methyl groups in the ethylamine group of serotonin provides 5-hydroxy-N,N,N-trimethyltryptammonium, or bufotenidine, which is also a natural product found in toad secretions. Bufotenidine differs from the other analogues by virtue of its quaternary ammonium cation and selective affinity for the serotonin 3 receptor. Due to its charge, bufotenidine is unable to cross the blood–brain barrier, restricting its activity to the periphery, where it has been shown to have paralytic properties (Bhattacharya & Sanyal, 1972 ▸).
The title compound is the mono-methylated variant 5-hydroxy-N-methyltryptamine, which is a naturally occurring derivative of serotonin that has garnered attention due to its potential applications in biological and medical contexts. Endogenous N-methylserotonin has been observed both in plants and mammals, including in rodents colonized with human gut bacterial strains (Han et al., 2022 ▸). The biosynthesis of N-methylserotonin most likely occurs via N-methylation of serotonin by the enzyme indolethylamine-N-methyltransferase (Thompson et al., 2001 ▸). This enzyme, originally discovered as the enzyme responsible for the synthesis of the endogenous hallucinogen dimethyltryptamine (Barker et al., 2012 ▸), has recently been shown to have a broader substrate scope, including serotonin, which likely leads to the formation of N-methylserotonin (Chu et al., 2014 ▸).
The pharmacological properties of N-methylserotonin have been a subject of increasing interest. It is reported to have significant binding affinity for the serotonin 1 A and 7 receptors, in addition to being a potent serotonin reuptake inhibitor (Powell et al., 2008 ▸). These activities suggest that N-methylserotonin may have a unique pharmacological profile different from parent serotonin and may provide novel therapeutic opportunities for various psychiatric and neurological disorders. The title compound was first synthesized by Hofmann in 1955 and characterized by IR and elemental analysis (Stoll et al., 1955 ▸). Herein, the crystal structure of 5-hydroxy-N-methyltryptamine is presented as its hydrogen oxalate salt.
The asymmetric unit of 5-hydroxy-N-methyltryptammonium hydrogen oxalate contains one tryptammonium cation and one hydrogen oxalate anion (Fig. 1 ▸). The tryptammonium cation has a near planar indole unit with an r.m.s. deviation from planarity of 0.014 Å. The ethylamino arm is turned away from the indole plane with a C7—C8—C9—C10 torsion angle of −83.1 (3)°. The N-methyl group of this arm possesses a gauche configuration , with a C9—C10—N2—C11 torsion angle of 57.2 (3)°. The hydrogen oxalate anion varies significantly from planarity, with a CO2-to-CO2 plane-to-plane twist angle of 24.2 (1)°. The ions are linked together through a series of N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional framework (Fig. 2 ▸, Table 1 ▸). The hydrogen oxalate ions are linked together through O—H⋯O hydrogen bonds into chains along (100).
Figure 1.
The molecular structure of 5-hydroxy-N-methyltryptammonium hydrogen oxalate showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
Figure 2.

The crystal packing of 5-hydroxy-N-methyltryptammonium hydrogen oxalate shown along the a-axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1A⋯O4 | 0.87 (1) | 2.08 (2) | 2.928 (3) | 164 (3) |
| N2—H2A⋯O1i | 0.91 (1) | 2.30 (3) | 2.862 (3) | 120 (2) |
| N2—H2A⋯O2ii | 0.91 (1) | 2.35 (2) | 3.150 (3) | 147 (3) |
| N2—H2B⋯O3iii | 0.90 (1) | 2.15 (2) | 2.906 (3) | 141 (3) |
| N2—H2B⋯O5iii | 0.90 (1) | 2.34 (2) | 3.117 (3) | 145 (3) |
| O1—H1⋯O3iv | 0.77 (4) | 2.00 (4) | 2.768 (2) | 172 (4) |
| O5—H5⋯O2v | 0.84 (4) | 1.76 (4) | 2.595 (2) | 177 (4) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
The most closely related monoalkyltryptamine structure to the title compound is 5-methoxy-N-methyltryptamine [Cambridge Structural Database (Groom et al., 2016 ▸) refcode QQQAHA; Bergin et al., 1968 ▸]. There are six other monoalkyltryptamine structures reported in the literature. These are the natural product norpsilocin, 4-hydroxy-N-methyltryptamine, which has been reported as its free base and its fumarate salt (MULXAV and MULXEZ; Chadeayne et al., 2020 ▸), the natural product baeocystin (FEJBAB; Naeem et al., 2022b ▸), 4-acetoxy-N-methyltryptamine (Glatfelter et al., 2022 ▸), 4-benzyloxy-N-isopropyltryptammonium chloride and 4-hydroxy-N-isopropyltryptamine (CCDC 2246619 and 2246620; Laban et al., 2023 ▸). The 5-hydroxytryptamine structures that are known include the natural products serotonin (JECDII; Naeem et al., 2022a ▸), bufotenine (BUFTEN; Falkenberg, 1972 ▸) and bufotenidine (ILUVET; Pham et al., 2021 ▸). The structure of serotonin has also been determined as its hydrogen oxalate salt (SERHOX: Amit et al., 1978 ▸).
Synthesis and crystallization
Single crystals suitable for X-ray diffraction studies were grown from an aqueous solution of a commercial sample (Sigma-Aldrich).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C11H15N2O+·C2HO4 − |
| M r | 280.28 |
| Crystal system, space group | Monoclinic, P n |
| Temperature (K) | 300 |
| a, b, c (Å) | 5.7044 (4), 9.9485 (7), 11.7687 (7) |
| β (°) | 90.321 (2) |
| V (Å3) | 667.87 (8) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.11 |
| Crystal size (mm) | 0.30 × 0.22 × 0.06 |
| Data collection | |
| Diffractometer | Bruker D8 Venture CMOS |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.715, 0.745 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 29160, 2730, 2670 |
| R int | 0.032 |
| (sin θ/λ)max (Å−1) | 0.626 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.030, 0.077, 1.10 |
| No. of reflections | 2730 |
| No. of parameters | 202 |
| No. of restraints | 5 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.12, −0.21 |
| Absolute structure | Flack x determined using 1280 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | −0.2 (2) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623003784/bx4024sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623003784/bx4024Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314623003784/bx4024Isup3.cml
CCDC reference: 2259219
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
Financial statements and conflict of interest: This study was funded by CaaMTech, Inc. ARC reports an ownership interest in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.
full crystallographic data
Crystal data
| C11H15N2O+·C2HO4− | F(000) = 296 |
| Mr = 280.28 | Dx = 1.394 Mg m−3 |
| Monoclinic, Pn | Mo Kα radiation, λ = 0.71073 Å |
| a = 5.7044 (4) Å | Cell parameters from 9870 reflections |
| b = 9.9485 (7) Å | θ = 2.7–26.4° |
| c = 11.7687 (7) Å | µ = 0.11 mm−1 |
| β = 90.321 (2)° | T = 300 K |
| V = 667.87 (8) Å3 | Block, brown |
| Z = 2 | 0.30 × 0.22 × 0.06 mm |
Data collection
| Bruker D8 Venture CMOS diffractometer | 2670 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.032 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 3.5° |
| Tmin = 0.715, Tmax = 0.745 | h = −7→7 |
| 29160 measured reflections | k = −12→12 |
| 2730 independent reflections | l = −14→14 |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0456P)2 + 0.0849P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.077 | (Δ/σ)max < 0.001 |
| S = 1.10 | Δρmax = 0.12 e Å−3 |
| 2730 reflections | Δρmin = −0.21 e Å−3 |
| 202 parameters | Absolute structure: Flack x determined using 1280 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| 5 restraints | Absolute structure parameter: −0.2 (2) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Hydrogen atoms H1, H1A, H2A, H2B and H5 were found in a difference-Fourier map. These H atoms were refined isotropically, using DFIX restraints with N–H(indole) distances of 0.87 (1) Å and N–H(ammonium) distances of 0.90 (1) Å. Isotropic displacement parameters were set to 1.2Ueq of the parent nitrogen atoms and 1.5Ueq of the parent oxygen atoms. All other H atoms were placed in calculated positions [C—H = 0.93 Å (sp2), 0.97 Å (CH2), 0.96 Å (CH3)]. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.6078 (3) | 0.04614 (17) | 0.56240 (16) | 0.0420 (4) | |
| N1 | 0.4085 (4) | 0.5480 (2) | 0.39536 (18) | 0.0393 (5) | |
| N2 | −0.1882 (3) | 0.1720 (2) | 0.12931 (17) | 0.0349 (4) | |
| C1 | 0.2113 (5) | 0.5182 (2) | 0.3334 (2) | 0.0380 (5) | |
| H1B | 0.127417 | 0.579809 | 0.289859 | 0.046* | |
| C2 | 0.4845 (4) | 0.4328 (2) | 0.44898 (18) | 0.0300 (4) | |
| C3 | 0.6748 (4) | 0.4108 (2) | 0.5213 (2) | 0.0354 (5) | |
| H3 | 0.772969 | 0.480992 | 0.543043 | 0.043* | |
| C4 | 0.7131 (4) | 0.2820 (2) | 0.55953 (19) | 0.0349 (5) | |
| H4 | 0.840919 | 0.264578 | 0.606681 | 0.042* | |
| C5 | 0.5629 (4) | 0.1764 (2) | 0.52871 (19) | 0.0324 (5) | |
| C6 | 0.3690 (4) | 0.1982 (2) | 0.46036 (19) | 0.0312 (4) | |
| H6 | 0.267239 | 0.128191 | 0.442551 | 0.037* | |
| C7 | 0.3287 (4) | 0.3280 (2) | 0.41840 (18) | 0.0286 (4) | |
| C8 | 0.1551 (4) | 0.3856 (2) | 0.34432 (18) | 0.0322 (5) | |
| C9 | −0.0508 (4) | 0.3163 (3) | 0.29002 (19) | 0.0357 (5) | |
| H9A | −0.170818 | 0.382400 | 0.272639 | 0.043* | |
| H9B | −0.116215 | 0.252428 | 0.343399 | 0.043* | |
| C10 | 0.0157 (4) | 0.2435 (2) | 0.18230 (19) | 0.0307 (4) | |
| H10A | 0.078092 | 0.307744 | 0.128362 | 0.037* | |
| H10B | 0.138068 | 0.178790 | 0.199422 | 0.037* | |
| C11 | −0.3888 (4) | 0.2595 (3) | 0.1022 (2) | 0.0506 (7) | |
| H11A | −0.495409 | 0.212713 | 0.052715 | 0.076* | |
| H11B | −0.333959 | 0.339444 | 0.065125 | 0.076* | |
| H11C | −0.468021 | 0.283580 | 0.171023 | 0.076* | |
| C12 | 0.4759 (3) | 0.9157 (2) | 0.30591 (18) | 0.0279 (4) | |
| C13 | 0.7233 (4) | 0.8699 (2) | 0.34523 (19) | 0.0291 (4) | |
| O2 | 0.3103 (3) | 0.86964 (18) | 0.36400 (16) | 0.0392 (4) | |
| O3 | 0.4636 (3) | 0.98887 (17) | 0.22060 (15) | 0.0390 (4) | |
| O4 | 0.7505 (3) | 0.76747 (19) | 0.39757 (19) | 0.0493 (5) | |
| O5 | 0.8902 (3) | 0.95034 (18) | 0.31279 (16) | 0.0389 (4) | |
| H1A | 0.487 (5) | 0.623 (2) | 0.399 (3) | 0.054 (9)* | |
| H2A | −0.142 (5) | 0.135 (3) | 0.0625 (17) | 0.046 (8)* | |
| H2B | −0.234 (6) | 0.107 (2) | 0.177 (2) | 0.048 (8)* | |
| H1 | 0.715 (7) | 0.040 (3) | 0.602 (3) | 0.054 (10)* | |
| H5 | 1.024 (7) | 0.922 (4) | 0.330 (3) | 0.067 (11)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0454 (10) | 0.0325 (9) | 0.0478 (10) | −0.0060 (8) | −0.0167 (8) | 0.0050 (7) |
| N1 | 0.0501 (12) | 0.0251 (9) | 0.0427 (11) | −0.0081 (9) | 0.0002 (9) | −0.0014 (8) |
| N2 | 0.0249 (9) | 0.0442 (11) | 0.0355 (10) | −0.0037 (8) | 0.0011 (7) | −0.0082 (9) |
| C1 | 0.0485 (13) | 0.0315 (11) | 0.0341 (11) | 0.0033 (10) | −0.0005 (9) | 0.0013 (9) |
| C2 | 0.0357 (11) | 0.0251 (9) | 0.0292 (10) | −0.0062 (9) | 0.0059 (8) | −0.0047 (8) |
| C3 | 0.0379 (12) | 0.0342 (11) | 0.0342 (11) | −0.0142 (9) | 0.0012 (9) | −0.0113 (9) |
| C4 | 0.0338 (11) | 0.0405 (12) | 0.0304 (10) | −0.0041 (9) | −0.0042 (8) | −0.0043 (9) |
| C5 | 0.0354 (11) | 0.0303 (11) | 0.0314 (10) | −0.0034 (9) | −0.0001 (8) | −0.0009 (8) |
| C6 | 0.0325 (11) | 0.0268 (10) | 0.0344 (11) | −0.0084 (9) | −0.0008 (8) | −0.0027 (8) |
| C7 | 0.0298 (10) | 0.0276 (10) | 0.0282 (9) | −0.0035 (8) | 0.0028 (8) | −0.0054 (8) |
| C8 | 0.0347 (11) | 0.0329 (11) | 0.0292 (10) | 0.0007 (9) | 0.0010 (8) | −0.0043 (9) |
| C9 | 0.0301 (11) | 0.0427 (12) | 0.0344 (11) | −0.0006 (9) | 0.0001 (9) | −0.0059 (9) |
| C10 | 0.0223 (9) | 0.0335 (10) | 0.0364 (11) | −0.0011 (8) | 0.0000 (8) | −0.0040 (8) |
| C11 | 0.0285 (12) | 0.074 (2) | 0.0487 (15) | 0.0014 (12) | −0.0078 (10) | 0.0122 (13) |
| C12 | 0.0192 (9) | 0.0255 (9) | 0.0389 (11) | −0.0006 (7) | −0.0053 (8) | −0.0010 (9) |
| C13 | 0.0215 (9) | 0.0296 (10) | 0.0361 (10) | −0.0024 (8) | −0.0052 (7) | 0.0010 (9) |
| O2 | 0.0187 (7) | 0.0423 (9) | 0.0567 (10) | −0.0034 (6) | −0.0011 (7) | 0.0103 (8) |
| O3 | 0.0264 (7) | 0.0443 (9) | 0.0463 (9) | −0.0007 (7) | −0.0098 (6) | 0.0118 (8) |
| O4 | 0.0290 (8) | 0.0397 (10) | 0.0790 (13) | −0.0060 (7) | −0.0172 (8) | 0.0244 (9) |
| O5 | 0.0170 (7) | 0.0445 (10) | 0.0554 (10) | −0.0019 (6) | −0.0011 (7) | 0.0172 (8) |
Geometric parameters (Å, º)
| O1—C5 | 1.378 (3) | C6—H6 | 0.9300 |
| O1—H1 | 0.77 (4) | C6—C7 | 1.401 (3) |
| N1—C1 | 1.370 (3) | C7—C8 | 1.435 (3) |
| N1—C2 | 1.377 (3) | C8—C9 | 1.501 (3) |
| N1—H1A | 0.873 (14) | C9—H9A | 0.9700 |
| N2—C10 | 1.496 (3) | C9—H9B | 0.9700 |
| N2—C11 | 1.472 (3) | C9—C10 | 1.510 (3) |
| N2—H2A | 0.910 (14) | C10—H10A | 0.9700 |
| N2—H2B | 0.898 (14) | C10—H10B | 0.9700 |
| C1—H1B | 0.9300 | C11—H11A | 0.9600 |
| C1—C8 | 1.363 (3) | C11—H11B | 0.9600 |
| C2—C3 | 1.393 (3) | C11—H11C | 0.9600 |
| C2—C7 | 1.415 (3) | C12—C13 | 1.551 (3) |
| C3—H3 | 0.9300 | C12—O2 | 1.256 (3) |
| C3—C4 | 1.375 (4) | C12—O3 | 1.242 (3) |
| C4—H4 | 0.9300 | C13—O4 | 1.200 (3) |
| C4—C5 | 1.402 (3) | C13—O5 | 1.303 (3) |
| C5—C6 | 1.381 (3) | O5—H5 | 0.84 (4) |
| C5—O1—H1 | 113 (3) | C6—C7—C8 | 133.9 (2) |
| C1—N1—C2 | 108.64 (19) | C1—C8—C7 | 106.3 (2) |
| C1—N1—H1A | 129 (2) | C1—C8—C9 | 126.0 (2) |
| C2—N1—H1A | 122 (2) | C7—C8—C9 | 127.6 (2) |
| C10—N2—H2A | 109 (2) | C8—C9—H9A | 109.2 |
| C10—N2—H2B | 108 (2) | C8—C9—H9B | 109.2 |
| C11—N2—C10 | 114.2 (2) | C8—C9—C10 | 112.22 (18) |
| C11—N2—H2A | 106.4 (19) | H9A—C9—H9B | 107.9 |
| C11—N2—H2B | 109 (2) | C10—C9—H9A | 109.2 |
| H2A—N2—H2B | 110 (3) | C10—C9—H9B | 109.2 |
| N1—C1—H1B | 124.7 | N2—C10—C9 | 112.32 (17) |
| C8—C1—N1 | 110.6 (2) | N2—C10—H10A | 109.1 |
| C8—C1—H1B | 124.7 | N2—C10—H10B | 109.1 |
| N1—C2—C3 | 130.8 (2) | C9—C10—H10A | 109.1 |
| N1—C2—C7 | 107.5 (2) | C9—C10—H10B | 109.1 |
| C3—C2—C7 | 121.7 (2) | H10A—C10—H10B | 107.9 |
| C2—C3—H3 | 121.0 | N2—C11—H11A | 109.5 |
| C4—C3—C2 | 117.9 (2) | N2—C11—H11B | 109.5 |
| C4—C3—H3 | 121.0 | N2—C11—H11C | 109.5 |
| C3—C4—H4 | 119.4 | H11A—C11—H11B | 109.5 |
| C3—C4—C5 | 121.2 (2) | H11A—C11—H11C | 109.5 |
| C5—C4—H4 | 119.4 | H11B—C11—H11C | 109.5 |
| O1—C5—C4 | 121.2 (2) | O2—C12—C13 | 114.59 (18) |
| O1—C5—C6 | 117.5 (2) | O3—C12—C13 | 117.46 (18) |
| C6—C5—C4 | 121.3 (2) | O3—C12—O2 | 127.91 (19) |
| C5—C6—H6 | 120.7 | O4—C13—C12 | 121.18 (19) |
| C5—C6—C7 | 118.7 (2) | O4—C13—O5 | 125.39 (19) |
| C7—C6—H6 | 120.7 | O5—C13—C12 | 113.40 (18) |
| C2—C7—C8 | 106.89 (19) | C13—O5—H5 | 113 (3) |
| C6—C7—C2 | 119.2 (2) | ||
| O1—C5—C6—C7 | −175.6 (2) | C3—C4—C5—O1 | 176.8 (2) |
| N1—C1—C8—C7 | 0.1 (3) | C3—C4—C5—C6 | −1.1 (3) |
| N1—C1—C8—C9 | 179.3 (2) | C4—C5—C6—C7 | 2.3 (3) |
| N1—C2—C3—C4 | −177.7 (2) | C5—C6—C7—C2 | −1.2 (3) |
| N1—C2—C7—C6 | 178.9 (2) | C5—C6—C7—C8 | 177.6 (2) |
| N1—C2—C7—C8 | −0.2 (2) | C6—C7—C8—C1 | −178.9 (3) |
| C1—N1—C2—C3 | −179.7 (2) | C6—C7—C8—C9 | 1.9 (4) |
| C1—N1—C2—C7 | 0.3 (3) | C7—C2—C3—C4 | 2.3 (3) |
| C1—C8—C9—C10 | 97.9 (3) | C7—C8—C9—C10 | −83.1 (3) |
| C2—N1—C1—C8 | −0.2 (3) | C8—C9—C10—N2 | 178.81 (19) |
| C2—C3—C4—C5 | −1.3 (3) | C11—N2—C10—C9 | 57.2 (3) |
| C2—C7—C8—C1 | 0.1 (2) | O2—C12—C13—O4 | 24.3 (3) |
| C2—C7—C8—C9 | −179.1 (2) | O2—C12—C13—O5 | −157.6 (2) |
| C3—C2—C7—C6 | −1.1 (3) | O3—C12—C13—O4 | −153.7 (2) |
| C3—C2—C7—C8 | 179.8 (2) | O3—C12—C13—O5 | 24.4 (3) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···O4 | 0.87 (1) | 2.08 (2) | 2.928 (3) | 164 (3) |
| N2—H2A···O1i | 0.91 (1) | 2.30 (3) | 2.862 (3) | 120 (2) |
| N2—H2A···O2ii | 0.91 (1) | 2.35 (2) | 3.150 (3) | 147 (3) |
| N2—H2B···O3iii | 0.90 (1) | 2.15 (2) | 2.906 (3) | 141 (3) |
| N2—H2B···O5iii | 0.90 (1) | 2.34 (2) | 3.117 (3) | 145 (3) |
| O1—H1···O3iv | 0.77 (4) | 2.00 (4) | 2.768 (2) | 172 (4) |
| O5—H5···O2v | 0.84 (4) | 1.76 (4) | 2.595 (2) | 177 (4) |
Symmetry codes: (i) x−1/2, −y, z−1/2; (ii) x−1/2, −y+1, z−1/2; (iii) x−1, y−1, z; (iv) x+1/2, −y+1, z+1/2; (v) x+1, y, z.
Funding Statement
Funding for this research was provided by: National Science Foundation (grant No. CHE-1429086).
References
- Amit, A., Mester, L., Klewe, B. & Furberg, S. (1978). Acta Chem. Scand. 32a, 267–270.
- Barker, S. A., McIlhenny, E. H. & Strassman, R. (2012). Drug Test. Anal. 4, 617–635. [DOI] [PubMed]
- Bergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.
- Bhattacharya, S. K. & Sanyal, A. K. (1972). Naturwissenshcaften, 59, 650-651. [DOI] [PubMed]
- Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 514–517. [DOI] [PMC free article] [PubMed]
- Chu, U. B., Vorperian, S. K., Satyshur, K., Eickstaedt, K., Cozzi, N. V., Mavlyutov, T., Hajipour, A. R. & Ruoho, A. E. (2014). Biochemistry, 53, 2956–2965. [DOI] [PMC free article] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Egan, C., Grinde, E., Dupre, A., Roth, B. L., Hake, M., Teitler, M. & Herrick-Davis, K. (2000). Synapse, 35, 144–150. [DOI] [PubMed]
- Falkenberg, G. (1972). Acta Cryst. B28, 3219–3228.
- Glatfelter, G. C., Pottie, E., Partilla, J. S., Sherwood, A. M., Kaylo, K., Pham, D. N. K., Naeem, M., Sammeta, V. R., DeBoer, S., Golen, J. A., Hulley, E. B., Stove, C. P., Chadeayne, A. R., Manke, D. R. & Baumann, M. H. (2022). ACS Pharmacol. Transl. Sci. 5, 1181–1196. [DOI] [PMC free article] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Han, N. D., Cheng, J., Delannoy-Bruno, O., Webber, D., Terrapon, N., Henrissat, B., Rodionov, D. A., Arzamasov, A. A., Osterman, A. L., Hayashi, D. K., Meynier, A., Vinoy, S., Desai, C., Marion, S., Barratt, M. J., Heath, A. C. & Gordon, J. I. (2022). Cell, 185, 2495–2509.e11. [DOI] [PMC free article] [PubMed]
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Laban, U., Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2023). Acta Cryst. E79, 280–286. [DOI] [PMC free article] [PubMed]
- Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022a). Acta Cryst. E78, 365–368. [DOI] [PMC free article] [PubMed]
- Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022b). Acta Cryst. E78, 550–553. [DOI] [PMC free article] [PubMed]
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). IUCrData, 6, x210123. [DOI] [PMC free article] [PubMed]
- Powell, S. L., Gödecke, T., Nikolic, D., Chen, S.-N., Ahn, S., Dietz, B., Farnsworth, N. R., van Breemen, R. B., Lankin, D. C., Pauli, G. F. & Bolton, J. L. (2008). J. Agric. Food Chem. 56, 11718–11726. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Stoll, A., Troxler, F., Peyer, J. & Hofmann, A. (1955). Helv. Chim. Acta, 38, 1452–1472.
- Thompson, M. A., Weinshilboum, R. M., El Yazal, J., Wood, T. C. & Pang, Y.-P. (2001). J. Mol. Model. 7, 324–333.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Young, S. N. & Leyton, M. (2002). Pharmacol. Biochem. Behav. 71, 857–865. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623003784/bx4024sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623003784/bx4024Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314623003784/bx4024Isup3.cml
CCDC reference: 2259219
Additional supporting information: crystallographic information; 3D view; checkCIF report

