Skip to main content
IUCrData logoLink to IUCrData
. 2023 May 26;8(Pt 5):x230459. doi: 10.1107/S2414314623004595

Pyridin-4-ylmethanaminium perchlorate mono­hydrate

Rüdiger W Seidel a,*, Tsonko M Kolev b
Editor: M Weilc
PMCID: PMC10242734  PMID: 37287856

The title compound crystallizes in the monoclinic space group P21/n with two formula units per asymmetric unit (Z′ = 2) and features an intricate tri-periodic hydrogen-bonding network.

Keywords: crystal structure, 4-picolyl­amine, perchlorate, conformation, heterocycle, hydrogen bonding

Abstract

Pyridin-4-ylmethanaminium perchlorate monohydrate (synonym: 4-picolyl­ammonium perchlorate monohydrate), C6H9N2 +·ClO4 ·H2O, crystallizes in the monoclinic system (space group P21/n) with the asymmetric unit comprising two formula units (Z′ = 2). All mol­ecular entities are located on general positions. The two crystallographically distinct 4-picolyl­ammonium cations exhibit different conformations. The two unique perchlorate anions are non-disordered, showing an r.m.s. deviation of 0.011 Å from mol­ecular T d symmetry. The supra­molecular structure in the solid state features an intricate tri-periodic network of N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds. graphic file with name x-08-x230459-scheme1-3D1.jpg

Structure description

The number of structurally characterized 1:1 salts of the feedstock chemical 4-picolyl­amine is limited. A search of the Cambridge Structural Database (CSD, version 5.43 with November 2022 updates; Groom et al., 2016) revealed nine crystal structures: the hydrogen chloride (CSD refcode: QANWOS; de Vries et al., 2005) and hydrogen bromide (TENDUP; Zuffa et al., 2023), substituted benzoic acid salts (TOHYEV, TOHYIZ; Lemmerer et al., 2008 and WEBXAE; Ding et al., 2012), group 10 tetra­cyanidometallates (OFEWUT, OFEXII and OFEXUU; Karaağaç et al., 2013) and a deca­vanadate (HEBJOR; Msaadi et al., 2022). We herein report the crystal structure of the monohydrate of the perchlorate salt of 4-picolyl­amine, (1).

As shown in Fig. 1, the asymmetric unit of (1) comprises two formula units C6H9N2 +ClO4 ·H2O (Z′ = 2). The amino group of 4-picolyl­amine, which is the more basic site (pK a = 8.30; Milletti et al., 2010) compared to the pyridine nitro­gen atom, is in a protonated state. The two crystallographically distinct 4-picolyl­ammonium cations differ in their conformations. The C3—C4—C7—N2 torsion angle is 67.4 (3)° in mol­ecule 1 and 13.2 (3)° in mol­ecule 2. The difference is ascribable to inter­molecular inter­actions and packing effects in the solid state. In the nine crystal structures containing 4-picolyl­ammonium ions deposited with the CSD, the torsion angles range from 6.4° in HEBJOR to 88.5° in WEBXAE, indicating great conformational flexibility. The mol­ecular structure of cation 2 in (1) exhibits an r.m.s. deviation from C S point group symmetry of 0.082 Å, as calculated with MOLSYM in PLATON (Spek, 2020). The two crystallographically distinct perchlorate anions are non-disordered, both showing an r.m.s. deviation of 0.011 Å from mol­ecular T d point group symmetry.

Figure 1.

Figure 1

Asymmetric unit of (1). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are represented by small spheres of arbitrary radius. The number after the underscore indicates unique mol­ecules 1 and 2 in each case. Dashed lines represent O—H⋯O and O—H⋯N hydrogen bonds.

Apart from Coulombic inter­actions, the supra­molecular structure in (1) is dominated by classical N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds. Fig. 2 depicts a part of the crystal structure, illustrating the crystallographically unique hydrogen bonds. As hydrogen-bond donors, the water mol­ecules join the 4-picolyl­ammonium and perchlorate ions through O—H⋯Npyridine and O—H⋯O hydrogen bonds, respectively. Towards the protonated amino groups, the water mol­ecules act as hydrogen-bond acceptors for N—H⋯O hydrogen bonds, resulting in hydrogen-bonded chains propagating parallel to the c-axis direction. The remaining hydrogen-bond donor sites of the 4-picolyl­ammonium ions form donating bifurcated N—H⋯O hydrogen bonds to perchlorate oxygen atoms, resulting in an intricate tri-periodic network. Table 1 lists numerical details of the relevant hydrogen bonds in (1), which are characteristic of strong hydrogen bonds (Thakuria et al., 2017).

Figure 2.

Figure 2

Part of the crystal structure of (1) viewed approximately along the a-axis direction towards the origin, showing N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds (dashed lines). The number after the underscore indicates unique mol­ecules 1 and 2 in each case. Carbon-bound hydrogen atoms are omitted for clarity. Symmetry codes refer to Table 1.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2_1—H2A_1⋯O5_1i 0.90 (2) 1.96 (2) 2.862 (3) 176 (2)
N2_1—H2B_1⋯O1_1ii 0.90 (2) 2.20 (2) 2.916 (2) 136 (2)
N2_1—H2B_1⋯O4_2iii 0.90 (2) 2.32 (2) 2.924 (2) 125 (2)
N2_1—H2C_1⋯O5_2iv 0.90 (2) 1.95 (2) 2.838 (3) 168 (2)
O5_1—H5A_1⋯N1_2 0.84 (2) 1.91 (2) 2.751 (2) 176 (3)
O5_1—H5B_1⋯O1_2 0.83 (2) 2.21 (2) 2.986 (2) 156 (3)
N2_2—H2A_2⋯O5_1iv 0.92 (2) 1.92 (2) 2.839 (3) 173 (2)
N2_2—H2B_2⋯O4_1iii 0.91 (2) 2.42 (2) 3.079 (3) 130 (2)
N2_2—H2B_2⋯O1_2iii 0.91 (2) 2.19 (2) 2.979 (2) 144 (2)
N2_2—H2C_2⋯O5_2iv 0.90 (2) 1.98 (2) 2.872 (3) 177 (2)
O5_2—H5A_2⋯N1_1 0.83 (2) 1.93 (2) 2.761 (2) 175 (3)
O5_2—H5B_2⋯O1_1 0.83 (2) 2.09 (2) 2.874 (2) 160 (3)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Synthesis and crystallization

Compound (1) was synthesized by adding a solution of 4-picolyl­amine (216 mg, 2 mmol) in 40 ml of ethanol to 40 ml of 0.1 M perchloric acid. The reaction mixture was stirred for 4 h at room temperature and then left at ambient conditions. After one week, the precipitate was collected by filtration and air-dried. Colourless crystals of (1) suitable for X-ray diffraction were grown from a methanol/water solution at room temperature over a period of three weeks, while the solvents were allowed to evaporate slowly. Caution: organic perchlorate salts are potentially explosive and should be handled with care!

Refinement

Crystal data, data collection and structure refinement details are listed in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C6H9N2 +·ClO4 ·H2O
M r 226.62
Crystal system, space group Monoclinic, P21/n
Temperature (K) 110
a, b, c (Å) 9.1239 (2), 22.1397 (6), 9.5463 (3)
β (°) 101.799 (3)
V3) 1887.62 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.28 × 0.20 × 0.10
 
Data collection
Diffractometer Xcalibur2, Oxford Diffraction
Absorption correction Multi-scan (ABSPACK in CrysAlis PRO; Rigaku OD, 2022)
T min, T max 0.894, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16791, 4422, 3163
R int 0.041
(sin θ/λ)max−1) 0.679
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.101, 1.04
No. of reflections 4422
No. of parameters 299
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.42

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), DIAMOND (Brandenburg, 2018) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314623004595/wm4189sup1.cif

x-08-x230459-sup1.cif (578.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623004595/wm4189Isup2.hkl

x-08-x230459-Isup2.hkl (352.3KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623004595/wm4189Isup3.cdx

Supporting information file. DOI: 10.1107/S2414314623004595/wm4189Isup4.cml

CCDC reference: 2265167

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the late Professor William S. Sheldrick for his support of this research.

full crystallographic data

Crystal data

C6H9N2+·ClO4·H2O F(000) = 944
Mr = 226.62 Dx = 1.595 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.1239 (2) Å Cell parameters from 4316 reflections
b = 22.1397 (6) Å θ = 3.6–28.4°
c = 9.5463 (3) Å µ = 0.41 mm1
β = 101.799 (3)° T = 110 K
V = 1887.62 (9) Å3 Prism, colourless
Z = 8 0.28 × 0.20 × 0.10 mm

Data collection

Xcalibur2, Oxford Diffraction diffractometer 4422 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 3163 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
Detector resolution: 8.4171 pixels mm-1 θmax = 28.9°, θmin = 2.8°
ω scans h = −12→11
Absorption correction: multi-scan (ABSPACK in CrysAlisPro; Rigaku OD, 2022) k = −29→27
Tmin = 0.894, Tmax = 1.000 l = −11→12
16791 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: mixed
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0371P)2 + 1.2652P] where P = (Fo2 + 2Fc2)/3
4422 reflections (Δ/σ)max < 0.001
299 parameters Δρmax = 0.44 e Å3
10 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Nitrogen-bound and water hydrogen atoms were located from difference-Fourier maps and were refined with N—H and O—H distances restrained to target values of 0.91 (2) and 0.84 (2) Å, respectively. The respective Uiso(H) values were refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2_1 0.5915 (3) 0.25285 (10) 0.3275 (3) 0.0236 (5)
H2_1 0.613952 0.219921 0.392116 0.028*
C3_1 0.6384 (3) 0.30978 (10) 0.3757 (3) 0.0211 (5)
H3_1 0.691704 0.315629 0.471201 0.025*
C4_1 0.6065 (2) 0.35838 (9) 0.2826 (2) 0.0173 (5)
C5_1 0.5272 (3) 0.34736 (10) 0.1463 (3) 0.0235 (5)
H5_1 0.501877 0.379550 0.080013 0.028*
C6_1 0.4846 (3) 0.28865 (11) 0.1070 (3) 0.0260 (6)
H6_1 0.429816 0.281688 0.012509 0.031*
C7_1 0.6564 (3) 0.42157 (10) 0.3275 (3) 0.0206 (5)
H7A_1 0.610755 0.450463 0.251989 0.025*
H7B_1 0.622219 0.432207 0.416360 0.025*
N1_1 0.5162 (2) 0.24152 (8) 0.1945 (2) 0.0214 (4)
N2_1 0.8230 (2) 0.42629 (9) 0.3526 (2) 0.0171 (4)
H2A_1 0.854 (3) 0.4114 (11) 0.276 (2) 0.027 (7)*
H2B_1 0.853 (3) 0.4645 (8) 0.371 (3) 0.020 (6)*
H2C_1 0.861 (3) 0.4058 (11) 0.434 (2) 0.034 (8)*
Cl1_1 0.71953 (6) 0.05644 (2) 0.38455 (5) 0.01373 (13)
O1_1 0.70326 (17) 0.05322 (6) 0.23033 (16) 0.0180 (3)
O2_1 0.7178 (2) 0.11825 (7) 0.42615 (17) 0.0287 (4)
O3_1 0.85768 (17) 0.02837 (7) 0.45115 (18) 0.0251 (4)
O4_1 0.59712 (18) 0.02479 (8) 0.42438 (18) 0.0268 (4)
O5_1 0.43372 (18) 0.11734 (7) 0.61174 (17) 0.0181 (3)
H5A_1 0.453 (3) 0.1534 (9) 0.638 (3) 0.041 (9)*
H5B_1 0.513 (2) 0.0983 (12) 0.620 (3) 0.042 (9)*
C2_2 0.6473 (3) 0.24806 (10) 0.7655 (3) 0.0221 (5)
H2_2 0.716822 0.216114 0.792595 0.027 (7)*
C3_2 0.6939 (3) 0.30644 (10) 0.8024 (2) 0.0195 (5)
H3_2 0.792866 0.313941 0.853765 0.026 (7)*
C4_2 0.5946 (2) 0.35391 (9) 0.7636 (2) 0.0160 (5)
C5_2 0.4506 (3) 0.33949 (10) 0.6910 (2) 0.0202 (5)
H5_2 0.378075 0.370385 0.663996 0.020 (6)*
C6_2 0.4143 (3) 0.28017 (10) 0.6587 (2) 0.0218 (5)
H6_2 0.315601 0.271289 0.608434 0.025 (7)*
C7_2 0.6330 (2) 0.41931 (10) 0.7943 (3) 0.0193 (5)
H7A_2 0.594521 0.443333 0.707070 0.018 (6)*
H7B_2 0.581862 0.433608 0.870188 0.022 (6)*
N1_2 0.5099 (2) 0.23416 (8) 0.6940 (2) 0.0218 (4)
N2_2 0.7960 (2) 0.43016 (9) 0.8405 (2) 0.0175 (4)
H2A_2 0.833 (3) 0.4138 (10) 0.9295 (19) 0.022 (6)*
H2B_2 0.818 (3) 0.4699 (8) 0.854 (3) 0.028 (7)*
H2C_2 0.841 (3) 0.4149 (11) 0.773 (2) 0.033 (8)*
Cl1_2 0.72640 (6) 0.05939 (2) 0.88521 (5) 0.01431 (13)
O1_2 0.72928 (19) 0.06090 (7) 0.73443 (17) 0.0231 (4)
O2_2 0.67297 (19) 0.11607 (7) 0.92682 (17) 0.0224 (4)
O3_2 0.87356 (17) 0.04688 (7) 0.96603 (18) 0.0249 (4)
O4_2 0.62605 (18) 0.01185 (7) 0.90900 (17) 0.0234 (4)
O5_2 0.43738 (18) 0.12300 (7) 0.12765 (17) 0.0181 (3)
H5A_2 0.458 (3) 0.1593 (8) 0.142 (3) 0.044 (9)*
H5B_2 0.518 (2) 0.1049 (12) 0.137 (3) 0.049 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2_1 0.0233 (12) 0.0177 (11) 0.0287 (14) 0.0016 (10) 0.0028 (10) 0.0043 (10)
C3_1 0.0231 (13) 0.0192 (11) 0.0199 (12) 0.0000 (10) 0.0016 (10) 0.0005 (9)
C4_1 0.0121 (10) 0.0149 (11) 0.0257 (13) 0.0010 (9) 0.0056 (9) 0.0017 (9)
C5_1 0.0205 (12) 0.0223 (12) 0.0253 (13) −0.0012 (10) −0.0009 (10) 0.0089 (10)
C6_1 0.0226 (13) 0.0297 (13) 0.0227 (13) −0.0063 (11) −0.0024 (10) 0.0006 (10)
C7_1 0.0164 (11) 0.0143 (11) 0.0321 (14) 0.0005 (9) 0.0070 (10) −0.0004 (9)
N1_1 0.0172 (10) 0.0190 (10) 0.0279 (12) −0.0034 (8) 0.0042 (9) −0.0031 (8)
N2_1 0.0198 (10) 0.0133 (10) 0.0180 (11) −0.0027 (8) 0.0036 (8) −0.0018 (8)
Cl1_1 0.0121 (2) 0.0130 (2) 0.0158 (3) 0.0005 (2) 0.00203 (19) 0.0011 (2)
O1_1 0.0223 (8) 0.0173 (8) 0.0146 (8) 0.0006 (7) 0.0041 (7) 0.0003 (6)
O2_1 0.0453 (11) 0.0146 (8) 0.0230 (9) 0.0030 (8) −0.0003 (8) −0.0031 (7)
O3_1 0.0149 (8) 0.0331 (10) 0.0259 (9) 0.0092 (7) 0.0004 (7) 0.0041 (7)
O4_1 0.0186 (9) 0.0366 (10) 0.0254 (10) −0.0081 (8) 0.0048 (7) 0.0079 (8)
O5_1 0.0170 (8) 0.0149 (8) 0.0217 (9) 0.0018 (7) 0.0021 (7) −0.0022 (7)
C2_2 0.0209 (12) 0.0160 (11) 0.0289 (14) 0.0022 (10) 0.0042 (10) 0.0025 (10)
C3_2 0.0158 (11) 0.0180 (11) 0.0238 (13) 0.0006 (9) 0.0017 (10) 0.0022 (9)
C4_2 0.0185 (11) 0.0142 (10) 0.0163 (11) 0.0000 (9) 0.0058 (9) 0.0001 (8)
C5_2 0.0169 (11) 0.0227 (12) 0.0202 (12) 0.0060 (10) 0.0017 (9) 0.0001 (9)
C6_2 0.0164 (12) 0.0274 (12) 0.0207 (13) −0.0020 (10) 0.0018 (10) −0.0019 (10)
C7_2 0.0161 (11) 0.0153 (11) 0.0262 (13) 0.0016 (9) 0.0041 (10) 0.0000 (9)
N1_2 0.0210 (10) 0.0193 (10) 0.0255 (11) −0.0026 (8) 0.0054 (9) −0.0006 (8)
N2_2 0.0223 (11) 0.0145 (10) 0.0157 (10) −0.0026 (8) 0.0038 (8) 0.0000 (8)
Cl1_2 0.0141 (3) 0.0136 (2) 0.0150 (3) 0.0009 (2) 0.00248 (19) 0.0008 (2)
O1_2 0.0318 (10) 0.0214 (8) 0.0173 (9) 0.0018 (7) 0.0078 (7) 0.0028 (7)
O2_2 0.0278 (9) 0.0155 (8) 0.0231 (9) 0.0072 (7) 0.0034 (7) −0.0020 (7)
O3_2 0.0139 (8) 0.0318 (9) 0.0269 (9) 0.0061 (7) −0.0010 (7) 0.0015 (7)
O4_2 0.0250 (9) 0.0202 (8) 0.0245 (9) −0.0084 (7) 0.0040 (7) 0.0029 (7)
O5_2 0.0176 (9) 0.0147 (8) 0.0214 (9) 0.0007 (7) 0.0022 (7) −0.0013 (7)

Geometric parameters (Å, º)

C2_1—N1_1 1.338 (3) C2_2—N1_2 1.335 (3)
C2_1—C3_1 1.380 (3) C2_2—C3_2 1.384 (3)
C2_1—H2_1 0.9500 C2_2—H2_2 0.9500
C3_1—C4_1 1.388 (3) C3_2—C4_2 1.387 (3)
C3_1—H3_1 0.9500 C3_2—H3_2 0.9500
C4_1—C5_1 1.375 (3) C4_2—C5_2 1.391 (3)
C4_1—C7_1 1.506 (3) C4_2—C7_2 1.504 (3)
C5_1—C6_1 1.386 (3) C5_2—C6_2 1.374 (3)
C5_1—H5_1 0.9500 C5_2—H5_2 0.9500
C6_1—N1_1 1.331 (3) C6_2—N1_2 1.339 (3)
C6_1—H6_1 0.9500 C6_2—H6_2 0.9500
C7_1—N2_1 1.493 (3) C7_2—N2_2 1.482 (3)
C7_1—H7A_1 0.9900 C7_2—H7A_2 0.9900
C7_1—H7B_1 0.9900 C7_2—H7B_2 0.9900
N2_1—H2A_1 0.900 (16) N2_2—H2A_2 0.921 (16)
N2_1—H2B_1 0.895 (16) N2_2—H2B_2 0.907 (16)
N2_1—H2C_1 0.903 (17) N2_2—H2C_2 0.897 (17)
Cl1_1—O2_1 1.4260 (16) Cl1_2—O2_2 1.4316 (15)
Cl1_1—O3_1 1.4323 (16) Cl1_2—O3_2 1.4322 (16)
Cl1_1—O4_1 1.4341 (16) Cl1_2—O4_2 1.4431 (16)
Cl1_1—O1_1 1.4508 (15) Cl1_2—O1_2 1.4454 (16)
O5_1—H5A_1 0.843 (17) O5_2—H5A_2 0.831 (17)
O5_1—H5B_1 0.827 (17) O5_2—H5B_2 0.825 (17)
N1_1—C2_1—C3_1 123.5 (2) N1_2—C2_2—C3_2 123.6 (2)
N1_1—C2_1—H2_1 118.2 N1_2—C2_2—H2_2 118.2
C3_1—C2_1—H2_1 118.2 C3_2—C2_2—H2_2 118.2
C2_1—C3_1—C4_1 119.0 (2) C2_2—C3_2—C4_2 119.3 (2)
C2_1—C3_1—H3_1 120.5 C2_2—C3_2—H3_2 120.3
C4_1—C3_1—H3_1 120.5 C4_2—C3_2—H3_2 120.3
C5_1—C4_1—C3_1 118.0 (2) C3_2—C4_2—C5_2 117.2 (2)
C5_1—C4_1—C7_1 120.3 (2) C3_2—C4_2—C7_2 124.3 (2)
C3_1—C4_1—C7_1 121.7 (2) C5_2—C4_2—C7_2 118.44 (19)
C4_1—C5_1—C6_1 119.1 (2) C6_2—C5_2—C4_2 119.4 (2)
C4_1—C5_1—H5_1 120.4 C6_2—C5_2—H5_2 120.3
C6_1—C5_1—H5_1 120.4 C4_2—C5_2—H5_2 120.3
N1_1—C6_1—C5_1 123.5 (2) N1_2—C6_2—C5_2 123.7 (2)
N1_1—C6_1—H6_1 118.2 N1_2—C6_2—H6_2 118.1
C5_1—C6_1—H6_1 118.2 C5_2—C6_2—H6_2 118.1
N2_1—C7_1—C4_1 110.46 (18) N2_2—C7_2—C4_2 113.15 (18)
N2_1—C7_1—H7A_1 109.6 N2_2—C7_2—H7A_2 108.9
C4_1—C7_1—H7A_1 109.6 C4_2—C7_2—H7A_2 108.9
N2_1—C7_1—H7B_1 109.6 N2_2—C7_2—H7B_2 108.9
C4_1—C7_1—H7B_1 109.6 C4_2—C7_2—H7B_2 108.9
H7A_1—C7_1—H7B_1 108.1 H7A_2—C7_2—H7B_2 107.8
C6_1—N1_1—C2_1 116.9 (2) C2_2—N1_2—C6_2 116.7 (2)
C7_1—N2_1—H2A_1 109.1 (17) C7_2—N2_2—H2A_2 111.7 (16)
C7_1—N2_1—H2B_1 111.0 (16) C7_2—N2_2—H2B_2 112.4 (17)
H2A_1—N2_1—H2B_1 112 (2) H2A_2—N2_2—H2B_2 102 (2)
C7_1—N2_1—H2C_1 107.8 (18) C7_2—N2_2—H2C_2 108.0 (18)
H2A_1—N2_1—H2C_1 112 (2) H2A_2—N2_2—H2C_2 112 (2)
H2B_1—N2_1—H2C_1 105 (2) H2B_2—N2_2—H2C_2 110 (2)
O2_1—Cl1_1—O3_1 110.58 (10) O2_2—Cl1_2—O3_2 110.79 (10)
O2_1—Cl1_1—O4_1 109.98 (11) O2_2—Cl1_2—O4_2 109.43 (10)
O3_1—Cl1_1—O4_1 109.43 (10) O3_2—Cl1_2—O4_2 109.22 (10)
O2_1—Cl1_1—O1_1 108.97 (9) O2_2—Cl1_2—O1_2 109.43 (9)
O3_1—Cl1_1—O1_1 109.10 (9) O3_2—Cl1_2—O1_2 109.58 (10)
O4_1—Cl1_1—O1_1 108.75 (10) O4_2—Cl1_2—O1_2 108.36 (10)
H5A_1—O5_1—H5B_1 109 (3) H5A_2—O5_2—H5B_2 107 (3)
C3_1—C4_1—C7_1—N2_1 67.4 (3) C3_2—C4_2—C7_2—N2_2 13.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2_1—H2A_1···O5_1i 0.90 (2) 1.96 (2) 2.862 (3) 176 (2)
N2_1—H2B_1···O1_1ii 0.90 (2) 2.20 (2) 2.916 (2) 136 (2)
N2_1—H2B_1···O4_2iii 0.90 (2) 2.32 (2) 2.924 (2) 125 (2)
N2_1—H2B_1···O4_2i 0.90 (2) 2.50 (2) 3.034 (3) 119 (2)
N2_1—H2C_1···O5_2iv 0.90 (2) 1.95 (2) 2.838 (3) 168 (2)
O5_1—H5A_1···N1_2 0.84 (2) 1.91 (2) 2.751 (2) 176 (3)
O5_1—H5B_1···O1_2 0.83 (2) 2.21 (2) 2.986 (2) 156 (3)
N2_2—H2A_2···O5_1iv 0.92 (2) 1.92 (2) 2.839 (3) 173 (2)
N2_2—H2B_2···O4_1iii 0.91 (2) 2.42 (2) 3.079 (3) 130 (2)
N2_2—H2B_2···O1_2iii 0.91 (2) 2.19 (2) 2.979 (2) 144 (2)
N2_2—H2C_2···O5_2iv 0.90 (2) 1.98 (2) 2.872 (3) 177 (2)
O5_2—H5A_2···N1_1 0.83 (2) 1.93 (2) 2.761 (2) 175 (3)
O5_2—H5B_2···O1_1 0.83 (2) 2.09 (2) 2.874 (2) 160 (3)

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+3/2; (iv) x+1/2, −y+1/2, z+1/2.

Funding Statement

Funding for this research was provided by: Open Access Publishing by the DFG .

References

  1. Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Ding, X.-H., Cui, L.-F., Li, Y.-H., Wang, S. & Huang, W. (2012). New J. Chem. 36, 1884–1890.
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Karaağaç, D., Kürkçüoğlu, G. S., Yeşilel, O. Z., Hökelek, T. & Süzen, Y. (2013). Inorg. Chim. Acta, 406, 73–80.
  5. Lemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008). CrystEngComm, 10, 1750–1757.
  6. Milletti, F., Storchi, L., Goracci, L., Bendels, S., Wagner, B., Kansy, M. & Cruciani, G. (2010). Eur. J. Med. Chem. 45, 4270–4279. [DOI] [PubMed]
  7. Msaadi, I., Rayes, A., Benito, M., Issaoui, N., Molins, E. & Ayed, B. (2022). J. Mol. Struct. 1262, 133085.
  8. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  12. Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25–48. Oxford: Elsevier.
  13. Vries, E. J. C. de, Oliver, C. L. & Lloyd, G. O. (2005). Acta Cryst. E61, o1577–o1578.
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Zuffa, C., Cappuccino, C., Marchini, M., Contini, L., Farinella, F. & Maini, L. (2023). Faraday Discuss. 241, 448–465. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314623004595/wm4189sup1.cif

x-08-x230459-sup1.cif (578.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623004595/wm4189Isup2.hkl

x-08-x230459-Isup2.hkl (352.3KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623004595/wm4189Isup3.cdx

Supporting information file. DOI: 10.1107/S2414314623004595/wm4189Isup4.cml

CCDC reference: 2265167

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES