The title 4-aminoantipyrine Schiff base compounds both deviate from planarity with the phenyl ring and the substituted benzylidene ring being inclined to the pyrazole ring mean plane by 54.87 (7) and 22.92 (7)°, respectively, in the first compound and by 60.44 (8) and 12.70 (9)° in the second.
Keywords: crystal structure, 4-aminoantipyrine, Hirshfeld surface analysis, energy frameworks
Abstract
The title Schiff base compounds, C22H26N4O (I) and C18H16FN3O (II), were each synthesized by a single-step condensation reaction. The substituted benzylidene ring is inclined to the pyrazole ring mean planes by 22.92 (7)° in I and 12.70 (9)° in II. The phenyl ring of the 4-aminoantipyrine unit is inclined to the pyrazole ring mean plane by 54.87 (7)° in I and by 60.44 (8)° in II. In the crystal of I, the molecules are linked by C—H⋯O hydrogen bonds and C—H⋯π interactions to form layers lying parallel to (001). In the crystal of II, the molecules are linked by C—H⋯O and C—H⋯F hydrogen bonds and C—H⋯π interactions, thereby forming layers lying parallel to (010). Hirshfeld surface analysis was employed to further quantify the interatomic interactions in the crystals of both compounds.
1. Chemical context
Antipyrine (also known as phenazone) derivatives display antioxidant (Bashkatova et al., 2005 ▸), anti-putrefactive (Abd El Rehim et al., 2001 ▸) and optical (Collado et al., 2000 ▸) properties. Among pyrazole analogues, 4-amino-1,5-dimethyl-2-phenylpyrazole-3-one, known as 4-aminoantipyrine, possesses a free amino group. It has received attention because it exhibits various biological activities, such as antifungal, antibacterial, antimalarial, antiviral, anti-inflammatory and antipyretic properties (Nibila et al., 2020 ▸). 4-Aminoantipyrine derivatives are also considered to be model compounds in the biological and medical fields (Senthilkumar et al., 2016 ▸). Schiff bases of 4-aminoantipyrine and their complexes have a wide range of applications in medicinal, analytical and pharmacological areas (Oudar, 1977 ▸; Zyss, 1979 ▸), and they also possess chemotherapeutic properties (Raman et al., 2007 ▸; Alam & Lee, 2016 ▸). As part of our studies in this area, we now report the syntheses and structures of the title compounds, C22H26N4O (I) and C18H16FN3O (II).
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016 ▸) gave 31 hits for 4-aminoantipyrine structures with a p-substituted benzylidene ring. Of particular interest are the 4-(dimethylamino)benzylidene analogue (CSD refcode TAYLUB01; Asiri et al., 2010 ▸) of I (both compounds crystallize in the monoclinic space group C2/c) and the 4-(chloroamino)benzylidene (KELZIL; Sun et al., 2006 ▸) and 4-(bromoamino)benzylidene (KEQXOU; Yan et al., 2006 ▸) analogues of II (all three compounds crystallize in the orthorhombic space group Pbca). Their molecular structures and Hirshfeld surface analyses are compared to those of the title compounds.
2. Structural commentary
The molecular structures of I and II are illustrated in Figs. 1 ▸ and 2 ▸, respectively. Selected geometric parameters for I and II and their analogues are given in Table 1 ▸. The various dihedral angles in the five compounds are given in Table 2 ▸. The configuration about the N3=C12 bond is E, which favours the presence of an intramolecular C12—H12⋯O1 hydrogen bond in both compounds (Tables 3 ▸ and 4 ▸, respectively), and in their analogues. The N3=C12 bond length is 1.291 (2) Å in I and 1.289 (2) Å in II. The pyrazole ring mean plane (A = N1/N2/C1–C3; r.m.s. deviations are 0.055 and 0.057 Å for I and II, respectively) is twisted on the N1—N2 bond in both compounds. The phenyl ring (B = C4–C9) and the substituted benzylidene ring (C = C13–C18) are inclined to the pyrazole ring mean plane A by 54.87 (7) and 22.92 (7)°, respectively, in I and by 60.44 (8) and 12.70 (9)°, respectively, in II. The latter two rings, B and C, are inclined to each other by 73.98 (6) in I and by 71.28 (8)° in II. The difference in the conformation of the two structures is illustrated in Fig. 3 ▸ showing the structural overlap (Mercury; Macrae et al., 2020 ▸) of molecules I and II. It can be seen from Table 2 ▸ that the conformation of I is similar to that of the 4-(dimethylamino)benzylidene analogue (TAYLUB01). However, this is not the case for compound II: while the conformation of the 4-(chloroamino)benzylidene (KELZIL) and 4-(bromoamino)benzylidene (KEQXOU) analogues of II are similar there is a significant difference compared to the conformation of compound II. For example, the A to B dihedral angle is 60.44 (8)° in II but is 51.6 (1) and 50.8 (2)°, in the respective analogues. The other dihedral angles are also significantly different, as seen in Table 2 ▸.
Figure 1.
A view of the molecular structure of I, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
Figure 2.
A view of the molecular structure of II, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
Table 1. Selected geometric parameters (Å, °) for I and TAYLUB01 a , and for II and KELZIL b and KEQXOU c .
| I | TAYLUB01 a | II | KELZIL b | KEQXOU c | |
|---|---|---|---|---|---|
| N3—C12 | 1.291 (2) | 1.288 (2) | 1.289 (2) | 1.276 (2) | 1.279 (5) |
| C2—N3—C12—C13 | –177.11 (11) | 173.20 (11) | –175.43 (14) | –176.68 (15) | 177.5 (4) |
| C1—N1—N2 | 109.58 (9) | 109.58 (10) | 108.75 (12) | 108.58 (13) | 106.9 (3) |
| C1—N1—C4 | 121.78 (10) | 122.30 (10) | 120.50 (13) | 122.40 (13) | 122.4 (3) |
| N2—N1—C4 | 119.11 (9) | 118.13 (10) | 118.90 (13) | 119.12 (14) | 119.8 (3) |
| Sum | 350.47 (9) | 350.0 (1) | 348.15 (13) | 350.10 (13) | 349.1 (3) |
| C3—N2—N1 | 106.23 (9) | 106.50 (10) | 107.40 (13) | 107.34 (13) | 107.7 (3) |
| C3—N2—C10 | 121.11 (10) | 122.30 (11) | 125.50 (14) | 124.77 (14) | 125.1 (3) |
| N1—N2—C10 | 114.20 (10) | 114.68 (10) | 118.09 (13) | 117.05 (15) | 115.9 (3) |
| Sum | 341.54 (10) | 343.48 (10) | 350.99 (13) | 349.16 (14) | 348.7 (3) |
Table 2. A comparison of various dihedral angles (°) for I and TAYLUB01 a , and for II and KELZIL b and KEQXOU c .
A = ring N1/N2/C1–C3, B = ring C4–C9, C = ring C13–C18 (atom numbering following this paper).
| Dihedral angle | I | TAYLUB01 a | II | KELZIL b | KEQXOU c |
|---|---|---|---|---|---|
| Planes A to B | 54.87 (7) | 55.01 (7) | 60.44 (8) | 51.6 (1) | 50.8 (2) |
| Planes A to C | 22.92 (7) | 19.03 (7) | 12.70 (9) | 8.7 (1) | 9.1 (2) |
| Planes B to C | 73.98 (6) | 73.98 (6) | 71.28 (8) | 59.0 (1) | 59.1 (2) |
Table 3. Hydrogen-bond geometry (Å, °) for I .
CgB is the centroid of ring B (C4–C9).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C11—H11B⋯O1i | 0.98 | 2.33 | 3.314 (2) | 177 |
| C12—H12⋯O1 | 0.95 | 2.32 | 3.028 (2) | 131 |
| C22—H22C⋯O1ii | 0.98 | 2.54 | 3.466 (2) | 157 |
| C7—H7⋯CgBiii | 0.95 | 2.79 | 3.674 (1) | 155 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Table 4. Hydrogen-bond geometry (Å, °) for II .
CgB is the centroid of ring B (C4–C9).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C11—H11A⋯O1i | 0.98 | 2.55 | 3.505 (2) | 165 |
| C12—H12A⋯O1 | 0.95 | 2.36 | 3.043 (2) | 128 |
| C14—H14⋯O1ii | 0.95 | 2.57 | 3.204 (2) | 124 |
| C17—H17⋯F1iii | 0.95 | 2.50 | 3.291 (2) | 141 |
| C7—H7⋯CgBiv | 0.95 | 2.90 | 3.608 (2) | 132 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Figure 3.
A view of the structural overlap of compounds I (blue) and II (red); r.m.s. deviation 0.044 Å (Mercury; Macrae et al., 2020 ▸). The O, N and F atoms are shown as balls.
The N1 and N2 nitrogen atoms of the pyrazole ring have pyramidal geometries (see Table 1 ▸), with the sum of their bond angles being 350.5 (1) and 341.5 (1)°, respectively, in I, and 348.2 (1) and 351.0 (1)°, respectively, in II. The same pyramidal geometries of atoms N1 and N2 are also observed for the various analogues (Table 1 ▸). The bond angles involving atoms N1 and N2 follow the same pattern.
3. Supramolecular features
In the crystal of I, the molecules are linked by C—H⋯O hydrogen bonds, forming slabs lying parallel to the ab plane. The slabs are consolidated by C—H⋯π interactions (Table 3 ▸ and Fig. 4 ▸).
Figure 4.
A view along the b axis of the crystal packing of I. The C—H⋯O hydrogen bonds are shown as dashed lines and the C—H⋯π interactions as blue arrows (see Table 3 ▸). Only the H atoms involved in these interactions have been included.
In the crystal of II, the molecules are linked by C—H⋯O and C—H⋯F hydrogen bonds forming undulating slabs lying parallel to the ac plane. Here too, the slabs are strengthened by C—H⋯π interactions (Table 4 ▸ and Fig. 5 ▸).
Figure 5.
A view along the b axis of the crystal packing of II. The The C—H⋯O and C—H⋯F hydrogen bonds are shown as dashed lines and the C—H⋯π interactions as blue arrows (see Table 4 ▸). Only the H atoms involved in these interactions have been included.
4. Hirshfeld surface analysis and two-dimensional fingerprint plots
The Hirshfeld surface analyses and the associated two-dimensional fingerprint plots were performed with CrystalExplorer17 (Spackman et al., 2021 ▸) following the protocol of Tan et al. (2019 ▸). The Hirshfeld surfaces (HS) of I and TAYLUB01 are compared in Fig. 6 ▸, and those for II and KELZIL and KEQXOU are compared in Fig. 7 ▸. The large red spots indicate that short contacts are significant in the crystal packing of all five crystal structures. The full two-dimensional fingerprint plots for I and TAYLUB01, and for II and KELZIL and KEQXOU are given in Figs. 8 ▸ and 9 ▸, respectively.
Figure 6.
The Hirshfeld surfaces of compounds, (a) I and (b) TAYLUB01 mapped over d norm in the colour ranges −0.2834 to 1.4293 and −0.2505 to 1.2511 au., respectively.
Figure 7.
The Hirshfeld surfaces of compounds, (a) II, (b) KELZIL and (c) KEQXOU, mapped over d norm in the colour ranges −0.2048 to 1.21, −0.2236 to 1.3135 and −0.2367 to 1.3139 au., respectively.
Figure 8.
The full two-dimensional fingerprint plots for compounds, (a) I and (b) TAYLUB01, and those delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯N and O⋯H/H⋯O contacts.
Figure 9.
The full two-dimensional fingerprint plots for compounds, (a) II, (b) KELZIL and (c) KEQXOU, and those delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯N, O⋯H/H⋯O and halogen⋯H/H⋯halogen contacts.
The contributions of the various inter-atomic contacts to the Hirshfeld surfaces for all five compounds are given in Table 5 ▸. In I and TAYLUB01 the H⋯H contacts have a major contribution (60.6 and 57.7%, respectively) as do the C⋯H/H⋯C contributions (26.7 and 27.3%, respectively). These are followed by the O⋯H/H⋯O and N⋯H/H⋯N contributions (Table 5 ▸). Other inter-atomic contacts, such as C⋯C and C⋯N/N⋯C contribute less than 2%. For II, KELZIL and KEQXOU the H⋯H contacts contribute ca 43% for all three compounds, notably less than in I and TAYLUB01. The contributions of the C⋯H/H⋯C, N⋯H/H⋯N and O⋯H/H⋯O contacts are similar to those for compound I (Table 5 ▸). The halogen⋯H/H⋯halogen contributions vary from 10.5% in II to 13.5% in KEQXOU. The C⋯C contributions are 2.7, 2.0 and 2.2%, respectively, while the N⋯C/C⋯N contributions are 1.7, 2.0 and 2.2%, respectively. Both are more significant than for compound I and its analogue. The O⋯C/C⋯O contacts contribute less that 1%.
Table 5. Principal percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of I, TAYLUB01 a , II, KELZIL b and KEQXOU c .
| Contact | I | TAYLUB01 a | II | KELZIL b | KEQXOU c |
|---|---|---|---|---|---|
| X = F | X = Cl | X = Br | |||
| H⋯H | 60.6 | 57.7 | 43.2 | 43.7 | 43.1 |
| C⋯H/H⋯C | 26.7 | 27.3 | 28.6 | 25.1 | 25.0 |
| N⋯H/H⋯N | 4.8 | 4.5 | 4.2 | 3.6 | 3.5 |
| O⋯H/H⋯O | 6.8 | 7.2 | 8.3 | 7.3 | 7.2 |
| X⋯H/H⋯X | – | – | 10.5 | 12.9 | 13.5 |
| C⋯C | 0.2 | 1.3 | 2.7 | 3.9 | 3.9 |
| N⋯C/C⋯N | 0.4 | 1.6 | 1.7 | 2.0 | 2.2 |
| O⋯C/C⋯O | 0 | 0 | 0.3 | 0.5 | 0.5 |
| X⋯X | – | – | 0.4 | 0.9 | 1.0 |
5. Energy frameworks
A comparison of the energy frameworks calculated for I and II, showing the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (E tot), are shown in Fig. 10 ▸. The energies were obtained by using wave functions at the HF/3-2IG level of theory. The cylindrical radii are proportional to the relative strength of the corresponding energies (Spackman et al., 2021 ▸; Tan et al., 2019 ▸). They have been adjusted to the same scale factor of 90 with a cut-off value of 6 kJ mol−1 within a radius of 6 Å of a central reference molecule. It can be seen that for all five compounds the major contribution to the intermolecular interactions is from dispersion (E dis), reflecting the absence of classical hydrogen bonds in the crystals. The colour-coded interaction mappings within a radius of 6 Å of a central reference molecule and the various contributions to the total energy (E tot) for compounds I and II are given in Figs. S1 and S2 of the supporting information.
Figure 10.
The energy frameworks calculated for I viewed along the b-axis direction and II viewed along the a-axis direction showing the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (E tot).
6. Database survey
A search of the CSD (CSD, Version 5.43, last update November 2022; Groom et al., 2016 ▸) for benyzylidene-substituted 4-aminoantipyrine organic structures with R ≤ 0.05, no disorder, no ions, single-crystal analyses only gave more than 90 hits. In all compounds the configuration about the C=N bond is E. Various geometrical parameters of these compounds where analysed using Mercury (Macrae et al., 2020 ▸). For example, the C=N bond lengths vary from 1.256 to 1.297 Å with a mean value of 1.281 Å (mean s.u. 0.008 Å). For compounds I and II and their analogues this bond length varies from 1.276 (2) Å for KELZIL (Sun et al., 2006 ▸) to 1.291 (2) Å for I (see Table 1 ▸), well within these limits. The C—N—N bond angles within the pyrazole ring vary from ca 107.7 to 110.7° with a mean value of 109.3° (mean s.u. 0.5°). The same angles in the title compounds (i.e. C1—N1—N2 and C3—N2—N1) and their analogues vary from 106.9 (3)° in KEQXOU (Yan et al., 2006 ▸) to 109.58 (9)° in I for the former and 106.23 (9) in I to 107.7 (3)° in KEQXOU for the latter. The nitrogen atoms of the pyrazole ring have pyramidal geometries in all structures.
7. Synthesis, crystallization and spectroscopic analyses
Diethylaminobenzaldehyde (9.08 mmol, 1.744 g) and 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (9.08 mmol, 2.00 g) were added to 100 ml of methanol and the mixture was refluxed at 353 K for a period of 8 h. The solvent was then allowed to evaporate slowly at room temperature. Pale-yellow crystals of compound I were obtained after a period of three weeks. Melting point 492 K.
4-Fluorobenzaldehyde (9.80 mmol, 1.221 g) and 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (9.80 mol, 2.00 g) were added to 100 ml of methanol and the mixture was refluxed at 353 K for a period of 8 h. The solvent was then allowed to evaporate slowly at room temperature. Colourless crystals of compound II were obtained after a period of three weeks. Melting point 509 K.
The 1H NMR spectra of compounds I and II were recorded using a Bruker AC 400 MHz spectrometer (Fig. S3 in the supporting information). The compounds were dissolved in CDCl3 using tetramethylsilane as an internal standard and chemical shifts (δ) are stated in ppm. The imine proton resonated as a sharp singlet peak at 9.63 for I and at 9.73 for II, whereas the aromatic protons appeared as a multiplet at 6.69–7.74 for I and at 7.07–7.87 for II. The –NCH3 protons of the aminoantipyrine unit appeared as a singlet at 3.08 for I and 3.16 for II. The two ethyl [–N(CH2—CH3)2] group protons in the benzylidene moiety of compound I appeared as a multiplet at 1.09–1.32 and 3.42–3.45. The methyl protons (C—CH3) of the aminoantipyrine moiety appeared as a singlet at 2.49 for both I and II.
FT–IR spectra (KBr pellet) were recorded between 400 and 4000 cm−1 (Fig. S4 in the supporting information). The characteristic C=N stretching mode is observed at 1578 for I, and at 1577 cm−1 for II, confirming the formation of the Schiff base compounds. The weak band at 3037 (I) and 3035 cm−1 (II), is assigned to the aromatic C—H stretching vibration. The peaks observed at 1290–1010 (I) and 1294–1124 cm−1 (II) are due to the C—H in-plane bending vibration of the aromatic rings. The bands obtained at 753–976 (I) and 757–954 cm−1 (II) are assigned to C—H out-of-plane bending vibrations. The asymmetric and symmetric stretching vibrations of the methyl group in the 4-aminoantipyrine moiety are observed respectively in the ranges of 3010–2970 (I) and 2940–2900 cm−1 (II). The strong peaks at 1650 (I) and 1644 cm−1 (II) correspond to the carbonyl stretching vibrations.
8. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 6 ▸. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95–1.0 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and = 1.2U eq(C) for other H atoms.
Table 6. Experimental details.
| I | II | |
|---|---|---|
| Crystal data | ||
| Chemical formula | C22H26N4O | C18H16FN3O |
| M r | 362.47 | 309.34 |
| Crystal system, space group | Monoclinic, C2/c | Orthorhombic, P b c a |
| Temperature (K) | 120 | 95 |
| a, b, c (Å) | 17.1588 (7), 7.0910 (3), 32.1594 (10) | 6.7886 (13), 16.6007 (3), 26.9563 (8) |
| α, β, γ (°) | 90, 102.338 (3), 90 | 90, 90, 90 |
| V (Å3) | 3822.6 (3) | 3037.9 (6) |
| Z | 8 | 8 |
| Radiation type | Cu Kα | Mo Kα |
| μ (mm−1) | 0.63 | 0.10 |
| Crystal size (mm) | 0.32 × 0.26 × 0.08 | 0.08 × 0.05 × 0.03 |
| Data collection | ||
| Diffractometer | Xcalibur, Atlas, Gemini ultra | SuperNova, AtlasS2 |
| Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010 ▸) | Multi-scan (CrysAlis PRO; Rigaku OD, 2022 ▸) |
| T min, T max | 0.273, 1.000 | 0.074, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 15635, 3401, 2946 | 16735, 3041, 2346 |
| R int | 0.034 | 0.064 |
| (sin θ/λ)max (Å−1) | 0.598 | 0.621 |
| Refinement | ||
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.036, 0.093, 1.06 | 0.042, 0.101, 1.05 |
| No. of reflections | 3401 | 3041 |
| No. of parameters | 248 | 211 |
| H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.14, −0.21 | 0.21, −0.21 |
Supplementary Material
Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989023004085/hb8065sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004085/hb8065Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989023004085/hb8065Isup4.cml
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023004085/hb8065IIsup3.hkl
Supporting information file. DOI: 10.1107/S2056989023004085/hb8065IIsup5.cml
Figures S1-S4. DOI: 10.1107/S2056989023004085/hb8065sup6.pdf
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
MGS and AS thank the Central Instrumentation Facility, Pondicherry University and STIC, Cochin, for the use of their facilities. MK and MD acknowledge using the CzechNanoLab Research Infrastructure supported by MEYS CR (No. LM2018110) for crystallographic analysis. HSE is grateful to the University of Neuchâtel for their support over the years.
supplementary crystallographic information
(E)-4-{[4-(Diethylamino)benzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (I) . Crystal data
| C22H26N4O | F(000) = 1552 |
| Mr = 362.47 | Dx = 1.260 Mg m−3 |
| Monoclinic, C2/c | Cu Kα radiation, λ = 1.5418 Å |
| a = 17.1588 (7) Å | Cell parameters from 6730 reflections |
| b = 7.0910 (3) Å | θ = 4.2–67.0° |
| c = 32.1594 (10) Å | µ = 0.63 mm−1 |
| β = 102.338 (3)° | T = 120 K |
| V = 3822.6 (3) Å3 | Plate, yellow |
| Z = 8 | 0.32 × 0.26 × 0.08 mm |
(E)-4-{[4-(Diethylamino)benzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (I) . Data collection
| Xcalibur, Atlas, Gemini ultra diffractometer | 3401 independent reflections |
| Radiation source: Enhance Ultra (Cu) X-ray Source | 2946 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.034 |
| Detector resolution: 10.3784 pixels mm-1 | θmax = 67.1°, θmin = 5.3° |
| ω scans | h = −20→20 |
| Absorption correction: multi-scan (CrysAlisPro; Agilent, 2010) | k = −8→8 |
| Tmin = 0.273, Tmax = 1.000 | l = −32→38 |
| 15635 measured reflections |
(E)-4-{[4-(Diethylamino)benzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (I) . Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.093 | H-atom parameters constrained |
| S = 1.06 | w = 1/[σ2(Fo2) + (0.0498P)2 + 1.7059P] where P = (Fo2 + 2Fc2)/3 |
| 3401 reflections | (Δ/σ)max = 0.001 |
| 248 parameters | Δρmax = 0.14 e Å−3 |
| 0 restraints | Δρmin = −0.20 e Å−3 |
(E)-4-{[4-(Diethylamino)benzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (I) . Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
(E)-4-{[4-(Diethylamino)benzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.95050 (6) | 0.16596 (12) | 0.13672 (3) | 0.0258 (2) | |
| N1 | 0.91573 (6) | 0.42249 (14) | 0.17346 (3) | 0.0208 (2) | |
| N2 | 0.95187 (6) | 0.59507 (14) | 0.18866 (3) | 0.0210 (2) | |
| N3 | 1.09105 (6) | 0.43910 (15) | 0.12703 (3) | 0.0223 (2) | |
| N4 | 1.37635 (7) | 0.11970 (15) | 0.04351 (4) | 0.0260 (3) | |
| C1 | 0.96340 (7) | 0.32892 (17) | 0.14980 (4) | 0.0205 (3) | |
| C2 | 1.02614 (7) | 0.46216 (17) | 0.14650 (4) | 0.0206 (3) | |
| C3 | 1.01488 (7) | 0.61977 (17) | 0.16879 (4) | 0.0211 (3) | |
| C4 | 0.87046 (7) | 0.32240 (16) | 0.19871 (4) | 0.0203 (3) | |
| C5 | 0.89105 (7) | 0.32887 (17) | 0.24292 (4) | 0.0223 (3) | |
| H5 | 0.933386 | 0.407554 | 0.256954 | 0.027* | |
| C6 | 0.84902 (8) | 0.21906 (18) | 0.26626 (4) | 0.0242 (3) | |
| H6 | 0.862682 | 0.222736 | 0.296476 | 0.029* | |
| C7 | 0.78720 (8) | 0.10388 (17) | 0.24593 (4) | 0.0246 (3) | |
| H7 | 0.759273 | 0.027492 | 0.262163 | 0.030* | |
| C8 | 0.76628 (8) | 0.10055 (18) | 0.20181 (4) | 0.0256 (3) | |
| H8 | 0.723541 | 0.022873 | 0.187820 | 0.031* | |
| C9 | 0.80765 (8) | 0.21046 (18) | 0.17807 (4) | 0.0240 (3) | |
| H9 | 0.793060 | 0.209089 | 0.147860 | 0.029* | |
| C10 | 0.89517 (9) | 0.74834 (18) | 0.19053 (5) | 0.0283 (3) | |
| H10A | 0.859334 | 0.711170 | 0.209086 | 0.042* | |
| H10B | 0.863842 | 0.773905 | 0.161857 | 0.042* | |
| H10C | 0.924493 | 0.862223 | 0.201903 | 0.042* | |
| C11 | 1.06192 (8) | 0.79734 (18) | 0.17469 (4) | 0.0265 (3) | |
| H11A | 1.083255 | 0.818394 | 0.205111 | 0.040* | |
| H11B | 1.027446 | 0.903218 | 0.162966 | 0.040* | |
| H11C | 1.106094 | 0.787545 | 0.159878 | 0.040* | |
| C12 | 1.10770 (8) | 0.27332 (18) | 0.11476 (4) | 0.0230 (3) | |
| H12 | 1.073861 | 0.170837 | 0.118039 | 0.028* | |
| C13 | 1.17644 (8) | 0.23785 (18) | 0.09609 (4) | 0.0226 (3) | |
| C14 | 1.19818 (8) | 0.05234 (19) | 0.08887 (4) | 0.0253 (3) | |
| H14 | 1.166953 | −0.048700 | 0.095862 | 0.030* | |
| C15 | 1.26374 (8) | 0.01199 (18) | 0.07186 (4) | 0.0249 (3) | |
| H15 | 1.276951 | −0.115738 | 0.067713 | 0.030* | |
| C16 | 1.31124 (8) | 0.15708 (18) | 0.06060 (4) | 0.0230 (3) | |
| C17 | 1.28890 (8) | 0.34469 (18) | 0.06779 (4) | 0.0259 (3) | |
| H17 | 1.319282 | 0.446570 | 0.060432 | 0.031* | |
| C18 | 1.22408 (8) | 0.38183 (18) | 0.08523 (4) | 0.0242 (3) | |
| H18 | 1.211242 | 0.509177 | 0.090042 | 0.029* | |
| C19 | 1.40771 (8) | −0.07010 (18) | 0.04196 (4) | 0.0260 (3) | |
| H19A | 1.395812 | −0.144034 | 0.065967 | 0.031* | |
| H19B | 1.466432 | −0.063114 | 0.045749 | 0.031* | |
| C20 | 1.37361 (9) | −0.1726 (2) | 0.00067 (4) | 0.0322 (3) | |
| H20A | 1.396735 | −0.299257 | 0.001640 | 0.048* | |
| H20B | 1.386511 | −0.102288 | −0.023225 | 0.048* | |
| H20C | 1.315550 | −0.182293 | −0.003084 | 0.048* | |
| C21 | 1.41662 (8) | 0.26801 (19) | 0.02481 (4) | 0.0267 (3) | |
| H21A | 1.376832 | 0.363552 | 0.011689 | 0.032* | |
| H21B | 1.440013 | 0.212963 | 0.001953 | 0.032* | |
| C22 | 1.48234 (9) | 0.3647 (2) | 0.05712 (5) | 0.0325 (3) | |
| H22A | 1.509447 | 0.457307 | 0.042542 | 0.049* | |
| H22B | 1.520911 | 0.270251 | 0.071042 | 0.049* | |
| H22C | 1.458950 | 0.428731 | 0.078544 | 0.049* |
(E)-4-{[4-(Diethylamino)benzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (I) . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0313 (5) | 0.0211 (4) | 0.0271 (5) | −0.0023 (4) | 0.0110 (4) | −0.0045 (3) |
| N1 | 0.0240 (5) | 0.0178 (5) | 0.0219 (5) | −0.0019 (4) | 0.0078 (4) | −0.0020 (4) |
| N2 | 0.0244 (5) | 0.0162 (5) | 0.0238 (5) | −0.0004 (4) | 0.0079 (4) | −0.0014 (4) |
| N3 | 0.0229 (5) | 0.0243 (5) | 0.0202 (5) | 0.0009 (4) | 0.0058 (4) | 0.0007 (4) |
| N4 | 0.0271 (6) | 0.0242 (6) | 0.0295 (6) | 0.0001 (4) | 0.0123 (5) | −0.0021 (4) |
| C1 | 0.0241 (6) | 0.0201 (6) | 0.0175 (6) | 0.0028 (5) | 0.0050 (5) | 0.0013 (5) |
| C2 | 0.0228 (6) | 0.0205 (6) | 0.0185 (6) | 0.0011 (5) | 0.0045 (5) | 0.0019 (5) |
| C3 | 0.0229 (6) | 0.0203 (6) | 0.0201 (6) | 0.0018 (5) | 0.0045 (5) | 0.0036 (5) |
| C4 | 0.0214 (6) | 0.0172 (6) | 0.0238 (6) | 0.0030 (5) | 0.0080 (5) | 0.0003 (5) |
| C5 | 0.0208 (6) | 0.0218 (6) | 0.0244 (6) | −0.0002 (5) | 0.0051 (5) | −0.0028 (5) |
| C6 | 0.0273 (7) | 0.0241 (6) | 0.0224 (6) | 0.0014 (5) | 0.0082 (5) | −0.0002 (5) |
| C7 | 0.0247 (6) | 0.0209 (6) | 0.0305 (7) | 0.0004 (5) | 0.0109 (5) | 0.0013 (5) |
| C8 | 0.0227 (6) | 0.0217 (6) | 0.0321 (7) | −0.0019 (5) | 0.0053 (5) | −0.0031 (5) |
| C9 | 0.0250 (6) | 0.0239 (6) | 0.0225 (6) | 0.0002 (5) | 0.0035 (5) | −0.0019 (5) |
| C10 | 0.0312 (7) | 0.0209 (6) | 0.0351 (7) | 0.0043 (5) | 0.0121 (6) | −0.0016 (5) |
| C11 | 0.0304 (7) | 0.0205 (6) | 0.0295 (7) | −0.0026 (5) | 0.0084 (5) | 0.0001 (5) |
| C12 | 0.0249 (6) | 0.0242 (6) | 0.0201 (6) | −0.0013 (5) | 0.0050 (5) | 0.0007 (5) |
| C13 | 0.0239 (6) | 0.0260 (6) | 0.0179 (6) | 0.0006 (5) | 0.0044 (5) | −0.0012 (5) |
| C14 | 0.0285 (7) | 0.0248 (6) | 0.0240 (6) | −0.0032 (5) | 0.0083 (5) | −0.0009 (5) |
| C15 | 0.0296 (7) | 0.0211 (6) | 0.0249 (6) | 0.0004 (5) | 0.0078 (5) | −0.0027 (5) |
| C16 | 0.0241 (6) | 0.0261 (6) | 0.0191 (6) | 0.0006 (5) | 0.0049 (5) | −0.0014 (5) |
| C17 | 0.0277 (7) | 0.0234 (6) | 0.0284 (7) | −0.0024 (5) | 0.0099 (5) | −0.0010 (5) |
| C18 | 0.0274 (7) | 0.0218 (6) | 0.0238 (6) | 0.0014 (5) | 0.0063 (5) | −0.0016 (5) |
| C19 | 0.0258 (7) | 0.0272 (7) | 0.0261 (7) | 0.0032 (5) | 0.0078 (5) | −0.0001 (5) |
| C20 | 0.0372 (8) | 0.0301 (7) | 0.0305 (7) | 0.0013 (6) | 0.0098 (6) | −0.0054 (6) |
| C21 | 0.0296 (7) | 0.0267 (7) | 0.0268 (7) | −0.0008 (5) | 0.0126 (5) | −0.0017 (5) |
| C22 | 0.0327 (7) | 0.0328 (7) | 0.0346 (7) | −0.0048 (6) | 0.0133 (6) | −0.0063 (6) |
(E)-4-{[4-(Diethylamino)benzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (I) . Geometric parameters (Å, º)
| O1—C1 | 1.2335 (15) | C11—H11A | 0.9800 |
| N1—C1 | 1.3978 (16) | C11—H11B | 0.9800 |
| N1—N2 | 1.4112 (14) | C11—H11C | 0.9800 |
| N1—C4 | 1.4269 (16) | C12—C13 | 1.4551 (18) |
| N2—C3 | 1.3796 (16) | C12—H12 | 0.9500 |
| N2—C10 | 1.4685 (16) | C13—C18 | 1.3982 (18) |
| N3—C12 | 1.2913 (17) | C13—C14 | 1.4002 (18) |
| N3—C2 | 1.3991 (16) | C14—C15 | 1.3817 (19) |
| N4—C16 | 1.3720 (17) | C14—H14 | 0.9500 |
| N4—C19 | 1.4543 (17) | C15—C16 | 1.4073 (18) |
| N4—C21 | 1.4569 (17) | C15—H15 | 0.9500 |
| C1—C2 | 1.4533 (18) | C16—C17 | 1.4172 (18) |
| C2—C3 | 1.3635 (17) | C17—C18 | 1.3737 (19) |
| C3—C11 | 1.4858 (18) | C17—H17 | 0.9500 |
| C4—C9 | 1.3881 (18) | C18—H18 | 0.9500 |
| C4—C5 | 1.3907 (18) | C19—C20 | 1.5170 (19) |
| C5—C6 | 1.3860 (18) | C19—H19A | 0.9900 |
| C5—H5 | 0.9500 | C19—H19B | 0.9900 |
| C6—C7 | 1.3868 (19) | C20—H20A | 0.9800 |
| C6—H6 | 0.9500 | C20—H20B | 0.9800 |
| C7—C8 | 1.3875 (19) | C20—H20C | 0.9800 |
| C7—H7 | 0.9500 | C21—C22 | 1.523 (2) |
| C8—C9 | 1.3877 (19) | C21—H21A | 0.9900 |
| C8—H8 | 0.9500 | C21—H21B | 0.9900 |
| C9—H9 | 0.9500 | C22—H22A | 0.9800 |
| C10—H10A | 0.9800 | C22—H22B | 0.9800 |
| C10—H10B | 0.9800 | C22—H22C | 0.9800 |
| C10—H10C | 0.9800 | ||
| C1—N1—N2 | 109.58 (9) | H11A—C11—H11C | 109.5 |
| C1—N1—C4 | 121.78 (10) | H11B—C11—H11C | 109.5 |
| N2—N1—C4 | 119.11 (9) | N3—C12—C13 | 122.35 (12) |
| C3—N2—N1 | 106.23 (9) | N3—C12—H12 | 118.8 |
| C3—N2—C10 | 121.11 (10) | C13—C12—H12 | 118.8 |
| N1—N2—C10 | 114.20 (10) | C18—C13—C14 | 116.99 (11) |
| C12—N3—C2 | 119.50 (11) | C18—C13—C12 | 123.07 (11) |
| C16—N4—C19 | 122.10 (11) | C14—C13—C12 | 119.93 (11) |
| C16—N4—C21 | 121.63 (11) | C15—C14—C13 | 121.91 (12) |
| C19—N4—C21 | 116.24 (10) | C15—C14—H14 | 119.0 |
| O1—C1—N1 | 123.17 (11) | C13—C14—H14 | 119.0 |
| O1—C1—C2 | 131.75 (11) | C14—C15—C16 | 121.06 (12) |
| N1—C1—C2 | 105.07 (10) | C14—C15—H15 | 119.5 |
| C3—C2—N3 | 123.15 (11) | C16—C15—H15 | 119.5 |
| C3—C2—C1 | 107.70 (11) | N4—C16—C15 | 121.87 (11) |
| N3—C2—C1 | 129.03 (11) | N4—C16—C17 | 121.24 (12) |
| C2—C3—N2 | 110.64 (11) | C15—C16—C17 | 116.90 (12) |
| C2—C3—C11 | 128.87 (12) | C18—C17—C16 | 121.17 (12) |
| N2—C3—C11 | 120.44 (11) | C18—C17—H17 | 119.4 |
| C9—C4—C5 | 120.63 (11) | C16—C17—H17 | 119.4 |
| C9—C4—N1 | 118.27 (11) | C17—C18—C13 | 121.98 (12) |
| C5—C4—N1 | 121.01 (11) | C17—C18—H18 | 119.0 |
| C6—C5—C4 | 119.15 (12) | C13—C18—H18 | 119.0 |
| C6—C5—H5 | 120.4 | N4—C19—C20 | 113.39 (11) |
| C4—C5—H5 | 120.4 | N4—C19—H19A | 108.9 |
| C5—C6—C7 | 120.64 (12) | C20—C19—H19A | 108.9 |
| C5—C6—H6 | 119.7 | N4—C19—H19B | 108.9 |
| C7—C6—H6 | 119.7 | C20—C19—H19B | 108.9 |
| C6—C7—C8 | 119.79 (12) | H19A—C19—H19B | 107.7 |
| C6—C7—H7 | 120.1 | C19—C20—H20A | 109.5 |
| C8—C7—H7 | 120.1 | C19—C20—H20B | 109.5 |
| C7—C8—C9 | 120.14 (12) | H20A—C20—H20B | 109.5 |
| C7—C8—H8 | 119.9 | C19—C20—H20C | 109.5 |
| C9—C8—H8 | 119.9 | H20A—C20—H20C | 109.5 |
| C8—C9—C4 | 119.62 (12) | H20B—C20—H20C | 109.5 |
| C8—C9—H9 | 120.2 | N4—C21—C22 | 113.00 (11) |
| C4—C9—H9 | 120.2 | N4—C21—H21A | 109.0 |
| N2—C10—H10A | 109.5 | C22—C21—H21A | 109.0 |
| N2—C10—H10B | 109.5 | N4—C21—H21B | 109.0 |
| H10A—C10—H10B | 109.5 | C22—C21—H21B | 109.0 |
| N2—C10—H10C | 109.5 | H21A—C21—H21B | 107.8 |
| H10A—C10—H10C | 109.5 | C21—C22—H22A | 109.5 |
| H10B—C10—H10C | 109.5 | C21—C22—H22B | 109.5 |
| C3—C11—H11A | 109.5 | H22A—C22—H22B | 109.5 |
| C3—C11—H11B | 109.5 | C21—C22—H22C | 109.5 |
| H11A—C11—H11B | 109.5 | H22A—C22—H22C | 109.5 |
| C3—C11—H11C | 109.5 | H22B—C22—H22C | 109.5 |
| C1—N1—N2—C3 | 9.12 (13) | C4—C5—C6—C7 | 0.04 (19) |
| C4—N1—N2—C3 | 156.03 (10) | C5—C6—C7—C8 | −1.04 (19) |
| C1—N1—N2—C10 | 145.25 (10) | C6—C7—C8—C9 | 0.74 (19) |
| C4—N1—N2—C10 | −67.83 (14) | C7—C8—C9—C4 | 0.54 (19) |
| N2—N1—C1—O1 | 171.84 (11) | C5—C4—C9—C8 | −1.55 (18) |
| C4—N1—C1—O1 | 25.96 (18) | N1—C4—C9—C8 | 175.24 (11) |
| N2—N1—C1—C2 | −6.89 (13) | C2—N3—C12—C13 | −177.11 (11) |
| C4—N1—C1—C2 | −152.77 (11) | N3—C12—C13—C18 | −7.96 (19) |
| C12—N3—C2—C3 | 164.73 (12) | N3—C12—C13—C14 | 171.03 (12) |
| C12—N3—C2—C1 | −10.89 (19) | C18—C13—C14—C15 | 0.13 (19) |
| O1—C1—C2—C3 | −176.49 (13) | C12—C13—C14—C15 | −178.92 (12) |
| N1—C1—C2—C3 | 2.09 (13) | C13—C14—C15—C16 | −0.7 (2) |
| O1—C1—C2—N3 | −0.3 (2) | C19—N4—C16—C15 | −9.62 (19) |
| N1—C1—C2—N3 | 178.24 (11) | C21—N4—C16—C15 | 168.66 (12) |
| N3—C2—C3—N2 | −172.83 (11) | C19—N4—C16—C17 | 170.24 (12) |
| C1—C2—C3—N2 | 3.60 (14) | C21—N4—C16—C17 | −11.49 (19) |
| N3—C2—C3—C11 | 4.6 (2) | C14—C15—C16—N4 | −179.73 (12) |
| C1—C2—C3—C11 | −178.95 (12) | C14—C15—C16—C17 | 0.41 (18) |
| N1—N2—C3—C2 | −7.78 (13) | N4—C16—C17—C18 | −179.46 (12) |
| C10—N2—C3—C2 | −140.20 (12) | C15—C16—C17—C18 | 0.40 (18) |
| N1—N2—C3—C11 | 174.52 (11) | C16—C17—C18—C13 | −1.0 (2) |
| C10—N2—C3—C11 | 42.11 (17) | C14—C13—C18—C17 | 0.71 (19) |
| C1—N1—C4—C9 | −66.68 (16) | C12—C13—C18—C17 | 179.72 (12) |
| N2—N1—C4—C9 | 150.54 (11) | C16—N4—C19—C20 | 92.75 (14) |
| C1—N1—C4—C5 | 110.10 (13) | C21—N4—C19—C20 | −85.62 (14) |
| N2—N1—C4—C5 | −32.67 (16) | C16—N4—C21—C22 | 88.73 (15) |
| C9—C4—C5—C6 | 1.26 (18) | C19—N4—C21—C22 | −92.90 (14) |
| N1—C4—C5—C6 | −175.45 (11) |
(E)-4-{[4-(Diethylamino)benzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (I) . Hydrogen-bond geometry (Å, º)
CgB is the centroid of ring B (C4–C9).
| D—H···A | D—H | H···A | D···A | D—H···A |
| C11—H11B···O1i | 0.98 | 2.33 | 3.314 (2) | 177 |
| C12—H12···O1 | 0.95 | 2.32 | 3.028 (2) | 131 |
| C22—H22C···O1ii | 0.98 | 2.54 | 3.466 (2) | 157 |
| C7—H7···CgBiii | 0.95 | 2.79 | 3.674 (1) | 155 |
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z; (iii) −x+3/2, y−1/2, −z+1/2.
(E)-4-[(4-Fluorobenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (II) . Crystal data
| C18H16FN3O | Dx = 1.353 Mg m−3 |
| Mr = 309.34 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Pbca | Cell parameters from 3075 reflections |
| a = 6.7886 (13) Å | θ = 5.3–73.0° |
| b = 16.6007 (3) Å | µ = 0.10 mm−1 |
| c = 26.9563 (8) Å | T = 95 K |
| V = 3037.9 (6) Å3 | Block, colourless |
| Z = 8 | 0.08 × 0.05 × 0.03 mm |
| F(000) = 1296 |
(E)-4-[(4-Fluorobenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (II) . Data collection
| SuperNova, AtlasS2 diffractometer | 3041 independent reflections |
| Radiation source: X-ray tube | 2346 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.064 |
| Detector resolution: 5.2027 pixels mm-1 | θmax = 26.2°, θmin = 1.5° |
| ω scans | h = −7→8 |
| Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −20→20 |
| Tmin = 0.074, Tmax = 1.000 | l = −21→33 |
| 16735 measured reflections |
(E)-4-[(4-Fluorobenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (II) . Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
| wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0413P)2 + 0.3986P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.05 | (Δ/σ)max < 0.001 |
| 3041 reflections | Δρmax = 0.21 e Å−3 |
| 211 parameters | Δρmin = −0.21 e Å−3 |
| 0 restraints | Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0025 (5) |
(E)-4-[(4-Fluorobenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (II) . Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
(E)-4-[(4-Fluorobenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| F1 | 0.87181 (18) | 0.01263 (7) | −0.22907 (4) | 0.0355 (3) | |
| O1 | 0.72869 (16) | 0.08876 (7) | 0.07747 (4) | 0.0227 (3) | |
| N1 | 0.45169 (19) | 0.15388 (8) | 0.10880 (5) | 0.0191 (3) | |
| N2 | 0.28459 (19) | 0.19055 (8) | 0.08765 (5) | 0.0199 (3) | |
| N3 | 0.48528 (19) | 0.10471 (8) | −0.02205 (5) | 0.0188 (3) | |
| C1 | 0.5616 (2) | 0.11647 (10) | 0.07073 (6) | 0.0185 (3) | |
| C2 | 0.4406 (2) | 0.12362 (9) | 0.02704 (6) | 0.0182 (3) | |
| C3 | 0.2737 (2) | 0.16588 (9) | 0.03975 (6) | 0.0184 (3) | |
| C4 | 0.5493 (2) | 0.19326 (10) | 0.14907 (6) | 0.0196 (3) | |
| C5 | 0.5650 (2) | 0.27676 (11) | 0.15110 (6) | 0.0226 (4) | |
| H5 | 0.504845 | 0.309414 | 0.126438 | 0.027* | |
| C6 | 0.6700 (2) | 0.31165 (12) | 0.18982 (7) | 0.0274 (4) | |
| H6 | 0.680539 | 0.368625 | 0.191832 | 0.033* | |
| C7 | 0.7597 (2) | 0.26390 (13) | 0.22553 (7) | 0.0313 (4) | |
| H7 | 0.832965 | 0.288135 | 0.251573 | 0.038* | |
| C8 | 0.7421 (3) | 0.18061 (13) | 0.22317 (7) | 0.0300 (4) | |
| H8 | 0.802971 | 0.147933 | 0.247699 | 0.036* | |
| C9 | 0.6357 (2) | 0.14503 (11) | 0.18500 (6) | 0.0242 (4) | |
| H9 | 0.622161 | 0.088118 | 0.183518 | 0.029* | |
| C10 | 0.1160 (2) | 0.20736 (11) | 0.11996 (6) | 0.0240 (4) | |
| H10A | 0.161622 | 0.234823 | 0.150023 | 0.036* | |
| H10B | 0.051684 | 0.156623 | 0.129077 | 0.036* | |
| H10C | 0.021908 | 0.241881 | 0.102403 | 0.036* | |
| C11 | 0.0992 (2) | 0.18413 (11) | 0.00855 (7) | 0.0252 (4) | |
| H11C | 0.124258 | 0.166697 | −0.025605 | 0.038* | |
| H11B | 0.073898 | 0.242251 | 0.009018 | 0.038* | |
| H11A | −0.015913 | 0.155503 | 0.021628 | 0.038* | |
| C12 | 0.6468 (2) | 0.06772 (10) | −0.03275 (6) | 0.0196 (3) | |
| H12A | 0.730837 | 0.049874 | −0.006810 | 0.024* | |
| C13 | 0.7020 (2) | 0.05290 (9) | −0.08456 (6) | 0.0196 (3) | |
| C14 | 0.8853 (3) | 0.01856 (10) | −0.09495 (6) | 0.0231 (4) | |
| H14 | 0.970961 | 0.004617 | −0.068426 | 0.028* | |
| C15 | 0.9441 (3) | 0.00454 (11) | −0.14364 (6) | 0.0257 (4) | |
| H15 | 1.068284 | −0.019112 | −0.150837 | 0.031* | |
| C16 | 0.8166 (3) | 0.02601 (11) | −0.18100 (6) | 0.0265 (4) | |
| C17 | 0.6341 (3) | 0.06039 (11) | −0.17255 (6) | 0.0248 (4) | |
| H17 | 0.550125 | 0.074561 | −0.199357 | 0.030* | |
| C18 | 0.5772 (2) | 0.07358 (10) | −0.12379 (6) | 0.0222 (3) | |
| H18 | 0.452267 | 0.096883 | −0.117004 | 0.027* |
(E)-4-[(4-Fluorobenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (II) . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| F1 | 0.0454 (6) | 0.0410 (7) | 0.0201 (5) | 0.0028 (5) | 0.0106 (5) | −0.0031 (4) |
| O1 | 0.0174 (5) | 0.0287 (6) | 0.0220 (6) | 0.0060 (5) | −0.0013 (5) | −0.0022 (5) |
| N1 | 0.0162 (6) | 0.0213 (7) | 0.0197 (6) | 0.0024 (5) | −0.0019 (5) | −0.0016 (5) |
| N2 | 0.0145 (6) | 0.0222 (7) | 0.0231 (7) | 0.0029 (5) | −0.0011 (5) | −0.0002 (5) |
| N3 | 0.0198 (6) | 0.0180 (7) | 0.0187 (6) | −0.0020 (5) | 0.0014 (5) | 0.0002 (5) |
| C1 | 0.0189 (7) | 0.0171 (8) | 0.0196 (8) | −0.0015 (6) | 0.0023 (6) | 0.0002 (6) |
| C2 | 0.0187 (7) | 0.0154 (7) | 0.0206 (8) | −0.0021 (6) | 0.0001 (6) | 0.0019 (6) |
| C3 | 0.0181 (7) | 0.0161 (7) | 0.0211 (8) | −0.0032 (6) | −0.0003 (6) | 0.0011 (6) |
| C4 | 0.0135 (7) | 0.0261 (9) | 0.0192 (8) | 0.0000 (6) | 0.0020 (6) | −0.0015 (6) |
| C5 | 0.0187 (7) | 0.0266 (9) | 0.0223 (8) | −0.0009 (7) | 0.0020 (6) | −0.0011 (7) |
| C6 | 0.0201 (8) | 0.0320 (10) | 0.0302 (9) | −0.0052 (7) | 0.0045 (7) | −0.0079 (8) |
| C7 | 0.0190 (8) | 0.0497 (12) | 0.0251 (9) | −0.0032 (8) | −0.0009 (7) | −0.0106 (8) |
| C8 | 0.0217 (8) | 0.0458 (12) | 0.0227 (8) | 0.0046 (8) | −0.0025 (7) | 0.0005 (8) |
| C9 | 0.0187 (7) | 0.0310 (10) | 0.0229 (8) | 0.0023 (7) | 0.0027 (7) | 0.0008 (7) |
| C10 | 0.0180 (7) | 0.0254 (9) | 0.0287 (9) | 0.0011 (6) | 0.0039 (7) | −0.0043 (7) |
| C11 | 0.0220 (8) | 0.0251 (9) | 0.0284 (9) | 0.0035 (7) | −0.0046 (7) | −0.0002 (7) |
| C12 | 0.0205 (7) | 0.0175 (8) | 0.0208 (8) | −0.0013 (6) | −0.0019 (6) | 0.0006 (6) |
| C13 | 0.0227 (8) | 0.0151 (8) | 0.0210 (8) | −0.0023 (6) | 0.0011 (7) | 0.0005 (6) |
| C14 | 0.0256 (8) | 0.0197 (8) | 0.0240 (8) | 0.0012 (7) | 0.0004 (7) | 0.0020 (6) |
| C15 | 0.0269 (8) | 0.0218 (8) | 0.0284 (9) | 0.0030 (7) | 0.0062 (7) | −0.0005 (7) |
| C16 | 0.0366 (9) | 0.0229 (9) | 0.0199 (8) | −0.0027 (7) | 0.0083 (7) | −0.0028 (6) |
| C17 | 0.0285 (8) | 0.0257 (9) | 0.0202 (8) | −0.0013 (7) | −0.0014 (7) | 0.0002 (7) |
| C18 | 0.0227 (8) | 0.0201 (8) | 0.0238 (8) | 0.0001 (6) | 0.0015 (7) | −0.0001 (6) |
(E)-4-[(4-Fluorobenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (II) . Geometric parameters (Å, º)
| F1—C16 | 1.367 (2) | C8—H8 | 0.9500 |
| O1—C1 | 1.237 (2) | C9—H9 | 0.9500 |
| N1—N2 | 1.4080 (18) | C10—H10A | 0.9800 |
| N1—C1 | 1.413 (2) | C10—H10B | 0.9800 |
| N1—C4 | 1.430 (2) | C10—H10C | 0.9800 |
| N2—C3 | 1.356 (2) | C11—H11C | 0.9800 |
| N2—C10 | 1.465 (2) | C11—H11B | 0.9800 |
| N3—C12 | 1.289 (2) | C11—H11A | 0.9800 |
| N3—C2 | 1.394 (2) | C12—C13 | 1.467 (2) |
| C1—C2 | 1.441 (2) | C12—H12A | 0.9500 |
| C2—C3 | 1.376 (2) | C13—C14 | 1.397 (2) |
| C3—C11 | 1.484 (2) | C13—C18 | 1.398 (2) |
| C4—C9 | 1.387 (2) | C14—C15 | 1.392 (2) |
| C4—C5 | 1.391 (2) | C14—H14 | 0.9500 |
| C5—C6 | 1.390 (2) | C15—C16 | 1.375 (3) |
| C5—H5 | 0.9500 | C15—H15 | 0.9500 |
| C6—C7 | 1.388 (3) | C16—C17 | 1.383 (3) |
| C6—H6 | 0.9500 | C17—C18 | 1.387 (2) |
| C7—C8 | 1.389 (3) | C17—H17 | 0.9500 |
| C7—H7 | 0.9500 | C18—H18 | 0.9500 |
| C8—C9 | 1.389 (3) | ||
| N2—N1—C1 | 108.75 (12) | N2—C10—H10A | 109.5 |
| C1—N1—C4 | 120.50 (13) | N2—C10—H10B | 109.5 |
| N2—N1—C4 | 118.90 (13) | H10A—C10—H10B | 109.5 |
| C3—N2—N1 | 107.40 (13) | N2—C10—H10C | 109.5 |
| C3—N2—C10 | 125.50 (14) | H10A—C10—H10C | 109.5 |
| N1—N2—C10 | 118.09 (13) | H10B—C10—H10C | 109.5 |
| C12—N3—C2 | 120.32 (14) | C3—C11—H11C | 109.5 |
| O1—C1—N1 | 122.75 (15) | C3—C11—H11B | 109.5 |
| O1—C1—C2 | 132.33 (15) | H11C—C11—H11B | 109.5 |
| N1—C1—C2 | 104.85 (13) | C3—C11—H11A | 109.5 |
| C3—C2—N3 | 122.05 (14) | H11C—C11—H11A | 109.5 |
| C3—C2—C1 | 107.94 (14) | H11B—C11—H11A | 109.5 |
| N3—C2—C1 | 129.30 (14) | N3—C12—C13 | 120.68 (15) |
| N2—C3—C2 | 110.24 (14) | N3—C12—H12A | 119.7 |
| N2—C3—C11 | 121.43 (14) | C13—C12—H12A | 119.7 |
| C2—C3—C11 | 128.33 (15) | C14—C13—C18 | 119.24 (15) |
| C9—C4—C5 | 121.03 (16) | C14—C13—C12 | 119.14 (15) |
| C9—C4—N1 | 117.53 (15) | C18—C13—C12 | 121.62 (15) |
| C5—C4—N1 | 121.38 (15) | C15—C14—C13 | 120.84 (16) |
| C6—C5—C4 | 118.93 (16) | C15—C14—H14 | 119.6 |
| C6—C5—H5 | 120.5 | C13—C14—H14 | 119.6 |
| C4—C5—H5 | 120.5 | C16—C15—C14 | 117.85 (16) |
| C7—C6—C5 | 120.50 (18) | C16—C15—H15 | 121.1 |
| C7—C6—H6 | 119.7 | C14—C15—H15 | 121.1 |
| C5—C6—H6 | 119.7 | F1—C16—C15 | 118.67 (16) |
| C6—C7—C8 | 119.95 (17) | F1—C16—C17 | 117.94 (16) |
| C6—C7—H7 | 120.0 | C15—C16—C17 | 123.39 (16) |
| C8—C7—H7 | 120.0 | C16—C17—C18 | 118.07 (16) |
| C9—C8—C7 | 120.12 (18) | C16—C17—H17 | 121.0 |
| C9—C8—H8 | 119.9 | C18—C17—H17 | 121.0 |
| C7—C8—H8 | 119.9 | C17—C18—C13 | 120.62 (16) |
| C4—C9—C8 | 119.45 (18) | C17—C18—H18 | 119.7 |
| C4—C9—H9 | 120.3 | C13—C18—H18 | 119.7 |
| C8—C9—H9 | 120.3 | ||
| C1—N1—N2—C3 | 9.45 (17) | N2—N1—C4—C5 | −36.0 (2) |
| C4—N1—N2—C3 | 152.54 (14) | C1—N1—C4—C5 | 102.73 (18) |
| C1—N1—N2—C10 | 158.44 (14) | C9—C4—C5—C6 | 0.3 (2) |
| C4—N1—N2—C10 | −58.47 (19) | N1—C4—C5—C6 | −176.80 (14) |
| N2—N1—C1—O1 | 170.21 (15) | C4—C5—C6—C7 | 0.7 (2) |
| C4—N1—C1—O1 | 27.8 (2) | C5—C6—C7—C8 | −1.0 (3) |
| N2—N1—C1—C2 | −7.02 (17) | C6—C7—C8—C9 | 0.3 (3) |
| C4—N1—C1—C2 | −149.42 (14) | C5—C4—C9—C8 | −1.0 (2) |
| C12—N3—C2—C3 | 177.33 (15) | N1—C4—C9—C8 | 176.19 (14) |
| C12—N3—C2—C1 | 8.2 (3) | C7—C8—C9—C4 | 0.7 (2) |
| O1—C1—C2—C3 | −174.69 (18) | C2—N3—C12—C13 | −175.43 (14) |
| N1—C1—C2—C3 | 2.15 (17) | N3—C12—C13—C14 | 174.82 (15) |
| O1—C1—C2—N3 | −4.3 (3) | N3—C12—C13—C18 | −4.0 (2) |
| N1—C1—C2—N3 | 172.51 (15) | C18—C13—C14—C15 | −0.3 (2) |
| N1—N2—C3—C2 | −8.11 (18) | C12—C13—C14—C15 | −179.17 (16) |
| C10—N2—C3—C2 | −154.17 (15) | C13—C14—C15—C16 | 0.4 (3) |
| N1—N2—C3—C11 | 171.33 (14) | C14—C15—C16—F1 | −179.96 (16) |
| C10—N2—C3—C11 | 25.3 (2) | C14—C15—C16—C17 | −0.2 (3) |
| N3—C2—C3—N2 | −167.49 (14) | F1—C16—C17—C18 | 179.62 (15) |
| C1—C2—C3—N2 | 3.71 (18) | C15—C16—C17—C18 | −0.2 (3) |
| N3—C2—C3—C11 | 13.1 (3) | C16—C17—C18—C13 | 0.3 (3) |
| C1—C2—C3—C11 | −175.67 (16) | C14—C13—C18—C17 | −0.1 (2) |
| N2—N1—C4—C9 | 146.82 (14) | C12—C13—C18—C17 | 178.78 (15) |
| C1—N1—C4—C9 | −74.49 (19) |
(E)-4-[(4-Fluorobenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (II) . Hydrogen-bond geometry (Å, º)
CgB is the centroid of ring B (C4–C9).
| D—H···A | D—H | H···A | D···A | D—H···A |
| C11—H11A···O1i | 0.98 | 2.55 | 3.505 (2) | 165 |
| C12—H12A···O1 | 0.95 | 2.36 | 3.043 (2) | 128 |
| C14—H14···O1ii | 0.95 | 2.57 | 3.204 (2) | 124 |
| C17—H17···F1iii | 0.95 | 2.50 | 3.291 (2) | 141 |
| C7—H7···CgBiv | 0.95 | 2.90 | 3.608 (2) | 132 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y, −z; (iii) x−1/2, y, −z−1/2; (iv) x+1/2, y, −z+1/2.
References
- Abd El Rehim, S. S., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268–273.
- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Alam, M. S. & Lee, D.-U. (2016). EXCLI J. 15, 614–629. [DOI] [PMC free article] [PubMed]
- Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1751. [DOI] [PMC free article] [PubMed]
- Bashkatova, N. V., Korotkova, E. I., Karbainov, Y. A., Yagovkin, A. Y. & Bakibaev, A. A. (2005). J. Pharm. Biomed. Anal. 37, 1143–1147. [DOI] [PubMed]
- Collado, M. S., Mantovani, V. E., Goicoechea, H. C. & Olivieri, A. C. (2000). Talanta, 52, 909–920. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
- Nibila, T. A., Shameera Ahamed, T. K., Soufeena, P. P., Muraleedharan, K., Peiyat, P. & Aravindakshan, K. K. (2020). Results Chem. 2, 100062. https://doi.org/10.1016/j.rechem.2020.100062
- Oudar, J. L. (1977). J. Chem. Phys. 67, 446–457.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
- Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.
- Raman, N., Dhaveethu Raja, J. & Sakthivel, A. (2007). J. Chem. Sci. 119, 303–310.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Senthilkumar, K., Thirumoorthy, K., Dragonetti, C., Marinotto, D., Righetto, S., Colombo, A., Haukka, M. & Palanisami, N. (2016). Dalton Trans. 45, 11939–11943. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Sun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. & Lü, X.-M. (2006). Acta Cryst. C62, o467–o469. [DOI] [PubMed]
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yan, G.-B., Zheng, Y.-F., Zhang, C.-N. & Yang, M.-H. (2006). Acta Cryst. E62, o5328–o5329.
- Zyss, J. (1979). J. Chem. Phys. 70, 3341–3349.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989023004085/hb8065sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004085/hb8065Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989023004085/hb8065Isup4.cml
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023004085/hb8065IIsup3.hkl
Supporting information file. DOI: 10.1107/S2056989023004085/hb8065IIsup5.cml
Figures S1-S4. DOI: 10.1107/S2056989023004085/hb8065sup6.pdf
Additional supporting information: crystallographic information; 3D view; checkCIF report










