Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 May 12;79(Pt 6):534–537. doi: 10.1107/S2056989023003961

Polymorphic structures of 3-phenyl-1H-1,3-benzo­diazol-2(3H)-one

Dabeen Hong a, Kyounghoon Lee a,*
Editor: L Van Meerveltb
PMCID: PMC10242737  PMID: 37288468

The two polymorphic structures of 3-phenyl-1H-1,3-benzo­diazol-2(3H)-one (I and II) exhibit identical bond distances and angles except for the C—N—C—C torsion angle between the benzimidazolone backbone and the phenyl substituent, which has an effect on the crystal packing and supra­molecular features. The structure of I contains a stronger C=O⋯H—N hydrogen-bonding inter­action and a weaker π–π inter­action between adjacent bezimidazolone moieties in comparison to II.

Keywords: crystal structure, benzimidazolone, hydrogen bond

Abstract

The polymorphic structures (I and II) of 3-phenyl-1H-1,3-benzo­diazol-2(3H)-one, C13H10N2O, acquired from pentane diffusion into the solution in THF, are reported. The structures show negligible differences in bond distances and angles, but the C—N—C—C torsion angles between the backbone and the phenyl substituent, 123.02 (15)° for I and 137.18 (11)° for II, are different. Compound I features a stronger C=O⋯H—N hydrogen bond than that in II, while the structure of II exhibits a stronger π–π inter­action than in I, as confirmed by the shorter inter­centroid distance [3.3257 (8) Å in II in comparison to 3.6862 (7) Å in I]. Overall, the supra­molecular inter­actions of I and II are distinct, presumably originating from the variation in the dihedral angle.

1. Chemical context

Benzimidazolo­nes are widely found in functional organic and biologically active mol­ecules (Palin et al., 2008; Monforte et al., 2010; Pribut et al., 2019; Bellenie et al., 2020). For example, substituted benzimidazolones have been used as pigments due to their high fastness and resistance to light and weathering (Metz & Morgenroth, 2009). In addition, the biological activities of benzimidazolone derivatives have been tested for anti­cancer, HIV, pain regulation, etc. (Henning et al., 1987; Elsinga et al., 1997; Tapia et al., 1999; Kawamoto et al., 2001; Poulain et al., 2001; Roger et al., 2003; Dombroski et al., 2004; Gustin et al., 2005; Li et al., 2005; Hammach et al., 2006; Monforte et al., 2009).

Singly N-substituted benzimidazolo­nes exhibit inter­esting properties partially due to the hydrogen-bonding inter­actions between N—H⋯O=C moieties. N-phenyl-substituted benzimidazolone can be prepared by the intra­molecular N-aryl­ation of urea (Beyer et al., 2011), carbonyl­ation of 2-nitro­aniline (Qi et al., 2019), carbonyl­ation of o-phenyl­enedi­amine with CO2 (Yu et al., 2013), carbonyl­ation of imino­phospho­rane with CO2 (Łukasik & Wróbel, 2016), iodo­syl­benzene-induced intra­molecular Hofmann rearrangement of 2-(phenyl­amino)­benzamide (Liu et al., 2012), and carbonyl­ation of N1-phenyl­benzene-1,2-di­amine with 1,1′-carbonyl­diimidazole (Zhang et al., 2008). Preparations of phenyl-substituted benzimidazolone have been reported using various reagents and catalysts, but the structure is unknown.

Here we report two polymorphic structures of 3-phenyl-1H-1,3-benzo­diazol-2(3H)-one. The compound was prepared following the reported procedure using 1,1′-carbonyl­diimidazole and N1-phenyl­benzene-1,2-di­amine in CH2Cl2 (Zhang et al., 2008). Single crystals grown by pentane vapor diffusion into a THF solution formed colorless needles (I) and blocks (II). 1.

2. Structural commentary

The title compounds crystallized as colorless needles (I) and blocks (II) in space groups C2/c and Pbca, respectively. The two polymorphic structures exhibit identical bond distances and angles, except for the dihedral angle of the phenyl substituent (Fig. 1). Both structures retain the planarity of benzimidazolone moiety, as demonstrated by the low r.m.s. deviations of 0.009 and 0.023 Å for I and II, respectively. The C2—N1—C8—C9/C13 torsion angle is 123.03 (14) and −137.18 (12)° for I and II, respectively. No additional differences are observed from an analysis of bond distances and angles.

Figure 1.

Figure 1

Mol­ecular structures of (a) I, (b) II, and (c) overlay of I and II with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

Initial investigations of supra­molecular features for I and II were carried out using Hirshfeld surface analysis with CrystalExplorer 21.5 (Spackman et al., 2021). The Hirshfeld surface was mapped over d norm in the ranges −0.6415 to 1.2040 a.u. and −0.5612 to 1.1830 a.u. for I and II, respectively (Figs. 2 and 3). The most intense red spots on the surface for I and II indicate the N3—H3⋯O1 hydrogen-bonding inter­actions (Tables 1 and 2), which have Inline graphic (8) graph-set motifs (Bernstein et al., 1995). The shorter DA and H⋯A distances, and more linear D—H⋯A angle reveal that the hydrogen-bonding inter­action in I is stronger than that in II. In contrast, the structure of II contains a stronger π–π inter­action between the adjacent benzimidazolone moieties, as defined by the centroid⋯centroid distance of 3.3257 (8) Å, while the corres­ponding distance in I is more elongated at 3.6862 (7) Å.

Figure 2.

Figure 2

(a) Hirshfeld surface of I mapped over d norm. (b) Partial packing plot of I.

Figure 3.

Figure 3

(a) Hirshfeld surface of II mapped over d norm. (b) Partial packing plot of II.

Table 1. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 1.91 2.7786 (14) 177

Symmetry code: (i) Inline graphic .

Table 2. Hydrogen-bond geometry (Å, °) for II .

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 2.00 2.8453 (13) 174

Symmetry code: (i) Inline graphic .

Minor inter­molecular inter­actions are observed as faint red spots on the surface. The spots in I indicate the inter­molecular inter­actions of C4⋯C2/C2⋯C4, C3A⋯C3A and C7—H7/H7—C7, whereas those in II correspond to C2⋯C5/C5⋯C2, C4—H4⋯C12/ C12⋯H4—C4, C7A⋯H6—C6/C6—H6⋯C7A, C3A⋯H6—C6/C6-H6⋯C3A and C3A⋯C6/C6⋯C3A contacts. The largest contributions to the Hirshfeld surface of I arises from H⋯H (44.4%), C⋯H/H⋯C (31.9%), and O⋯H/H⋯O (13.5%) contacts, whereas the contributions for II are H⋯H (45.8%), C⋯H/H⋯C (27.5%) and O⋯H/H⋯O (15.5%). Minor contributions include N⋯H/H⋯N (3.6%), C⋯C (3.2%), C⋯N/N⋯C (2.1%), C⋯O/O⋯C (1.4%) for I and C⋯C (5.4%), C⋯N/N⋯C (3.4%), N⋯H/H⋯N (3.2%), C⋯O/O⋯C (0.2%) for II.

4. Database survey

A search for the title compound in the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016) did not match any reported structures, including aryl-derivative searches. However, a survey for mono-N-substituted benzimidazolone compounds revealed 75 results, which included structures with simple substituents such as methyl (WIKPAJ; Rong et al., 2013), tert-butyl (WIKNOV; Rong et al., 2013), octyl (ZANXET; Belaziz, Kandri Rodi, Essassi et al., 2012), nonyl (IJUGIE; Ouzidan, Kandri Rodi et al., 2011), decyl (ESANAQ; Ait Elmachkouri et al., 2021), dodecyl (SECBUZ; Belaziz, Kandri Rodi, Ouazzani Chahdi et al., 2012), benzyl (EVEYIO; Ouzidan, Essassi et al., 2011), 4-methyl­benzyl (NEQBIW; Belaziz et al., 2013), acetyl (VADYIM; Sebhaoui et al., 2021) and a tri­fluoro­methyl group (ZEDJAX; Bouayad-Gervais et al., 2022). Most structures feature bimolecular hydrogen-bonding inter­actions between N—H ⋯ O=C moieties with an Inline graphic (8) graph-set motif, but in ZEDJAX N—H ⋯ O=C hydrogen bonds link the mol­ecules into C(4) chains. The distances between a nitro­gen donor and an oxygen acceptor range from 2.79–2.84 Å, comparable to the values for I and II of 2.7786 (14) and 2.8453 (14) Å, respectively.

5. Synthesis and crystallization

3-Phenyl-1H-1,3-benzo­diazol-2(3H)-one was prepared following a reported procedure (Fig. 4; Zhang et al., 2008; Mark et al., 2013). A solution of 1,1′-carbonyl­diimidazole (0.50 g, 3.1 mmol) and 2-amino­diphenyl­amine (0.57 g, 3.1 mmol) in CH2Cl2 (15 mL) was stirred at room temperature overnight. The resulting white precipitate was filtered. An additional white precipitate was acquired by adding Et2O (10 mL) into the filtrate. Combined yield: 0.30 g (46%). 1H NMR (CDCl3, 300 MHz): δ 10.75 (br s, NH, 1H), 7.58 (m, Ar, 4H), 7.45 (m, Ar, 1H), 7.17 (m, Ar, 1H), 7.10 (m, Ar, 1H), 7.06 (m, Ar, 2H). Pentane vapor diffusion into a solution of the compound in THF formed colorless needles and blocks.

Figure 4.

Figure 4

Synthesis of 3-phenyl-1H-1,3-benzo­diazol-2(3H)-one.

6. Refinement

Crystal data, data collection, and refinement statistics are summarized in Table 3. No appreciable disorder was observed for both structures. The hydrogen atoms were optimized using riding models.

Table 3. Experimental details.

  I II
Crystal data
Chemical formula C13H10N2O C13H10N2O
M r 210.23 210.23
Crystal system, space group Monoclinic, C2/c Orthorhombic, P b c a
Temperature (K) 193 193
a, b, c (Å) 18.0187 (9), 6.4455 (3), 18.7315 (10) 13.7925 (3), 7.2652 (1), 19.7956 (4)
α, β, γ (°) 90, 111.181 (3), 90 90, 90, 90
V3) 2028.50 (18) 1983.62 (6)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.09
Crystal size (mm) 0.51 × 0.23 × 0.14 0.37 × 0.33 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.699, 0.746 0.712, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9328, 2350, 1956 34068, 2479, 2203
R int 0.031 0.036
(sin θ/λ)max−1) 0.651 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.104, 1.07 0.039, 0.099, 1.02
No. of reflections 2350 2479
No. of parameters 145 145
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.23 0.25, −0.38

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023003961/vm2281sup1.cif

e-79-00534-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023003961/vm2281Isup2.hkl

e-79-00534-Isup2.hkl (129.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023003961/vm2281IIsup3.hkl

e-79-00534-IIsup3.hkl (136.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023003961/vm2281Isup4.cml

CCDC references: 2260424, 2260423

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Dr Ji-Eun Lee (Gyeongsang National University) is gratefully acknowledged for collecting the single-crystal XRD data.

supplementary crystallographic information

3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Crystal data

C13H10N2O F(000) = 880
Mr = 210.23 Dx = 1.377 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 18.0187 (9) Å Cell parameters from 2753 reflections
b = 6.4455 (3) Å θ = 2.3–27.5°
c = 18.7315 (10) Å µ = 0.09 mm1
β = 111.181 (3)° T = 193 K
V = 2028.50 (18) Å3 NEEDLE, colourless
Z = 8 0.51 × 0.23 × 0.14 mm

3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Data collection

Bruker APEXII CCD diffractometer 1956 reflections with I > 2σ(I)
φ and ω scans Rint = 0.031
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 27.6°, θmin = 2.3°
Tmin = 0.699, Tmax = 0.746 h = −23→23
9328 measured reflections k = −8→8
2350 independent reflections l = −24→24

3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0438P)2 + 1.4081P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2350 reflections Δρmax = 0.18 e Å3
145 parameters Δρmin = −0.23 e Å3
0 restraints

3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.60223 (5) 0.96614 (15) 0.57745 (5) 0.0239 (2)
N3 0.53005 (6) 0.77512 (18) 0.46886 (6) 0.0210 (3)
H3 0.488955 0.857863 0.448435 0.025*
N1 0.64477 (6) 0.64976 (18) 0.54578 (6) 0.0199 (3)
C8 0.71782 (7) 0.6314 (2) 0.60949 (7) 0.0200 (3)
C7A 0.61292 (7) 0.5048 (2) 0.48703 (7) 0.0198 (3)
C3A 0.54019 (7) 0.5865 (2) 0.43844 (7) 0.0202 (3)
C2 0.59267 (7) 0.8152 (2) 0.53505 (7) 0.0201 (3)
C9 0.73216 (8) 0.4585 (2) 0.65660 (7) 0.0242 (3)
H9 0.694564 0.348538 0.645522 0.029*
C13 0.77316 (7) 0.7904 (2) 0.62403 (7) 0.0230 (3)
H13 0.763240 0.907155 0.590917 0.028*
C7 0.64074 (8) 0.3170 (2) 0.47242 (8) 0.0236 (3)
H7 0.689738 0.261391 0.506014 0.028*
C4 0.49365 (8) 0.4809 (2) 0.37362 (7) 0.0238 (3)
H4 0.443989 0.534926 0.340804 0.029*
C5 0.52220 (8) 0.2924 (2) 0.35821 (8) 0.0274 (3)
H5 0.491700 0.217059 0.313667 0.033*
C10 0.80220 (8) 0.4481 (2) 0.72020 (8) 0.0275 (3)
H10 0.812386 0.330940 0.753147 0.033*
C6 0.59439 (8) 0.2116 (2) 0.40654 (8) 0.0266 (3)
H6 0.612378 0.082452 0.394429 0.032*
C12 0.84327 (8) 0.7775 (2) 0.68750 (8) 0.0274 (3)
H12 0.881670 0.885313 0.697783 0.033*
C11 0.85719 (8) 0.6075 (2) 0.73576 (7) 0.0283 (3)
H11 0.904654 0.600345 0.779703 0.034*

3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0232 (5) 0.0213 (5) 0.0244 (5) 0.0026 (4) 0.0052 (4) −0.0008 (4)
N3 0.0185 (5) 0.0202 (6) 0.0217 (5) 0.0040 (4) 0.0041 (4) 0.0023 (4)
N1 0.0177 (5) 0.0193 (6) 0.0223 (5) 0.0027 (4) 0.0068 (4) 0.0014 (4)
C8 0.0177 (6) 0.0243 (8) 0.0193 (6) 0.0038 (5) 0.0083 (5) 0.0019 (5)
C7A 0.0191 (6) 0.0213 (7) 0.0216 (6) −0.0015 (5) 0.0105 (5) 0.0018 (5)
C3A 0.0205 (6) 0.0207 (7) 0.0218 (6) 0.0006 (5) 0.0106 (5) 0.0032 (5)
C2 0.0195 (6) 0.0207 (7) 0.0209 (6) 0.0012 (5) 0.0081 (5) 0.0031 (5)
C9 0.0234 (6) 0.0248 (8) 0.0269 (7) 0.0031 (6) 0.0122 (5) 0.0037 (6)
C13 0.0221 (6) 0.0232 (8) 0.0244 (6) 0.0019 (5) 0.0095 (5) 0.0030 (5)
C7 0.0216 (6) 0.0236 (8) 0.0300 (7) 0.0022 (5) 0.0145 (5) 0.0029 (6)
C4 0.0229 (6) 0.0272 (8) 0.0210 (6) −0.0022 (6) 0.0076 (5) 0.0025 (5)
C5 0.0333 (7) 0.0278 (9) 0.0251 (7) −0.0077 (6) 0.0152 (6) −0.0037 (6)
C10 0.0300 (7) 0.0295 (9) 0.0239 (6) 0.0100 (6) 0.0109 (5) 0.0071 (6)
C6 0.0322 (7) 0.0221 (8) 0.0327 (7) −0.0013 (6) 0.0203 (6) −0.0021 (6)
C12 0.0220 (6) 0.0306 (9) 0.0288 (7) −0.0010 (6) 0.0083 (5) −0.0044 (6)
C11 0.0232 (6) 0.0369 (9) 0.0211 (6) 0.0088 (6) 0.0037 (5) −0.0022 (6)

3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Geometric parameters (Å, º)

O1—C2 1.2282 (16) C13—H13 0.9500
N3—H3 0.8800 C13—C12 1.3896 (18)
N3—C3A 1.3824 (18) C7—H7 0.9500
N3—C2 1.3660 (16) C7—C6 1.3920 (19)
N1—C8 1.4266 (15) C4—H4 0.9500
N1—C7A 1.3988 (17) C4—C5 1.390 (2)
N1—C2 1.3864 (17) C5—H5 0.9500
C8—C9 1.3868 (19) C5—C6 1.390 (2)
C8—C13 1.3867 (19) C10—H10 0.9500
C7A—C3A 1.4004 (17) C10—C11 1.384 (2)
C7A—C7 1.375 (2) C6—H6 0.9500
C3A—C4 1.3803 (18) C12—H12 0.9500
C9—H9 0.9500 C12—C11 1.384 (2)
C9—C10 1.3893 (18) C11—H11 0.9500
C3A—N3—H3 124.7 C12—C13—H13 120.3
C2—N3—H3 124.7 C7A—C7—H7 121.3
C2—N3—C3A 110.58 (11) C7A—C7—C6 117.46 (12)
C7A—N1—C8 126.52 (11) C6—C7—H7 121.3
C2—N1—C8 123.83 (11) C3A—C4—H4 121.3
C2—N1—C7A 109.60 (10) C3A—C4—C5 117.46 (12)
C9—C8—N1 120.15 (12) C5—C4—H4 121.3
C13—C8—N1 118.93 (12) C4—C5—H5 119.3
C13—C8—C9 120.91 (12) C4—C5—C6 121.45 (13)
N1—C7A—C3A 106.37 (12) C6—C5—H5 119.3
C7—C7A—N1 131.98 (12) C9—C10—H10 119.9
C7—C7A—C3A 121.64 (12) C11—C10—C9 120.28 (14)
N3—C3A—C7A 107.14 (11) C11—C10—H10 119.9
C4—C3A—N3 131.89 (12) C7—C6—H6 119.5
C4—C3A—C7A 120.97 (13) C5—C6—C7 121.00 (14)
O1—C2—N3 127.84 (12) C5—C6—H6 119.5
O1—C2—N1 125.88 (11) C13—C12—H12 120.0
N3—C2—N1 106.28 (11) C11—C12—C13 120.03 (13)
C8—C9—H9 120.4 C11—C12—H12 120.0
C8—C9—C10 119.16 (14) C10—C11—C12 120.23 (12)
C10—C9—H9 120.4 C10—C11—H11 119.9
C8—C13—H13 120.3 C12—C11—H11 119.9
C8—C13—C12 119.38 (13)
N3—C3A—C4—C5 178.80 (13) C3A—N3—C2—O1 −178.55 (13)
N1—C8—C9—C10 −177.25 (12) C3A—N3—C2—N1 1.45 (14)
N1—C8—C13—C12 177.74 (12) C3A—C7A—C7—C6 0.98 (19)
N1—C7A—C3A—N3 −0.29 (13) C3A—C4—C5—C6 0.7 (2)
N1—C7A—C3A—C4 179.34 (11) C2—N3—C3A—C7A −0.73 (14)
N1—C7A—C7—C6 −178.35 (12) C2—N3—C3A—C4 179.69 (13)
C8—N1—C7A—C3A 178.81 (11) C2—N1—C8—C9 123.03 (14)
C8—N1—C7A—C7 −1.8 (2) C2—N1—C8—C13 −55.86 (17)
C8—N1—C2—O1 0.7 (2) C2—N1—C7A—C3A 1.19 (14)
C8—N1—C2—N3 −179.32 (11) C2—N1—C7A—C7 −179.40 (13)
C8—C9—C10—C11 −0.6 (2) C9—C8—C13—C12 −1.1 (2)
C8—C13—C12—C11 −0.3 (2) C9—C10—C11—C12 −0.8 (2)
C7A—N1—C8—C9 −54.27 (17) C13—C8—C9—C10 1.62 (19)
C7A—N1—C8—C13 126.85 (14) C13—C12—C11—C10 1.3 (2)
C7A—N1—C2—O1 178.38 (12) C7—C7A—C3A—N3 −179.77 (11)
C7A—N1—C2—N3 −1.62 (14) C7—C7A—C3A—C4 −0.14 (19)
C7A—C3A—C4—C5 −0.72 (19) C4—C5—C6—C7 0.1 (2)
C7A—C7—C6—C5 −0.96 (19)

3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1i 0.88 1.91 2.7786 (14) 177

Symmetry code: (i) −x+1, −y+2, −z+1.

(II). Crystal data

C13H10N2O Dx = 1.408 Mg m3
Mr = 210.23 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 9912 reflections
a = 13.7925 (3) Å θ = 2.5–28.3°
b = 7.2652 (1) Å µ = 0.09 mm1
c = 19.7956 (4) Å T = 193 K
V = 1983.62 (6) Å3 BLOCK, colourless
Z = 8 0.37 × 0.33 × 0.19 mm
F(000) = 880

(II). Data collection

Bruker APEXII CCD diffractometer 2203 reflections with I > 2σ(I)
φ and ω scans Rint = 0.036
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 28.4°, θmin = 2.1°
Tmin = 0.712, Tmax = 0.746 h = −18→18
34068 measured reflections k = −8→9
2479 independent reflections l = −26→26

(II). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.3866P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
2479 reflections Δρmax = 0.25 e Å3
145 parameters Δρmin = −0.37 e Å3
0 restraints

(II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.45568 (7) 0.03382 (12) 0.59030 (4) 0.0202 (2)
N1 0.38806 (7) 0.32974 (13) 0.58960 (5) 0.0156 (2)
N3 0.43199 (7) 0.20514 (13) 0.49242 (5) 0.0162 (2)
H3 0.452728 0.125653 0.462151 0.019*
C7A 0.37019 (8) 0.46038 (16) 0.53914 (6) 0.0150 (2)
C2 0.42885 (8) 0.17358 (16) 0.56054 (6) 0.0162 (2)
C8 0.37484 (8) 0.35772 (16) 0.66031 (6) 0.0164 (2)
C3A 0.39783 (8) 0.38031 (16) 0.47791 (6) 0.0152 (2)
C7 0.33606 (8) 0.63906 (16) 0.54215 (6) 0.0176 (2)
H7 0.319418 0.694844 0.583974 0.021*
C4 0.38813 (8) 0.47304 (17) 0.41748 (6) 0.0178 (2)
H4 0.405896 0.417587 0.375818 0.021*
C5 0.35117 (8) 0.65146 (17) 0.42007 (6) 0.0195 (2)
H5 0.342230 0.718091 0.379252 0.023*
C9 0.44915 (9) 0.31474 (17) 0.70512 (6) 0.0198 (2)
H9 0.507674 0.261337 0.689104 0.024*
C13 0.28837 (9) 0.43311 (16) 0.68360 (6) 0.0203 (3)
H13 0.237403 0.460514 0.652926 0.024*
C6 0.32707 (8) 0.73401 (17) 0.48132 (6) 0.0192 (2)
H6 0.304090 0.857272 0.481620 0.023*
C12 0.27728 (10) 0.46798 (17) 0.75227 (7) 0.0257 (3)
H12 0.218579 0.520089 0.768528 0.031*
C11 0.35128 (11) 0.42719 (17) 0.79701 (6) 0.0268 (3)
H11 0.343401 0.451607 0.843835 0.032*
C10 0.43697 (10) 0.35064 (18) 0.77346 (6) 0.0245 (3)
H10 0.487637 0.322592 0.804296 0.029*

(II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0276 (5) 0.0164 (4) 0.0168 (4) 0.0051 (3) 0.0006 (3) −0.0002 (3)
N1 0.0173 (4) 0.0150 (4) 0.0145 (4) 0.0021 (4) 0.0005 (3) −0.0022 (4)
N3 0.0188 (5) 0.0157 (5) 0.0142 (4) 0.0028 (4) 0.0004 (4) −0.0022 (4)
C7A 0.0122 (5) 0.0172 (5) 0.0156 (5) −0.0013 (4) −0.0007 (4) −0.0008 (4)
C2 0.0157 (5) 0.0168 (5) 0.0161 (5) 0.0004 (4) 0.0004 (4) −0.0027 (4)
C8 0.0215 (5) 0.0137 (5) 0.0140 (5) −0.0014 (4) 0.0023 (4) −0.0020 (4)
C3A 0.0119 (5) 0.0160 (5) 0.0178 (5) 0.0001 (4) −0.0001 (4) −0.0025 (4)
C7 0.0148 (5) 0.0177 (5) 0.0203 (5) 0.0006 (4) 0.0012 (4) −0.0035 (4)
C4 0.0166 (5) 0.0208 (6) 0.0161 (5) 0.0002 (4) 0.0004 (4) −0.0011 (4)
C5 0.0167 (5) 0.0215 (6) 0.0202 (6) −0.0001 (5) −0.0006 (4) 0.0039 (5)
C9 0.0219 (6) 0.0199 (5) 0.0176 (5) −0.0022 (5) 0.0005 (4) 0.0000 (4)
C13 0.0241 (6) 0.0162 (5) 0.0205 (6) 0.0009 (5) 0.0031 (5) −0.0014 (4)
C6 0.0151 (5) 0.0166 (5) 0.0258 (6) 0.0011 (4) 0.0004 (4) 0.0006 (5)
C12 0.0353 (7) 0.0180 (6) 0.0237 (6) 0.0025 (5) 0.0117 (5) −0.0024 (5)
C11 0.0460 (8) 0.0188 (6) 0.0156 (5) −0.0047 (6) 0.0058 (5) −0.0031 (5)
C10 0.0340 (7) 0.0230 (6) 0.0166 (6) −0.0066 (5) −0.0028 (5) 0.0013 (5)

(II). Geometric parameters (Å, º)

O1—C2 1.2309 (14) C4—H4 0.9500
N1—C7A 1.3997 (15) C4—C5 1.3939 (17)
N1—C2 1.3908 (14) C5—H5 0.9500
N1—C8 1.4262 (14) C5—C6 1.3928 (17)
N3—H3 0.8800 C9—H9 0.9500
N3—C2 1.3685 (15) C9—C10 1.3880 (17)
N3—C3A 1.3872 (15) C13—H13 0.9500
C7A—C3A 1.3976 (15) C13—C12 1.3912 (17)
C7A—C7 1.3821 (16) C6—H6 0.9500
C8—C9 1.3910 (17) C12—H12 0.9500
C8—C13 1.3911 (16) C12—C11 1.383 (2)
C3A—C4 1.3793 (16) C11—H11 0.9500
C7—H7 0.9500 C11—C10 1.387 (2)
C7—C6 1.3933 (17) C10—H10 0.9500
C7A—N1—C8 125.54 (10) C5—C4—H4 121.4
C2—N1—C7A 109.23 (9) C4—C5—H5 119.3
C2—N1—C8 125.02 (10) C6—C5—C4 121.32 (11)
C2—N3—H3 124.8 C6—C5—H5 119.3
C2—N3—C3A 110.31 (9) C8—C9—H9 120.3
C3A—N3—H3 124.8 C10—C9—C8 119.35 (12)
C3A—C7A—N1 106.78 (10) C10—C9—H9 120.3
C7—C7A—N1 131.77 (11) C8—C13—H13 120.3
C7—C7A—C3A 121.41 (11) C8—C13—C12 119.33 (12)
O1—C2—N1 126.63 (11) C12—C13—H13 120.3
O1—C2—N3 126.89 (11) C7—C6—H6 119.4
N3—C2—N1 106.48 (10) C5—C6—C7 121.19 (11)
C9—C8—N1 119.98 (10) C5—C6—H6 119.4
C9—C8—C13 120.59 (11) C13—C12—H12 119.8
C13—C8—N1 119.41 (10) C11—C12—C13 120.36 (12)
N3—C3A—C7A 107.15 (10) C11—C12—H12 119.8
C4—C3A—N3 131.35 (11) C12—C11—H11 120.0
C4—C3A—C7A 121.50 (11) C12—C11—C10 119.96 (12)
C7A—C7—H7 121.4 C10—C11—H11 120.0
C7A—C7—C6 117.27 (11) C9—C10—H10 119.8
C6—C7—H7 121.4 C11—C10—C9 120.41 (12)
C3A—C4—H4 121.4 C11—C10—H10 119.8
C3A—C4—C5 117.24 (11)
N1—C7A—C3A—N3 −0.32 (12) C8—N1—C7A—C3A 176.62 (10)
N1—C7A—C3A—C4 179.08 (10) C8—N1—C7A—C7 −1.01 (19)
N1—C7A—C7—C6 179.56 (11) C8—N1—C2—O1 3.36 (19)
N1—C8—C9—C10 177.03 (11) C8—N1—C2—N3 −177.43 (10)
N1—C8—C13—C12 −177.13 (11) C8—C9—C10—C11 0.53 (19)
N3—C3A—C4—C5 −179.65 (11) C8—C13—C12—C11 −0.35 (19)
C7A—N1—C2—O1 178.21 (11) C3A—N3—C2—O1 −178.39 (11)
C7A—N1—C2—N3 −2.59 (12) C3A—N3—C2—N1 2.40 (12)
C7A—N1—C8—C9 −129.31 (12) C3A—C7A—C7—C6 2.22 (16)
C7A—N1—C8—C13 48.81 (16) C3A—C4—C5—C6 1.38 (17)
C7A—C3A—C4—C5 1.11 (17) C7—C7A—C3A—N3 177.61 (10)
C7A—C7—C6—C5 0.27 (17) C7—C7A—C3A—C4 −2.99 (17)
C2—N1—C7A—C3A 1.81 (12) C4—C5—C6—C7 −2.11 (18)
C2—N1—C7A—C7 −175.82 (12) C9—C8—C13—C12 0.98 (18)
C2—N1—C8—C9 44.70 (17) C13—C8—C9—C10 −1.07 (18)
C2—N1—C8—C13 −137.18 (12) C13—C12—C11—C10 −0.2 (2)
C2—N3—C3A—C7A −1.31 (13) C12—C11—C10—C9 0.1 (2)
C2—N3—C3A—C4 179.37 (12)

(II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1i 0.88 2.00 2.8453 (13) 174

Symmetry code: (i) −x+1, −y, −z+1.

Funding Statement

Funding for this research was provided by: National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1G1A1093332 and 2022R1F1A1064158).

References

  1. Ait Elmachkouri, Y., Saber, A., Irrou, E., Amer, B., Mague, J. T., Hökelek, T., Labd Taha, M., Sebbar, N. K. & Essassi, E. M. (2021). Acta Cryst. E77, 559–563. [DOI] [PMC free article] [PubMed]
  2. Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276. [DOI] [PMC free article] [PubMed]
  3. Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3069. [DOI] [PMC free article] [PubMed]
  4. Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122. [DOI] [PMC free article] [PubMed]
  5. Bellenie, B. R., Cheung, K. J., Varela, A., Pierrat, O. A., Collie, G. W., Box, G. M., Bright, M. D., Gowan, S., Hayes, A., Rodrigues, M. J., Shetty, K. N., Carter, M., Davis, O. A., Henley, A. T., Innocenti, P., Johnson, L. D., Liu, M., de Klerk, S., Le Bihan, Y.-V., Lloyd, M. G., McAndrew, P. C., Shehu, E., Talbot, R., Woodward, H. L., Burke, R., Kirkin, V., van Montfort, R. L. M., Raynaud, F. I., Rossanese, O. W. & Hoelder, S. (2020). J. Med. Chem. 63, 4047–4068. [DOI] [PMC free article] [PubMed]
  6. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  7. Beyer, A., Reucher, C. M. M. & Bolm, C. (2011). Org. Lett. 13, 2876–2879. [DOI] [PubMed]
  8. Bouayad-Gervais, S., Nielsen, C. D. T., Turksoy, A., Sperger, T., Deckers, K. & Schoenebeck, F. (2022). J. Am. Chem. Soc. 144, 6100–6106. [DOI] [PubMed]
  9. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  10. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  11. Dombroski, M. A., Letavic, M. A., McClure, K. F., Barberia, J. T., Carty, T. J., Cortina, S. R., Csiki, C., Dipesa, A. J., Elliott, N. C., Gabel, C. A., Jordan, C. K., Labasi, J. M., Martin, W. H., Peese, K. M., Stock, I. A., Svensson, L., Sweeney, F. J. & Yu, C. H. (2004). Bioorg. Med. Chem. Lett. 14, 919–923. [DOI] [PubMed]
  12. Elsinga, P. H., van Waarde, A., Jaeggi, K. A., Schreiber, G., Heldoorn, M. & Vaalburg, W. (1997). J. Med. Chem. 40, 3829–3835. [DOI] [PubMed]
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Gustin, D. J., Sehon, C. A., Wei, J., Cai, H., Meduna, S. P., Khatuya, H., Sun, S., Gu, Y., Jiang, W., Thurmond, R. L., Karlsson, L. & Edwards, J. P. (2005). Bioorg. Med. Chem. Lett. 15, 1687–1691. [DOI] [PubMed]
  15. Hammach, A., Barbosa, A., Gaenzler, F. C., Fadra, T., Goldberg, D., Hao, M.-H., Kroe, R. R., Liu, P., Qian, K. C., Ralph, M., Sarko, C., Soleymanzadeh, F. & Moss, N. (2006). Bioorg. Med. Chem. Lett. 16, 6316–6320. [DOI] [PubMed]
  16. Henning, R., Lattrell, R., Gerhards, H. J. & Leven, M. (1987). J. Med. Chem. 30, 814–819. [DOI] [PubMed]
  17. Kawamoto, H., Nakashima, H., Kato, T., Arai, S., Kamata, K. & Iwasawa, Y. (2001). Tetrahedron, 57, 981–986.
  18. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  19. Li, Q., Li, T., Woods, K. W., Gu, W.-Z., Cohen, J., Stoll, V. S., Galicia, T., Hutchins, C., Frost, D., Rosenberg, S. H. & Sham, H. L. (2005). Bioorg. Med. Chem. Lett. 15, 2918–2922. [DOI] [PubMed]
  20. Liu, P., Wang, Z. & Hu, X. (2012). Eur. J. Org. Chem. pp. 1994–2000.
  21. Łukasik, E. & Wróbel, Z. (2016). Synthesis, 48, 1159–1166.
  22. Mark, C., Bornatowicz, B., Mitterhauser, M., Hendl, M., Nics, L., Haeusler, D., Lanzenberger, R., Berger, M. L., Spreitzer, H. & Wadsak, W. (2013). Nucl. Med. Biol. 40, 295–303. [DOI] [PubMed]
  23. Metz, H.-J. & Morgenroth, F. (2009). In High Performance Pigments, edited by E. B. Faulkner & R. J. Schwarz, pp. 139–164. Weinheim: Wiley-VCH.
  24. Monforte, A.-M., Logoteta, P., De Luca, L., Iraci, N., Ferro, S., Maga, G., De Clercq, E., Pannecouque, C. & Chimirri, A. (2010). Bioorg. Med. Chem. 18, 1702–1710. [DOI] [PubMed]
  25. Monforte, A.-M., Logoteta, P., Ferro, S., De Luca, L., Iraci, N., Maga, G., Clercq, E. D., Pannecouque, C. & Chimirri, A. (2009). Bioorg. Med. Chem. 17, 5962–5967. [DOI] [PubMed]
  26. Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822. [DOI] [PMC free article] [PubMed]
  27. Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283. [DOI] [PMC free article] [PubMed]
  28. Palin, R., Clark, J. K., Evans, L., Houghton, A. K., Jones, P. S., Prosser, A., Wishart, G. & Yoshiizumi, K. (2008). Bioorg. Med. Chem. 16, 2829–2851. [DOI] [PubMed]
  29. Poulain, R., Horvath, D., Bonnet, B., Eckhoff, C., Chapelain, B., Bodinier, M.-C. & Déprez, B. (2001). J. Med. Chem. 44, 3378–3390. [DOI] [PubMed]
  30. Pribut, N., Basson, A. E., van Otterlo, W. A. L., Liotta, D. C. & Pelly, S. C. (2019). ACS Med. Chem. Lett. 10, 196–202. [DOI] [PMC free article] [PubMed]
  31. Qi, X., Zhou, R., Peng, J.-B., Ying, J. & Wu, X.-F. (2019). Eur. J. Org. Chem. pp. 5161–5164.
  32. Roger, G., Lagnel, B., Besret, L., Bramoullé, Y., Coulon, C., Ottaviani, M., Kassiou, M., Bottlaender, M., Valette, H. & Dollé, F. (2003). Bioorg. Med. Chem. 11, 5401–5408. [DOI] [PubMed]
  33. Rong, Y., Al-Harbi, A., Kriegel, B. & Parkin, G. (2013). Inorg. Chem. 52, 7172–7182. [DOI] [PubMed]
  34. Sebhaoui, J., El Bakri, Y., Lai, C.-H., Karthikeyan, S., Anouar, E. H., Mague, J. T. & Essassi, E. M. (2021). J. Biomol. Struct. Dyn. 39, 4859–4877. [DOI] [PubMed]
  35. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  36. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  37. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  38. Tapia, I., Alonso-Cires, L., López-Tudanca, P. L., Mosquera, R., Labeaga, L., Innerárity, A. & Orjales, A. (1999). J. Med. Chem. 42, 2870–2880. [DOI] [PubMed]
  39. Yu, B., Zhang, H., Zhao, Y., Chen, S., Xu, J., Hao, L. & Liu, Z. (2013). ACS Catal. 3, 2076–2082.
  40. Zhang, P., Terefenko, E. A., McComas, C. C., Mahaney, P. E., Vu, A., Trybulski, E., Koury, E., Johnston, G., Bray, J. & Deecher, D. (2008). Bioorg. Med. Chem. Lett. 18, 6067–6070. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023003961/vm2281sup1.cif

e-79-00534-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023003961/vm2281Isup2.hkl

e-79-00534-Isup2.hkl (129.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023003961/vm2281IIsup3.hkl

e-79-00534-IIsup3.hkl (136.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023003961/vm2281Isup4.cml

CCDC references: 2260424, 2260423

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES