Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 May 5;79(Pt 6):526–530. doi: 10.1107/S2056989023003845

Crystal structure and Hirshfeld surface analysis of 2-amino-6-[(1-phenyl­eth­yl)amino]-4-(thio­phen-2-yl)pyridine-3,5-dicarbo­nitrile

Farid N Naghiyev a, Victor N Khrustalev b,c, Khammed A Asadov a, Mehmet Akkurt d, Ali N Khalilov e,a, Ajaya Bhattarai f,*, İbrahim G Mamedov a
Editor: L Van Meerveltg
PMCID: PMC10242736  PMID: 37288460

In the crystal, the mol­ecules are connected by N—H⋯N hydrogen bonds into dimers with an Inline graphic (12) motif, forming chains along the b-axis direction. These chains are linked to each other by N—H⋯N hydrogen bonds, N–H⋯π and π–π inter­actions, forming a three-dimensional network.

Keywords: crystal structure, pyridine ring, thio­phene ring, disorder, Hirshfeld surface analysis

Abstract

In the title compound, C19H15N5S, the thio­phene ring is disordered in a 0.6:0.4 ratio by an approximate 180° rotation of the ring around the C—C bond linking it to the pyridine ring. In the crystal, the mol­ecules are linked by N—H⋯N hydrogen bonds into dimers with an R 2 2(12) motif, forming chains along the b-axis direction. These chains are connected to each other by further N—H⋯N hydrogen bonds, forming a three-dimensional network. Furthermore, N—H⋯π and π–π [centroid–centroid separations = 3.899 (8) and 3.7938 (12) Å] inter­actions also contribute to the crystal cohesion. A Hirshfeld surface analysis indicated that the most important contributions to the surface contacts are from H⋯H (46.1%), N⋯H/H⋯N (20.4%) and C⋯H/H⋯C (17.4%) inter­actions.

1. Chemical context

Diverse C—C, C—N and C—O bond-formation methods play important roles in organic synthesis. The reaction scopes have also been greatly expanded, employing these methods in different fields of chemistry, in both academia and industry (Çelik et al., 2023; Chalkha et al., 2023; Tapera et al., 2022; Gurbanov et al., 2020; Zubkov et al., 2018). The pyridine moiety is a widespread structural motif that can be found in various natural products and pharmacologically active compounds. 3,5-Di­cyano­pyridines have been reported as inter­mediates in the synthesis of pyrido[2,3-d]pyrimidines, pyridothienotriazines, aza­benzanthracenes and pyrimidine S-nucleoside derivatives with a broad spectrum of biological activity (Cocco et al., 2005; Zhang et al., 2022; Poustforoosh et al., 2022). The design of new 3,5-di­cyano­pyridine derivatives is thus of great inter­est. 1.

Continuing our studies of pyridine derivatives exhibiting biological activity, we designed and synthesized a novel 3,5-di­cyano­pyridine in this series. Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020, 2021, 2022), we report the crystal structure and Hirshfeld surface analysis of the title compound, 2-amino-6-[(1-phenyl­eth­yl)amino]-4-(thio­phen-2-yl)pyridine-3,5-dicarb­o­nitrile.

2. Structural commentary

The pyridine ring (N1/C2–C6) of the title compound (Fig. 1) is largely planar [maximum deviation = 0.015 (2) Å for C5]. The thio­phene and 1-phenyl­ethan-1-amine groups are linked to the central pyridine ring in an equatorial arrangement. The major and minor parts (S1/C15–C18 and S1A/C15A–C18A) of the disordered thio­phene ring make dihedral angles of 44.8 (5) and 48.9 (6)°, respectively, with the pyridine ring. The dihedral angle between the phenyl (C7–C12) and pyridine (N1/C2–C6) rings is 64.42 (11) °.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. For clarity, the minor disorder component is not shown.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are linked by N—H⋯N hydrogen bonds into dimers with an Inline graphic (12) motif (Bernstein et al., 1995; Table 1, Fig. 2), forming chains along the b-axis direction. These chains are connected to each other by further N—H⋯N hydrogen bonds, forming a three-dimensional network (Tables 1 and 2, Figs. 3 and 4). Furthermore, N—H⋯π and π–π inter­actions [Cg1⋯Cg1i = 3.899 (8) Å; slippage = 1.899 Å; Cg3⋯Cg3ii = 3.7938 (12) Å; slippage = 1.383 Å; symmetry codes: (i) −x, 1 − y, z; (ii) 1 − x, 1 − y, z; Cg1 and Cg3 are the centroids of the major component of the disordered thio­phene ring and of the pyridine ring, respectively] also contribute to crystal cohesion (Figs. 5 and 6).

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N19i 0.91 (3) 2.28 (3) 3.152 (3) 163 (3)
N6—H6B⋯N14ii 0.89 (3) 2.17 (4) 3.033 (3) 164 (3)
N6—H6ACg4iii 0.91 (3) 2.62 (4) 3.405 (2) 145 (3)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 2.

Figure 2

View of the mol­ecular packing along the a axis. N—H⋯N hydrogen bonds are shown as dashed lines. For clarity, the minor disorder component is not shown.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
H13A⋯H6A 2.36 x, 1 − y, z
H6B⋯N14 2.18 Inline graphic  − x, Inline graphic  + y, 1 − z
H16⋯N19 2.56 1 − x, 1 − y, z
C17⋯H9 2.86 Inline graphic  + x, Inline graphic  − y, 1 − z
C10⋯C13 3.58 1 + x, y, z
H12⋯H18A 2.31 x, y, 1 + z
H18⋯H11 2.34 1 − x, 1 − y, −1 + z

Figure 3.

Figure 3

View of the mol­ecular packing along the b axis. Hydrogen bonds are shown as dashed lines.

Figure 4.

Figure 4

View of the mol­ecular packing along the c axis. Hydrogen bonds are shown as dashed lines.

Figure 5.

Figure 5

View of the mol­ecular packing along the b axis. N—H⋯π inter­actions and π–π stacking inter­actions are shown as dashed lines.

Figure 6.

Figure 6

View of the mol­ecular packing along the c axis. N—H⋯π inter­actions and π–π stacking inter­actions are shown as dashed lines.

Crystal Explorer 17.5 (Spackman et al., 2021) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots in order to qu­antify the inter­molecular inter­actions in the crystal. The inter­molecular inter­actions are depicted as red spots, which denotes the N—H⋯N hydrogen bonds, on the Hirshfeld surface mapped over d norm in the range −0.4485 to +1.5784 a.u. (Fig. 7 a,b). Fig. 8 shows the two-dimensional fingerprint plots. The H⋯H contacts comprise 46.1% of the total inter­actions. Besides this contact, N⋯H/H⋯N (20.4%) and C⋯H/H⋯C (17.4%) inter­actions make significant contributions to the total Hirshfeld surface. The percentage contributions of the C⋯C, N⋯C/C⋯N, N⋯N, S⋯C/C⋯S, S⋯H/H⋯S and S⋯S contacts are 6.9, 3.8, 2.7, 1.5, 0.6 and 0.6%, respectively.

Figure 7.

Figure 7

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d norm, with a fixed colour scale of −0.4485 to +1.5784 a.u. N—H⋯N hydrogen bonds are shown as dashed lines.

Figure 8.

Figure 8

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N and (d) C⋯H/H⋯C inter­actions. [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

The four related compounds found as a result of the search for ‘2,6-di­amino-4-(thio­phen-2-yl)pyridine-3,5-dicarbo­nitrile’ in the Cambridge Structure Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) are MUCLAA (Vu Quoc et al., 2019), WOJCIJ (Vishnupriya et al., 2014a ), WOPLAQ (Vishnupriya et al., 2014b ) and DOPWOW (Vishnupriya et al., 2014c ).

In the crystal of MUCLAA (space group P21/c), chains running along the b-axis direction are formed through N—H⋯O inter­actions between the 1,4-di­hydro­pyridine N atom and one of the O atoms of the ester groups. Neighbouring chains are linked by C—H⋯O and C—H⋯π inter­actions. In the crystal of WOJCIJ (space group P21/c), inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate Inline graphic (16) loops and the dimers are linked by C—H⋯π and aromatic π–π stacking inter­actions into a three-dimensional network. In WOPLAQ (space group P21/n), inversion dimers linked by pairs of N—H⋯Nc (c = cyanide) hydrogen bonds generate Inline graphic (16) loops. In DOPWOW (space group Pbca), inversion dimers linked by pairs of N—H⋯Nn (n = nitrile) hydrogen bonds generate Inline graphic (16) loops. Aromatic π–π stacking and very weak C—H⋯π inter­actions are also observed.

5. Synthesis and crystallization

To a solution of 2-(thio­phen-2-yl­methyl­ene)malono­nitrile (0.82 g; 5.1 mmol) and malono­nitrile (0.34 g; 5.2 mmol) in methanol (25 mL), phenyl­ethyl­amine (0.63 g; 5.2 mmol) was added and the mixture was stirred at room temperature for 48 h. Then 15 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 94%; m.p. 460–461 K).

1H NMR (300 MHz, DMSO-d 6, ppm): 1.55 (d, 3H, CH3, 3 J H–H = 7 MHz); 5.45 (k, 1H, CH—Ar, 3 J H–H =7,1 MHz); 7.21–7.88 (m, 11H, 5CHarom + 3CHthien­yl + NH2 + NH); 13C NMR (75 MHz, DMSO-d 6, ppm): 21.69 (CH3), 50.00 (CH—Ar), 79.77 (=Ctert), 80.92 (=Ctert), 116.85 (CN), 116.97 (CN), 127.14 (2CHarom), 127.22 (CHarom), 128.11 (CHthien­yl), 128.63 (2CHarom), 130.14 (CHthien­yl), 130.75 (CHthien­yl), 134.53 (Car), 144.53 (Cthien­yl), 152.30 (=Ctert), 158.70 (N=Ctert), 161.38 (=Ctert).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The thio­phene ring in the title compound was modelled as disordered over two sets of sites related by an approximate rotation of 180° about the C4—C15 bond in a 0.6:0.4 ratio. EADP commands in SHELXL were used for the U ij values of equivalent atom pairs (e.g., C16 and C16A) and DFIX commands were used to restrain the nearest-neighbour and next-nearest-neighbour bond distances in the two disorder components to be equal with a standard deviation of 0.03 Å. All C-bound H atoms were placed in calculated positions (0.95–1.00 Å) and refined as riding with U iso(H) = 1.2 or 1.5U eq(C). The N-bound H atoms were located in a difference map and refined with U iso(H) = 1.2U eq(N) [N2—H2 = 0.91 (3) Å, N6—H6A = 0.91 (3) Å, N6—H6B = 0.89 (3) Å].

Table 3. Experimental details.

Crystal data
Chemical formula C19H15N5S
M r 345.42
Crystal system, space group Orthorhombic, P21212
Temperature (K) 100
a, b, c (Å) 7.89079 (13), 16.4990 (3), 13.1394 (3)
V3) 1710.62 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.77
Crystal size (mm) 0.40 × 0.04 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022)
T min, T max 0.532, 0.939
No. of measured, independent and observed [I > 2σ(I)] reflections 26907, 3713, 3612
R int 0.044
(sin θ/λ)max−1) 0.638
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.096, 1.05
No. of reflections 3713
No. of parameters 276
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.25
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.13 (3)

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023003845/vm2282sup1.cif

e-79-00526-sup1.cif (794.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023003845/vm2282Isup2.hkl

e-79-00526-Isup2.hkl (296.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023003845/vm2282Isup3.cml

CCDC reference: 2260011

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors’ contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and KAA; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and KAA; supervision, ANK and MA.

supplementary crystallographic information

Crystal data

C19H15N5S Dx = 1.341 Mg m3
Mr = 345.42 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P21212 Cell parameters from 17132 reflections
a = 7.89079 (13) Å θ = 3.4–79.2°
b = 16.4990 (3) Å µ = 1.77 mm1
c = 13.1394 (3) Å T = 100 K
V = 1710.62 (6) Å3 Needle, colourless
Z = 4 0.40 × 0.04 × 0.03 mm
F(000) = 720

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 3612 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.044
φ and ω scans θmax = 79.7°, θmin = 3.4°
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) h = −10→9
Tmin = 0.532, Tmax = 0.939 k = −21→20
26907 measured reflections l = −16→16
3713 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.5356P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3713 reflections Δρmax = 0.15 e Å3
276 parameters Δρmin = −0.25 e Å3
12 restraints Absolute structure: Refined as an inversion twin
Primary atom site location: difference Fourier map Absolute structure parameter: 0.13 (3)

Special details

Experimental. CrysAlisPro 1.171.41.123a (Rigaku OD, 2022); Numerical absorption correction based on Gaussian integration over a multifaceted crystal model; Empirical absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.1793 (3) 0.56636 (9) 0.24471 (14) 0.0306 (3) 0.6
S1A 0.3236 (6) 0.42012 (16) 0.2521 (3) 0.0254 (6) 0.4
N1 0.2686 (2) 0.50614 (12) 0.64994 (15) 0.0250 (4)
C1 0.1399 (3) 0.38542 (14) 0.77369 (17) 0.0270 (5)
H1 0.1288 0.4439 0.7928 0.032*
C2 0.2054 (3) 0.44038 (13) 0.60337 (17) 0.0239 (4)
N2 0.1451 (2) 0.38039 (12) 0.66239 (15) 0.0263 (4)
H2 0.112 (4) 0.332 (2) 0.636 (2) 0.032*
C3 0.1980 (3) 0.43395 (13) 0.49462 (17) 0.0237 (4)
C4 0.2528 (2) 0.49903 (13) 0.43479 (15) 0.0236 (4)
C5 0.3127 (3) 0.56866 (13) 0.48450 (17) 0.0244 (4)
C6 0.3206 (3) 0.56878 (12) 0.59318 (17) 0.0242 (4)
N6 0.3851 (3) 0.63253 (13) 0.64322 (17) 0.0288 (4)
H6A 0.392 (4) 0.6297 (19) 0.712 (3) 0.035*
H6B 0.413 (4) 0.679 (2) 0.615 (2) 0.035*
C7 0.2992 (3) 0.35278 (14) 0.82352 (17) 0.0255 (4)
C8 0.3550 (3) 0.27466 (15) 0.80460 (19) 0.0313 (5)
H8 0.2958 0.2417 0.7571 0.038*
C9 0.4974 (3) 0.24370 (16) 0.8545 (2) 0.0352 (5)
H9 0.5354 0.1903 0.8402 0.042*
C10 0.5827 (3) 0.29053 (17) 0.9245 (2) 0.0352 (5)
H10 0.6777 0.2691 0.9599 0.042*
C11 0.5292 (3) 0.3690 (2) 0.9429 (2) 0.0429 (6)
H11 0.5883 0.4019 0.9904 0.051*
C12 0.3887 (3) 0.39989 (17) 0.8918 (2) 0.0361 (6)
H12 0.3540 0.4541 0.9041 0.043*
C13 −0.0172 (3) 0.34112 (18) 0.8124 (2) 0.0361 (6)
H13A −0.1190 0.3670 0.7847 0.054*
H13B −0.0203 0.3435 0.8869 0.054*
H13C −0.0133 0.2844 0.7904 0.054*
C14 0.1206 (3) 0.36403 (14) 0.45060 (17) 0.0257 (4)
N14 0.0540 (3) 0.30718 (12) 0.41871 (16) 0.0310 (4)
C15 0.251 (3) 0.4906 (6) 0.3229 (3) 0.029 (3) 0.6
C16 0.3006 (16) 0.4236 (4) 0.2681 (5) 0.025 (2) 0.6
H16 0.3422 0.3748 0.2974 0.030* 0.6
C17 0.2816 (10) 0.4371 (4) 0.1618 (5) 0.0346 (15) 0.6
H17 0.3135 0.3981 0.1121 0.042* 0.6
C18 0.2137 (10) 0.5107 (4) 0.1371 (5) 0.0366 (17) 0.6
H18 0.1893 0.5284 0.0698 0.044* 0.6
C15A 0.246 (4) 0.4989 (10) 0.3229 (3) 0.024 (4) 0.4
C16A 0.180 (2) 0.5595 (5) 0.2643 (5) 0.025 (2) 0.4
H16A 0.1294 0.6078 0.2899 0.030* 0.4
C17A 0.1963 (15) 0.5398 (6) 0.1596 (6) 0.029 (2) 0.4
H17A 0.1595 0.5750 0.1069 0.035* 0.4
C18A 0.2696 (14) 0.4661 (7) 0.1404 (6) 0.032 (2) 0.4
H18A 0.2877 0.4439 0.0746 0.038* 0.4
C19 0.3707 (3) 0.63853 (14) 0.43145 (18) 0.0256 (4)
N19 0.4186 (3) 0.69712 (13) 0.39337 (16) 0.0298 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0317 (6) 0.0288 (5) 0.0314 (6) −0.0050 (5) −0.0049 (7) 0.0067 (5)
S1A 0.0253 (13) 0.0248 (10) 0.0261 (9) 0.0020 (6) 0.0027 (10) −0.0027 (8)
N1 0.0238 (8) 0.0243 (9) 0.0269 (9) −0.0001 (7) −0.0007 (7) −0.0006 (7)
C1 0.0261 (10) 0.0271 (10) 0.0279 (11) 0.0024 (8) 0.0027 (9) −0.0004 (8)
C2 0.0183 (9) 0.0223 (9) 0.0311 (11) 0.0022 (8) 0.0001 (8) 0.0025 (8)
N2 0.0276 (9) 0.0248 (9) 0.0266 (9) −0.0007 (7) 0.0000 (7) 0.0024 (7)
C3 0.0199 (9) 0.0236 (10) 0.0276 (10) 0.0018 (9) −0.0015 (8) 0.0009 (8)
C4 0.0157 (9) 0.0249 (11) 0.0303 (11) 0.0022 (8) −0.0005 (7) 0.0013 (9)
C5 0.0190 (9) 0.0246 (10) 0.0298 (10) 0.0012 (9) 0.0002 (8) 0.0012 (8)
C6 0.0190 (9) 0.0221 (10) 0.0314 (11) 0.0014 (8) −0.0005 (8) −0.0016 (8)
N6 0.0314 (9) 0.0257 (10) 0.0293 (10) −0.0028 (8) −0.0022 (8) −0.0013 (8)
C7 0.0234 (10) 0.0289 (11) 0.0242 (9) −0.0018 (8) 0.0052 (8) 0.0007 (8)
C8 0.0296 (11) 0.0290 (11) 0.0355 (12) −0.0022 (9) −0.0070 (9) −0.0009 (9)
C9 0.0301 (11) 0.0311 (12) 0.0443 (13) 0.0014 (10) −0.0047 (11) 0.0011 (11)
C10 0.0246 (10) 0.0491 (15) 0.0319 (11) −0.0009 (10) −0.0018 (9) 0.0025 (11)
C11 0.0339 (13) 0.0532 (16) 0.0415 (14) −0.0033 (12) −0.0083 (11) −0.0148 (13)
C12 0.0335 (12) 0.0384 (14) 0.0364 (12) 0.0008 (10) −0.0007 (10) −0.0108 (11)
C13 0.0260 (11) 0.0479 (15) 0.0344 (12) 0.0015 (11) 0.0037 (10) 0.0083 (11)
C14 0.0245 (9) 0.0252 (10) 0.0273 (10) 0.0023 (8) −0.0004 (8) 0.0028 (9)
N14 0.0334 (10) 0.0264 (10) 0.0331 (10) −0.0023 (8) −0.0034 (8) 0.0012 (8)
C15 0.022 (6) 0.027 (4) 0.036 (6) −0.011 (3) −0.004 (4) 0.009 (3)
C16 0.023 (3) 0.033 (3) 0.020 (3) 0.0021 (19) 0.003 (2) −0.0031 (17)
C17 0.027 (3) 0.049 (4) 0.028 (3) −0.006 (3) −0.001 (2) −0.003 (3)
C18 0.029 (3) 0.061 (6) 0.020 (3) −0.016 (4) 0.001 (3) 0.004 (3)
C15A 0.017 (7) 0.036 (6) 0.020 (6) 0.001 (6) 0.004 (6) −0.005 (5)
C16A 0.023 (3) 0.033 (3) 0.020 (3) 0.0021 (19) 0.003 (2) −0.0031 (17)
C17A 0.027 (3) 0.048 (6) 0.012 (4) 0.000 (4) 0.003 (3) −0.001 (3)
C18A 0.022 (4) 0.053 (8) 0.020 (4) 0.011 (5) −0.001 (3) 0.005 (5)
C19 0.0224 (9) 0.0251 (10) 0.0293 (10) 0.0005 (8) −0.0009 (9) −0.0030 (9)
N19 0.0300 (9) 0.0265 (10) 0.0331 (10) −0.0034 (8) 0.0004 (8) −0.0006 (8)

Geometric parameters (Å, º)

S1—C18 1.708 (4) C8—H8 0.9500
S1—C15 1.713 (4) C9—C10 1.377 (4)
S1A—C18A 1.707 (4) C9—H9 0.9500
S1A—C15A 1.711 (4) C10—C11 1.384 (4)
N1—C6 1.339 (3) C10—H10 0.9500
N1—C2 1.342 (3) C11—C12 1.392 (4)
C1—N2 1.465 (3) C11—H11 0.9500
C1—C7 1.516 (3) C12—H12 0.9500
C1—C13 1.526 (3) C13—H13A 0.9800
C1—H1 1.0000 C13—H13B 0.9800
C2—N2 1.344 (3) C13—H13C 0.9800
C2—C3 1.434 (3) C14—N14 1.154 (3)
N2—H2 0.91 (3) C15—C16 1.377 (4)
C3—C4 1.399 (3) C16—C17 1.423 (4)
C3—C14 1.428 (3) C16—H16 0.9500
C4—C5 1.404 (3) C17—C18 1.368 (9)
C4—C15A 1.472 (4) C17—H17 0.9500
C4—C15 1.477 (3) C18—H18 0.9500
C5—C19 1.423 (3) C15A—C16A 1.368 (4)
C5—C6 1.429 (3) C16A—C17A 1.420 (4)
C6—N6 1.341 (3) C16A—H16A 0.9500
N6—H6A 0.91 (3) C17A—C18A 1.369 (13)
N6—H6B 0.89 (3) C17A—H17A 0.9500
C7—C12 1.382 (3) C18A—H18A 0.9500
C7—C8 1.384 (3) C19—N19 1.152 (3)
C8—C9 1.398 (3)
C18—S1—C15 93.0 (4) C9—C10—C11 119.5 (2)
C18A—S1A—C15A 92.3 (5) C9—C10—H10 120.2
C6—N1—C2 118.95 (19) C11—C10—H10 120.2
N2—C1—C7 112.82 (18) C10—C11—C12 120.1 (2)
N2—C1—C13 109.13 (19) C10—C11—H11 119.9
C7—C1—C13 111.07 (19) C12—C11—H11 119.9
N2—C1—H1 107.9 C7—C12—C11 121.0 (3)
C7—C1—H1 107.9 C7—C12—H12 119.5
C13—C1—H1 107.9 C11—C12—H12 119.5
N1—C2—N2 117.6 (2) C1—C13—H13A 109.5
N1—C2—C3 122.0 (2) C1—C13—H13B 109.5
N2—C2—C3 120.4 (2) H13A—C13—H13B 109.5
C2—N2—C1 122.9 (2) C1—C13—H13C 109.5
C2—N2—H2 122 (2) H13A—C13—H13C 109.5
C1—N2—H2 115 (2) H13B—C13—H13C 109.5
C4—C3—C14 121.65 (19) N14—C14—C3 177.1 (2)
C4—C3—C2 119.4 (2) C16—C15—C4 126.3 (4)
C14—C3—C2 118.7 (2) C16—C15—S1 111.5 (3)
C3—C4—C5 118.08 (19) C4—C15—S1 122.2 (3)
C3—C4—C15A 123.3 (11) C15—C16—C17 110.9 (5)
C5—C4—C15A 118.6 (11) C15—C16—H16 124.5
C3—C4—C15 118.9 (7) C17—C16—H16 124.5
C5—C4—C15 123.0 (7) C18—C17—C16 114.4 (6)
C4—C5—C19 122.9 (2) C18—C17—H17 122.8
C4—C5—C6 118.7 (2) C16—C17—H17 122.8
C19—C5—C6 118.3 (2) C17—C18—S1 110.1 (6)
N1—C6—N6 116.7 (2) C17—C18—H18 125.0
N1—C6—C5 122.8 (2) S1—C18—H18 125.0
N6—C6—C5 120.5 (2) C16A—C15A—C4 125.1 (5)
C6—N6—H6A 118 (2) C16A—C15A—S1A 112.8 (3)
C6—N6—H6B 125 (2) C4—C15A—S1A 122.1 (4)
H6A—N6—H6B 117 (3) C15A—C16A—C17A 109.9 (6)
C12—C7—C8 118.5 (2) C15A—C16A—H16A 125.0
C12—C7—C1 120.3 (2) C17A—C16A—H16A 125.0
C8—C7—C1 121.1 (2) C18A—C17A—C16A 115.0 (9)
C7—C8—C9 120.8 (2) C18A—C17A—H17A 122.5
C7—C8—H8 119.6 C16A—C17A—H17A 122.5
C9—C8—H8 119.6 C17A—C18A—S1A 110.0 (8)
C10—C9—C8 120.1 (2) C17A—C18A—H18A 125.0
C10—C9—H9 120.0 S1A—C18A—H18A 125.0
C8—C9—H9 120.0 N19—C19—C5 176.4 (2)
C6—N1—C2—N2 −176.22 (19) C1—C7—C8—C9 −176.9 (2)
C6—N1—C2—C3 2.5 (3) C7—C8—C9—C10 0.9 (4)
N1—C2—N2—C1 2.4 (3) C8—C9—C10—C11 −1.7 (4)
C3—C2—N2—C1 −176.30 (19) C9—C10—C11—C12 0.8 (4)
C7—C1—N2—C2 −90.5 (2) C8—C7—C12—C11 −1.8 (4)
C13—C1—N2—C2 145.6 (2) C1—C7—C12—C11 176.0 (2)
N1—C2—C3—C4 −2.2 (3) C10—C11—C12—C7 1.0 (4)
N2—C2—C3—C4 176.47 (18) C3—C4—C15—C16 −42 (2)
N1—C2—C3—C14 −176.64 (19) C5—C4—C15—C16 135.4 (17)
N2—C2—C3—C14 2.0 (3) C15A—C4—C15—C16 173 (27)
C14—C3—C4—C5 174.0 (2) C3—C4—C15—S1 136.5 (12)
C2—C3—C4—C5 −0.3 (3) C5—C4—C15—S1 −46 (2)
C14—C3—C4—C15A −4.1 (12) C15A—C4—C15—S1 −8 (23)
C2—C3—C4—C15A −178.4 (11) C18—S1—C15—C16 0.1 (16)
C14—C3—C4—C15 −8.0 (9) C18—S1—C15—C4 −179.0 (17)
C2—C3—C4—C15 177.7 (8) C4—C15—C16—C17 −179.8 (17)
C3—C4—C5—C19 −179.6 (2) S1—C15—C16—C17 1 (2)
C15A—C4—C5—C19 −1.4 (11) C15—C16—C17—C18 −2.2 (17)
C15—C4—C5—C19 2.4 (9) C16—C17—C18—S1 2.3 (10)
C3—C4—C5—C6 2.2 (3) C15—S1—C18—C17 −1.3 (10)
C15A—C4—C5—C6 −179.5 (11) C3—C4—C15A—C16A 130 (2)
C15—C4—C5—C6 −175.7 (8) C5—C4—C15A—C16A −48 (4)
C2—N1—C6—N6 −179.01 (19) C15—C4—C15A—C16A 168 (28)
C2—N1—C6—C5 −0.4 (3) C3—C4—C15A—S1A −50 (3)
C4—C5—C6—N1 −2.0 (3) C5—C4—C15A—S1A 132.2 (18)
C19—C5—C6—N1 179.74 (19) C15—C4—C15A—S1A −12 (23)
C4—C5—C6—N6 176.58 (19) C18A—S1A—C15A—C16A 0 (2)
C19—C5—C6—N6 −1.6 (3) C18A—S1A—C15A—C4 −180 (2)
N2—C1—C7—C12 126.2 (2) C4—C15A—C16A—C17A 179 (2)
C13—C1—C7—C12 −110.9 (3) S1A—C15A—C16A—C17A −1 (3)
N2—C1—C7—C8 −56.0 (3) C15A—C16A—C17A—C18A 1 (2)
C13—C1—C7—C8 66.9 (3) C16A—C17A—C18A—S1A −1.2 (15)
C12—C7—C8—C9 0.9 (4) C15A—S1A—C18A—C17A 0.6 (15)

Hydrogen-bond geometry (Å, º)

Cg4 is the centroid of the C7–C12 ring.

D—H···A D—H H···A D···A D—H···A
N2—H2···N19i 0.91 (3) 2.28 (3) 3.152 (3) 163 (3)
N6—H6B···N14ii 0.89 (3) 2.17 (4) 3.033 (3) 164 (3)
N6—H6A···Cg4iii 0.91 (3) 2.62 (4) 3.405 (2) 145 (3)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1; (ii) −x+1/2, y+1/2, −z+1; (iii) −x+1, −y+1, z.

Funding Statement

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.
  3. Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.
  4. Cocco, M. T., Congiu, C., Lilliu, V. & Onnis, V. (2005). Eur. J. Med. Chem. 40, 1365–1372. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  8. Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. [DOI] [PMC free article] [PubMed]
  9. Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. [DOI] [PMC free article] [PubMed]
  10. Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. [DOI] [PMC free article] [PubMed]
  11. Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241. [DOI] [PMC free article] [PubMed]
  12. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  16. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  17. Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.
  18. Vishnupriya, R., Suresh, J., Bharkavi, S., Perumal, S. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o968–o969. [DOI] [PMC free article] [PubMed]
  19. Vishnupriya, R., Suresh, J., Gunasekaran, P., Perumal, S. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o978. [DOI] [PMC free article] [PubMed]
  20. Vishnupriya, R., Suresh, J., Sakthi, M., Perumal, S. & Lakshman, P. L. N. (2014c). Acta Cryst. E70, o1120–o1121. [DOI] [PMC free article] [PubMed]
  21. Vu Quoc, T., Tran Thi Thuy, D., Phung Ngoc, T., Vu Quoc, M., Nguyen, H., Duong Khanh, L., Tu Quang, A. & Van Meervelt, L. (2019). Acta Cryst. E75, 1861–1865. [DOI] [PMC free article] [PubMed]
  22. Zhang, X., Tao, F., Cui, T., Luo, C., Zhou, Z., Huang, Y., Tan, L., Peng, W. & Wu, C. (2022). Molecules, 27, 7187. [DOI] [PMC free article] [PubMed]
  23. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023003845/vm2282sup1.cif

e-79-00526-sup1.cif (794.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023003845/vm2282Isup2.hkl

e-79-00526-Isup2.hkl (296.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023003845/vm2282Isup3.cml

CCDC reference: 2260011

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES