The two polymorphic structures of 3-phenyl-1H-1,3-benzodiazol-2(3H)-one (I and II) exhibit identical bond distances and angles except for the C—N—C—C torsion angle between the benzimidazolone backbone and the phenyl substituent, which has an effect on the crystal packing and supramolecular features. The structure of I contains a stronger C=O⋯H—N hydrogen-bonding interaction and a weaker π–π interaction between adjacent bezimidazolone moieties in comparison to II.
Keywords: crystal structure, benzimidazolone, hydrogen bond
Abstract
The polymorphic structures (I and II) of 3-phenyl-1H-1,3-benzodiazol-2(3H)-one, C13H10N2O, acquired from pentane diffusion into the solution in THF, are reported. The structures show negligible differences in bond distances and angles, but the C—N—C—C torsion angles between the backbone and the phenyl substituent, 123.02 (15)° for I and 137.18 (11)° for II, are different. Compound I features a stronger C=O⋯H—N hydrogen bond than that in II, while the structure of II exhibits a stronger π–π interaction than in I, as confirmed by the shorter intercentroid distance [3.3257 (8) Å in II in comparison to 3.6862 (7) Å in I]. Overall, the supramolecular interactions of I and II are distinct, presumably originating from the variation in the dihedral angle.
1. Chemical context
Benzimidazolones are widely found in functional organic and biologically active molecules (Palin et al., 2008 ▸; Monforte et al., 2010 ▸; Pribut et al., 2019 ▸; Bellenie et al., 2020 ▸). For example, substituted benzimidazolones have been used as pigments due to their high fastness and resistance to light and weathering (Metz & Morgenroth, 2009 ▸). In addition, the biological activities of benzimidazolone derivatives have been tested for anticancer, HIV, pain regulation, etc. (Henning et al., 1987 ▸; Elsinga et al., 1997 ▸; Tapia et al., 1999 ▸; Kawamoto et al., 2001 ▸; Poulain et al., 2001 ▸; Roger et al., 2003 ▸; Dombroski et al., 2004 ▸; Gustin et al., 2005 ▸; Li et al., 2005 ▸; Hammach et al., 2006 ▸; Monforte et al., 2009 ▸).
Singly N-substituted benzimidazolones exhibit interesting properties partially due to the hydrogen-bonding interactions between N—H⋯O=C moieties. N-phenyl-substituted benzimidazolone can be prepared by the intramolecular N-arylation of urea (Beyer et al., 2011 ▸), carbonylation of 2-nitroaniline (Qi et al., 2019 ▸), carbonylation of o-phenylenediamine with CO2 (Yu et al., 2013 ▸), carbonylation of iminophosphorane with CO2 (Łukasik & Wróbel, 2016 ▸), iodosylbenzene-induced intramolecular Hofmann rearrangement of 2-(phenylamino)benzamide (Liu et al., 2012 ▸), and carbonylation of N1-phenylbenzene-1,2-diamine with 1,1′-carbonyldiimidazole (Zhang et al., 2008 ▸). Preparations of phenyl-substituted benzimidazolone have been reported using various reagents and catalysts, but the structure is unknown.
Here we report two polymorphic structures of 3-phenyl-1H-1,3-benzodiazol-2(3H)-one. The compound was prepared following the reported procedure using 1,1′-carbonyldiimidazole and N1-phenylbenzene-1,2-diamine in CH2Cl2 (Zhang et al., 2008 ▸). Single crystals grown by pentane vapor diffusion into a THF solution formed colorless needles (I) and blocks (II).
2. Structural commentary
The title compounds crystallized as colorless needles (I) and blocks (II) in space groups C2/c and Pbca, respectively. The two polymorphic structures exhibit identical bond distances and angles, except for the dihedral angle of the phenyl substituent (Fig. 1 ▸). Both structures retain the planarity of benzimidazolone moiety, as demonstrated by the low r.m.s. deviations of 0.009 and 0.023 Å for I and II, respectively. The C2—N1—C8—C9/C13 torsion angle is 123.03 (14) and −137.18 (12)° for I and II, respectively. No additional differences are observed from an analysis of bond distances and angles.
Figure 1.
Molecular structures of (a) I, (b) II, and (c) overlay of I and II with displacement ellipsoids drawn at the 50% probability level.
3. Supramolecular features
Initial investigations of supramolecular features for I and II were carried out using Hirshfeld surface analysis with CrystalExplorer 21.5 (Spackman et al., 2021 ▸). The Hirshfeld surface was mapped over d
norm in the ranges −0.6415 to 1.2040 a.u. and −0.5612 to 1.1830 a.u. for I and II, respectively (Figs. 2 ▸ and 3 ▸). The most intense red spots on the surface for I and II indicate the N3—H3⋯O1 hydrogen-bonding interactions (Tables 1 ▸ and 2 ▸), which have
(8) graph-set motifs (Bernstein et al., 1995 ▸). The shorter D⋯A and H⋯A distances, and more linear D—H⋯A angle reveal that the hydrogen-bonding interaction in I is stronger than that in II. In contrast, the structure of II contains a stronger π–π interaction between the adjacent benzimidazolone moieties, as defined by the centroid⋯centroid distance of 3.3257 (8) Å, while the corresponding distance in I is more elongated at 3.6862 (7) Å.
Figure 2.
(a) Hirshfeld surface of I mapped over d norm. (b) Partial packing plot of I.
Figure 3.
(a) Hirshfeld surface of II mapped over d norm. (b) Partial packing plot of II.
Table 1. Hydrogen-bond geometry (Å, °) for I .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N3—H3⋯O1i | 0.88 | 1.91 | 2.7786 (14) | 177 |
Symmetry code: (i)
.
Table 2. Hydrogen-bond geometry (Å, °) for II .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N3—H3⋯O1i | 0.88 | 2.00 | 2.8453 (13) | 174 |
Symmetry code: (i)
.
Minor intermolecular interactions are observed as faint red spots on the surface. The spots in I indicate the intermolecular interactions of C4⋯C2/C2⋯C4, C3A⋯C3A and C7—H7/H7—C7, whereas those in II correspond to C2⋯C5/C5⋯C2, C4—H4⋯C12/ C12⋯H4—C4, C7A⋯H6—C6/C6—H6⋯C7A, C3A⋯H6—C6/C6-H6⋯C3A and C3A⋯C6/C6⋯C3A contacts. The largest contributions to the Hirshfeld surface of I arises from H⋯H (44.4%), C⋯H/H⋯C (31.9%), and O⋯H/H⋯O (13.5%) contacts, whereas the contributions for II are H⋯H (45.8%), C⋯H/H⋯C (27.5%) and O⋯H/H⋯O (15.5%). Minor contributions include N⋯H/H⋯N (3.6%), C⋯C (3.2%), C⋯N/N⋯C (2.1%), C⋯O/O⋯C (1.4%) for I and C⋯C (5.4%), C⋯N/N⋯C (3.4%), N⋯H/H⋯N (3.2%), C⋯O/O⋯C (0.2%) for II.
4. Database survey
A search for the title compound in the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016 ▸) did not match any reported structures, including aryl-derivative searches. However, a survey for mono-N-substituted benzimidazolone compounds revealed 75 results, which included structures with simple substituents such as methyl (WIKPAJ; Rong et al., 2013 ▸), tert-butyl (WIKNOV; Rong et al., 2013 ▸), octyl (ZANXET; Belaziz, Kandri Rodi, Essassi et al., 2012 ▸), nonyl (IJUGIE; Ouzidan, Kandri Rodi et al., 2011 ▸), decyl (ESANAQ; Ait Elmachkouri et al., 2021 ▸), dodecyl (SECBUZ; Belaziz, Kandri Rodi, Ouazzani Chahdi et al., 2012 ▸), benzyl (EVEYIO; Ouzidan, Essassi et al., 2011 ▸), 4-methylbenzyl (NEQBIW; Belaziz et al., 2013 ▸), acetyl (VADYIM; Sebhaoui et al., 2021 ▸) and a trifluoromethyl group (ZEDJAX; Bouayad-Gervais et al., 2022 ▸). Most structures feature bimolecular hydrogen-bonding interactions between N—H ⋯ O=C moieties with an
(8) graph-set motif, but in ZEDJAX N—H ⋯ O=C hydrogen bonds link the molecules into C(4) chains. The distances between a nitrogen donor and an oxygen acceptor range from 2.79–2.84 Å, comparable to the values for I and II of 2.7786 (14) and 2.8453 (14) Å, respectively.
5. Synthesis and crystallization
3-Phenyl-1H-1,3-benzodiazol-2(3H)-one was prepared following a reported procedure (Fig. 4 ▸; Zhang et al., 2008 ▸; Mark et al., 2013 ▸). A solution of 1,1′-carbonyldiimidazole (0.50 g, 3.1 mmol) and 2-aminodiphenylamine (0.57 g, 3.1 mmol) in CH2Cl2 (15 mL) was stirred at room temperature overnight. The resulting white precipitate was filtered. An additional white precipitate was acquired by adding Et2O (10 mL) into the filtrate. Combined yield: 0.30 g (46%). 1H NMR (CDCl3, 300 MHz): δ 10.75 (br s, NH, 1H), 7.58 (m, Ar, 4H), 7.45 (m, Ar, 1H), 7.17 (m, Ar, 1H), 7.10 (m, Ar, 1H), 7.06 (m, Ar, 2H). Pentane vapor diffusion into a solution of the compound in THF formed colorless needles and blocks.
Figure 4.
Synthesis of 3-phenyl-1H-1,3-benzodiazol-2(3H)-one.
6. Refinement
Crystal data, data collection, and refinement statistics are summarized in Table 3 ▸. No appreciable disorder was observed for both structures. The hydrogen atoms were optimized using riding models.
Table 3. Experimental details.
| I | II | |
|---|---|---|
| Crystal data | ||
| Chemical formula | C13H10N2O | C13H10N2O |
| M r | 210.23 | 210.23 |
| Crystal system, space group | Monoclinic, C2/c | Orthorhombic, P b c a |
| Temperature (K) | 193 | 193 |
| a, b, c (Å) | 18.0187 (9), 6.4455 (3), 18.7315 (10) | 13.7925 (3), 7.2652 (1), 19.7956 (4) |
| α, β, γ (°) | 90, 111.181 (3), 90 | 90, 90, 90 |
| V (Å3) | 2028.50 (18) | 1983.62 (6) |
| Z | 8 | 8 |
| Radiation type | Mo Kα | Mo Kα |
| μ (mm−1) | 0.09 | 0.09 |
| Crystal size (mm) | 0.51 × 0.23 × 0.14 | 0.37 × 0.33 × 0.19 |
| Data collection | ||
| Diffractometer | Bruker APEXII CCD | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.699, 0.746 | 0.712, 0.746 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 9328, 2350, 1956 | 34068, 2479, 2203 |
| R int | 0.031 | 0.036 |
| (sin θ/λ)max (Å−1) | 0.651 | 0.668 |
| Refinement | ||
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.041, 0.104, 1.07 | 0.039, 0.099, 1.02 |
| No. of reflections | 2350 | 2479 |
| No. of parameters | 145 | 145 |
| H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.18, −0.23 | 0.25, −0.38 |
Supplementary Material
Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023003961/vm2281sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023003961/vm2281Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023003961/vm2281IIsup3.hkl
Supporting information file. DOI: 10.1107/S2056989023003961/vm2281Isup4.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
Dr Ji-Eun Lee (Gyeongsang National University) is gratefully acknowledged for collecting the single-crystal XRD data.
supplementary crystallographic information
3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Crystal data
| C13H10N2O | F(000) = 880 |
| Mr = 210.23 | Dx = 1.377 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 18.0187 (9) Å | Cell parameters from 2753 reflections |
| b = 6.4455 (3) Å | θ = 2.3–27.5° |
| c = 18.7315 (10) Å | µ = 0.09 mm−1 |
| β = 111.181 (3)° | T = 193 K |
| V = 2028.50 (18) Å3 | NEEDLE, colourless |
| Z = 8 | 0.51 × 0.23 × 0.14 mm |
3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Data collection
| Bruker APEXII CCD diffractometer | 1956 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.031 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.6°, θmin = 2.3° |
| Tmin = 0.699, Tmax = 0.746 | h = −23→23 |
| 9328 measured reflections | k = −8→8 |
| 2350 independent reflections | l = −24→24 |
3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Refinement
| Refinement on F2 | Primary atom site location: dual |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
| wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0438P)2 + 1.4081P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.07 | (Δ/σ)max < 0.001 |
| 2350 reflections | Δρmax = 0.18 e Å−3 |
| 145 parameters | Δρmin = −0.23 e Å−3 |
| 0 restraints |
3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.60223 (5) | 0.96614 (15) | 0.57745 (5) | 0.0239 (2) | |
| N3 | 0.53005 (6) | 0.77512 (18) | 0.46886 (6) | 0.0210 (3) | |
| H3 | 0.488955 | 0.857863 | 0.448435 | 0.025* | |
| N1 | 0.64477 (6) | 0.64976 (18) | 0.54578 (6) | 0.0199 (3) | |
| C8 | 0.71782 (7) | 0.6314 (2) | 0.60949 (7) | 0.0200 (3) | |
| C7A | 0.61292 (7) | 0.5048 (2) | 0.48703 (7) | 0.0198 (3) | |
| C3A | 0.54019 (7) | 0.5865 (2) | 0.43844 (7) | 0.0202 (3) | |
| C2 | 0.59267 (7) | 0.8152 (2) | 0.53505 (7) | 0.0201 (3) | |
| C9 | 0.73216 (8) | 0.4585 (2) | 0.65660 (7) | 0.0242 (3) | |
| H9 | 0.694564 | 0.348538 | 0.645522 | 0.029* | |
| C13 | 0.77316 (7) | 0.7904 (2) | 0.62403 (7) | 0.0230 (3) | |
| H13 | 0.763240 | 0.907155 | 0.590917 | 0.028* | |
| C7 | 0.64074 (8) | 0.3170 (2) | 0.47242 (8) | 0.0236 (3) | |
| H7 | 0.689738 | 0.261391 | 0.506014 | 0.028* | |
| C4 | 0.49365 (8) | 0.4809 (2) | 0.37362 (7) | 0.0238 (3) | |
| H4 | 0.443989 | 0.534926 | 0.340804 | 0.029* | |
| C5 | 0.52220 (8) | 0.2924 (2) | 0.35821 (8) | 0.0274 (3) | |
| H5 | 0.491700 | 0.217059 | 0.313667 | 0.033* | |
| C10 | 0.80220 (8) | 0.4481 (2) | 0.72020 (8) | 0.0275 (3) | |
| H10 | 0.812386 | 0.330940 | 0.753147 | 0.033* | |
| C6 | 0.59439 (8) | 0.2116 (2) | 0.40654 (8) | 0.0266 (3) | |
| H6 | 0.612378 | 0.082452 | 0.394429 | 0.032* | |
| C12 | 0.84327 (8) | 0.7775 (2) | 0.68750 (8) | 0.0274 (3) | |
| H12 | 0.881670 | 0.885313 | 0.697783 | 0.033* | |
| C11 | 0.85719 (8) | 0.6075 (2) | 0.73576 (7) | 0.0283 (3) | |
| H11 | 0.904654 | 0.600345 | 0.779703 | 0.034* |
3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0232 (5) | 0.0213 (5) | 0.0244 (5) | 0.0026 (4) | 0.0052 (4) | −0.0008 (4) |
| N3 | 0.0185 (5) | 0.0202 (6) | 0.0217 (5) | 0.0040 (4) | 0.0041 (4) | 0.0023 (4) |
| N1 | 0.0177 (5) | 0.0193 (6) | 0.0223 (5) | 0.0027 (4) | 0.0068 (4) | 0.0014 (4) |
| C8 | 0.0177 (6) | 0.0243 (8) | 0.0193 (6) | 0.0038 (5) | 0.0083 (5) | 0.0019 (5) |
| C7A | 0.0191 (6) | 0.0213 (7) | 0.0216 (6) | −0.0015 (5) | 0.0105 (5) | 0.0018 (5) |
| C3A | 0.0205 (6) | 0.0207 (7) | 0.0218 (6) | 0.0006 (5) | 0.0106 (5) | 0.0032 (5) |
| C2 | 0.0195 (6) | 0.0207 (7) | 0.0209 (6) | 0.0012 (5) | 0.0081 (5) | 0.0031 (5) |
| C9 | 0.0234 (6) | 0.0248 (8) | 0.0269 (7) | 0.0031 (6) | 0.0122 (5) | 0.0037 (6) |
| C13 | 0.0221 (6) | 0.0232 (8) | 0.0244 (6) | 0.0019 (5) | 0.0095 (5) | 0.0030 (5) |
| C7 | 0.0216 (6) | 0.0236 (8) | 0.0300 (7) | 0.0022 (5) | 0.0145 (5) | 0.0029 (6) |
| C4 | 0.0229 (6) | 0.0272 (8) | 0.0210 (6) | −0.0022 (6) | 0.0076 (5) | 0.0025 (5) |
| C5 | 0.0333 (7) | 0.0278 (9) | 0.0251 (7) | −0.0077 (6) | 0.0152 (6) | −0.0037 (6) |
| C10 | 0.0300 (7) | 0.0295 (9) | 0.0239 (6) | 0.0100 (6) | 0.0109 (5) | 0.0071 (6) |
| C6 | 0.0322 (7) | 0.0221 (8) | 0.0327 (7) | −0.0013 (6) | 0.0203 (6) | −0.0021 (6) |
| C12 | 0.0220 (6) | 0.0306 (9) | 0.0288 (7) | −0.0010 (6) | 0.0083 (5) | −0.0044 (6) |
| C11 | 0.0232 (6) | 0.0369 (9) | 0.0211 (6) | 0.0088 (6) | 0.0037 (5) | −0.0022 (6) |
3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Geometric parameters (Å, º)
| O1—C2 | 1.2282 (16) | C13—H13 | 0.9500 |
| N3—H3 | 0.8800 | C13—C12 | 1.3896 (18) |
| N3—C3A | 1.3824 (18) | C7—H7 | 0.9500 |
| N3—C2 | 1.3660 (16) | C7—C6 | 1.3920 (19) |
| N1—C8 | 1.4266 (15) | C4—H4 | 0.9500 |
| N1—C7A | 1.3988 (17) | C4—C5 | 1.390 (2) |
| N1—C2 | 1.3864 (17) | C5—H5 | 0.9500 |
| C8—C9 | 1.3868 (19) | C5—C6 | 1.390 (2) |
| C8—C13 | 1.3867 (19) | C10—H10 | 0.9500 |
| C7A—C3A | 1.4004 (17) | C10—C11 | 1.384 (2) |
| C7A—C7 | 1.375 (2) | C6—H6 | 0.9500 |
| C3A—C4 | 1.3803 (18) | C12—H12 | 0.9500 |
| C9—H9 | 0.9500 | C12—C11 | 1.384 (2) |
| C9—C10 | 1.3893 (18) | C11—H11 | 0.9500 |
| C3A—N3—H3 | 124.7 | C12—C13—H13 | 120.3 |
| C2—N3—H3 | 124.7 | C7A—C7—H7 | 121.3 |
| C2—N3—C3A | 110.58 (11) | C7A—C7—C6 | 117.46 (12) |
| C7A—N1—C8 | 126.52 (11) | C6—C7—H7 | 121.3 |
| C2—N1—C8 | 123.83 (11) | C3A—C4—H4 | 121.3 |
| C2—N1—C7A | 109.60 (10) | C3A—C4—C5 | 117.46 (12) |
| C9—C8—N1 | 120.15 (12) | C5—C4—H4 | 121.3 |
| C13—C8—N1 | 118.93 (12) | C4—C5—H5 | 119.3 |
| C13—C8—C9 | 120.91 (12) | C4—C5—C6 | 121.45 (13) |
| N1—C7A—C3A | 106.37 (12) | C6—C5—H5 | 119.3 |
| C7—C7A—N1 | 131.98 (12) | C9—C10—H10 | 119.9 |
| C7—C7A—C3A | 121.64 (12) | C11—C10—C9 | 120.28 (14) |
| N3—C3A—C7A | 107.14 (11) | C11—C10—H10 | 119.9 |
| C4—C3A—N3 | 131.89 (12) | C7—C6—H6 | 119.5 |
| C4—C3A—C7A | 120.97 (13) | C5—C6—C7 | 121.00 (14) |
| O1—C2—N3 | 127.84 (12) | C5—C6—H6 | 119.5 |
| O1—C2—N1 | 125.88 (11) | C13—C12—H12 | 120.0 |
| N3—C2—N1 | 106.28 (11) | C11—C12—C13 | 120.03 (13) |
| C8—C9—H9 | 120.4 | C11—C12—H12 | 120.0 |
| C8—C9—C10 | 119.16 (14) | C10—C11—C12 | 120.23 (12) |
| C10—C9—H9 | 120.4 | C10—C11—H11 | 119.9 |
| C8—C13—H13 | 120.3 | C12—C11—H11 | 119.9 |
| C8—C13—C12 | 119.38 (13) | ||
| N3—C3A—C4—C5 | 178.80 (13) | C3A—N3—C2—O1 | −178.55 (13) |
| N1—C8—C9—C10 | −177.25 (12) | C3A—N3—C2—N1 | 1.45 (14) |
| N1—C8—C13—C12 | 177.74 (12) | C3A—C7A—C7—C6 | 0.98 (19) |
| N1—C7A—C3A—N3 | −0.29 (13) | C3A—C4—C5—C6 | 0.7 (2) |
| N1—C7A—C3A—C4 | 179.34 (11) | C2—N3—C3A—C7A | −0.73 (14) |
| N1—C7A—C7—C6 | −178.35 (12) | C2—N3—C3A—C4 | 179.69 (13) |
| C8—N1—C7A—C3A | 178.81 (11) | C2—N1—C8—C9 | 123.03 (14) |
| C8—N1—C7A—C7 | −1.8 (2) | C2—N1—C8—C13 | −55.86 (17) |
| C8—N1—C2—O1 | 0.7 (2) | C2—N1—C7A—C3A | 1.19 (14) |
| C8—N1—C2—N3 | −179.32 (11) | C2—N1—C7A—C7 | −179.40 (13) |
| C8—C9—C10—C11 | −0.6 (2) | C9—C8—C13—C12 | −1.1 (2) |
| C8—C13—C12—C11 | −0.3 (2) | C9—C10—C11—C12 | −0.8 (2) |
| C7A—N1—C8—C9 | −54.27 (17) | C13—C8—C9—C10 | 1.62 (19) |
| C7A—N1—C8—C13 | 126.85 (14) | C13—C12—C11—C10 | 1.3 (2) |
| C7A—N1—C2—O1 | 178.38 (12) | C7—C7A—C3A—N3 | −179.77 (11) |
| C7A—N1—C2—N3 | −1.62 (14) | C7—C7A—C3A—C4 | −0.14 (19) |
| C7A—C3A—C4—C5 | −0.72 (19) | C4—C5—C6—C7 | 0.1 (2) |
| C7A—C7—C6—C5 | −0.96 (19) |
3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) . Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N3—H3···O1i | 0.88 | 1.91 | 2.7786 (14) | 177 |
Symmetry code: (i) −x+1, −y+2, −z+1.
(II). Crystal data
| C13H10N2O | Dx = 1.408 Mg m−3 |
| Mr = 210.23 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Pbca | Cell parameters from 9912 reflections |
| a = 13.7925 (3) Å | θ = 2.5–28.3° |
| b = 7.2652 (1) Å | µ = 0.09 mm−1 |
| c = 19.7956 (4) Å | T = 193 K |
| V = 1983.62 (6) Å3 | BLOCK, colourless |
| Z = 8 | 0.37 × 0.33 × 0.19 mm |
| F(000) = 880 |
(II). Data collection
| Bruker APEXII CCD diffractometer | 2203 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.036 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.4°, θmin = 2.1° |
| Tmin = 0.712, Tmax = 0.746 | h = −18→18 |
| 34068 measured reflections | k = −8→9 |
| 2479 independent reflections | l = −26→26 |
(II). Refinement
| Refinement on F2 | Primary atom site location: dual |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
| wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0401P)2 + 1.3866P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.02 | (Δ/σ)max = 0.001 |
| 2479 reflections | Δρmax = 0.25 e Å−3 |
| 145 parameters | Δρmin = −0.37 e Å−3 |
| 0 restraints |
(II). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
(II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.45568 (7) | 0.03382 (12) | 0.59030 (4) | 0.0202 (2) | |
| N1 | 0.38806 (7) | 0.32974 (13) | 0.58960 (5) | 0.0156 (2) | |
| N3 | 0.43199 (7) | 0.20514 (13) | 0.49242 (5) | 0.0162 (2) | |
| H3 | 0.452728 | 0.125653 | 0.462151 | 0.019* | |
| C7A | 0.37019 (8) | 0.46038 (16) | 0.53914 (6) | 0.0150 (2) | |
| C2 | 0.42885 (8) | 0.17358 (16) | 0.56054 (6) | 0.0162 (2) | |
| C8 | 0.37484 (8) | 0.35772 (16) | 0.66031 (6) | 0.0164 (2) | |
| C3A | 0.39783 (8) | 0.38031 (16) | 0.47791 (6) | 0.0152 (2) | |
| C7 | 0.33606 (8) | 0.63906 (16) | 0.54215 (6) | 0.0176 (2) | |
| H7 | 0.319418 | 0.694844 | 0.583974 | 0.021* | |
| C4 | 0.38813 (8) | 0.47304 (17) | 0.41748 (6) | 0.0178 (2) | |
| H4 | 0.405896 | 0.417587 | 0.375818 | 0.021* | |
| C5 | 0.35117 (8) | 0.65146 (17) | 0.42007 (6) | 0.0195 (2) | |
| H5 | 0.342230 | 0.718091 | 0.379252 | 0.023* | |
| C9 | 0.44915 (9) | 0.31474 (17) | 0.70512 (6) | 0.0198 (2) | |
| H9 | 0.507674 | 0.261337 | 0.689104 | 0.024* | |
| C13 | 0.28837 (9) | 0.43311 (16) | 0.68360 (6) | 0.0203 (3) | |
| H13 | 0.237403 | 0.460514 | 0.652926 | 0.024* | |
| C6 | 0.32707 (8) | 0.73401 (17) | 0.48132 (6) | 0.0192 (2) | |
| H6 | 0.304090 | 0.857272 | 0.481620 | 0.023* | |
| C12 | 0.27728 (10) | 0.46798 (17) | 0.75227 (7) | 0.0257 (3) | |
| H12 | 0.218579 | 0.520089 | 0.768528 | 0.031* | |
| C11 | 0.35128 (11) | 0.42719 (17) | 0.79701 (6) | 0.0268 (3) | |
| H11 | 0.343401 | 0.451607 | 0.843835 | 0.032* | |
| C10 | 0.43697 (10) | 0.35064 (18) | 0.77346 (6) | 0.0245 (3) | |
| H10 | 0.487637 | 0.322592 | 0.804296 | 0.029* |
(II). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0276 (5) | 0.0164 (4) | 0.0168 (4) | 0.0051 (3) | 0.0006 (3) | −0.0002 (3) |
| N1 | 0.0173 (4) | 0.0150 (4) | 0.0145 (4) | 0.0021 (4) | 0.0005 (3) | −0.0022 (4) |
| N3 | 0.0188 (5) | 0.0157 (5) | 0.0142 (4) | 0.0028 (4) | 0.0004 (4) | −0.0022 (4) |
| C7A | 0.0122 (5) | 0.0172 (5) | 0.0156 (5) | −0.0013 (4) | −0.0007 (4) | −0.0008 (4) |
| C2 | 0.0157 (5) | 0.0168 (5) | 0.0161 (5) | 0.0004 (4) | 0.0004 (4) | −0.0027 (4) |
| C8 | 0.0215 (5) | 0.0137 (5) | 0.0140 (5) | −0.0014 (4) | 0.0023 (4) | −0.0020 (4) |
| C3A | 0.0119 (5) | 0.0160 (5) | 0.0178 (5) | 0.0001 (4) | −0.0001 (4) | −0.0025 (4) |
| C7 | 0.0148 (5) | 0.0177 (5) | 0.0203 (5) | 0.0006 (4) | 0.0012 (4) | −0.0035 (4) |
| C4 | 0.0166 (5) | 0.0208 (6) | 0.0161 (5) | 0.0002 (4) | 0.0004 (4) | −0.0011 (4) |
| C5 | 0.0167 (5) | 0.0215 (6) | 0.0202 (6) | −0.0001 (5) | −0.0006 (4) | 0.0039 (5) |
| C9 | 0.0219 (6) | 0.0199 (5) | 0.0176 (5) | −0.0022 (5) | 0.0005 (4) | 0.0000 (4) |
| C13 | 0.0241 (6) | 0.0162 (5) | 0.0205 (6) | 0.0009 (5) | 0.0031 (5) | −0.0014 (4) |
| C6 | 0.0151 (5) | 0.0166 (5) | 0.0258 (6) | 0.0011 (4) | 0.0004 (4) | 0.0006 (5) |
| C12 | 0.0353 (7) | 0.0180 (6) | 0.0237 (6) | 0.0025 (5) | 0.0117 (5) | −0.0024 (5) |
| C11 | 0.0460 (8) | 0.0188 (6) | 0.0156 (5) | −0.0047 (6) | 0.0058 (5) | −0.0031 (5) |
| C10 | 0.0340 (7) | 0.0230 (6) | 0.0166 (6) | −0.0066 (5) | −0.0028 (5) | 0.0013 (5) |
(II). Geometric parameters (Å, º)
| O1—C2 | 1.2309 (14) | C4—H4 | 0.9500 |
| N1—C7A | 1.3997 (15) | C4—C5 | 1.3939 (17) |
| N1—C2 | 1.3908 (14) | C5—H5 | 0.9500 |
| N1—C8 | 1.4262 (14) | C5—C6 | 1.3928 (17) |
| N3—H3 | 0.8800 | C9—H9 | 0.9500 |
| N3—C2 | 1.3685 (15) | C9—C10 | 1.3880 (17) |
| N3—C3A | 1.3872 (15) | C13—H13 | 0.9500 |
| C7A—C3A | 1.3976 (15) | C13—C12 | 1.3912 (17) |
| C7A—C7 | 1.3821 (16) | C6—H6 | 0.9500 |
| C8—C9 | 1.3910 (17) | C12—H12 | 0.9500 |
| C8—C13 | 1.3911 (16) | C12—C11 | 1.383 (2) |
| C3A—C4 | 1.3793 (16) | C11—H11 | 0.9500 |
| C7—H7 | 0.9500 | C11—C10 | 1.387 (2) |
| C7—C6 | 1.3933 (17) | C10—H10 | 0.9500 |
| C7A—N1—C8 | 125.54 (10) | C5—C4—H4 | 121.4 |
| C2—N1—C7A | 109.23 (9) | C4—C5—H5 | 119.3 |
| C2—N1—C8 | 125.02 (10) | C6—C5—C4 | 121.32 (11) |
| C2—N3—H3 | 124.8 | C6—C5—H5 | 119.3 |
| C2—N3—C3A | 110.31 (9) | C8—C9—H9 | 120.3 |
| C3A—N3—H3 | 124.8 | C10—C9—C8 | 119.35 (12) |
| C3A—C7A—N1 | 106.78 (10) | C10—C9—H9 | 120.3 |
| C7—C7A—N1 | 131.77 (11) | C8—C13—H13 | 120.3 |
| C7—C7A—C3A | 121.41 (11) | C8—C13—C12 | 119.33 (12) |
| O1—C2—N1 | 126.63 (11) | C12—C13—H13 | 120.3 |
| O1—C2—N3 | 126.89 (11) | C7—C6—H6 | 119.4 |
| N3—C2—N1 | 106.48 (10) | C5—C6—C7 | 121.19 (11) |
| C9—C8—N1 | 119.98 (10) | C5—C6—H6 | 119.4 |
| C9—C8—C13 | 120.59 (11) | C13—C12—H12 | 119.8 |
| C13—C8—N1 | 119.41 (10) | C11—C12—C13 | 120.36 (12) |
| N3—C3A—C7A | 107.15 (10) | C11—C12—H12 | 119.8 |
| C4—C3A—N3 | 131.35 (11) | C12—C11—H11 | 120.0 |
| C4—C3A—C7A | 121.50 (11) | C12—C11—C10 | 119.96 (12) |
| C7A—C7—H7 | 121.4 | C10—C11—H11 | 120.0 |
| C7A—C7—C6 | 117.27 (11) | C9—C10—H10 | 119.8 |
| C6—C7—H7 | 121.4 | C11—C10—C9 | 120.41 (12) |
| C3A—C4—H4 | 121.4 | C11—C10—H10 | 119.8 |
| C3A—C4—C5 | 117.24 (11) | ||
| N1—C7A—C3A—N3 | −0.32 (12) | C8—N1—C7A—C3A | 176.62 (10) |
| N1—C7A—C3A—C4 | 179.08 (10) | C8—N1—C7A—C7 | −1.01 (19) |
| N1—C7A—C7—C6 | 179.56 (11) | C8—N1—C2—O1 | 3.36 (19) |
| N1—C8—C9—C10 | 177.03 (11) | C8—N1—C2—N3 | −177.43 (10) |
| N1—C8—C13—C12 | −177.13 (11) | C8—C9—C10—C11 | 0.53 (19) |
| N3—C3A—C4—C5 | −179.65 (11) | C8—C13—C12—C11 | −0.35 (19) |
| C7A—N1—C2—O1 | 178.21 (11) | C3A—N3—C2—O1 | −178.39 (11) |
| C7A—N1—C2—N3 | −2.59 (12) | C3A—N3—C2—N1 | 2.40 (12) |
| C7A—N1—C8—C9 | −129.31 (12) | C3A—C7A—C7—C6 | 2.22 (16) |
| C7A—N1—C8—C13 | 48.81 (16) | C3A—C4—C5—C6 | 1.38 (17) |
| C7A—C3A—C4—C5 | 1.11 (17) | C7—C7A—C3A—N3 | 177.61 (10) |
| C7A—C7—C6—C5 | 0.27 (17) | C7—C7A—C3A—C4 | −2.99 (17) |
| C2—N1—C7A—C3A | 1.81 (12) | C4—C5—C6—C7 | −2.11 (18) |
| C2—N1—C7A—C7 | −175.82 (12) | C9—C8—C13—C12 | 0.98 (18) |
| C2—N1—C8—C9 | 44.70 (17) | C13—C8—C9—C10 | −1.07 (18) |
| C2—N1—C8—C13 | −137.18 (12) | C13—C12—C11—C10 | −0.2 (2) |
| C2—N3—C3A—C7A | −1.31 (13) | C12—C11—C10—C9 | 0.1 (2) |
| C2—N3—C3A—C4 | 179.37 (12) |
(II). Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N3—H3···O1i | 0.88 | 2.00 | 2.8453 (13) | 174 |
Symmetry code: (i) −x+1, −y, −z+1.
Funding Statement
Funding for this research was provided by: National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1G1A1093332 and 2022R1F1A1064158).
References
- Ait Elmachkouri, Y., Saber, A., Irrou, E., Amer, B., Mague, J. T., Hökelek, T., Labd Taha, M., Sebbar, N. K. & Essassi, E. M. (2021). Acta Cryst. E77, 559–563. [DOI] [PMC free article] [PubMed]
- Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276. [DOI] [PMC free article] [PubMed]
- Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3069. [DOI] [PMC free article] [PubMed]
- Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122. [DOI] [PMC free article] [PubMed]
- Bellenie, B. R., Cheung, K. J., Varela, A., Pierrat, O. A., Collie, G. W., Box, G. M., Bright, M. D., Gowan, S., Hayes, A., Rodrigues, M. J., Shetty, K. N., Carter, M., Davis, O. A., Henley, A. T., Innocenti, P., Johnson, L. D., Liu, M., de Klerk, S., Le Bihan, Y.-V., Lloyd, M. G., McAndrew, P. C., Shehu, E., Talbot, R., Woodward, H. L., Burke, R., Kirkin, V., van Montfort, R. L. M., Raynaud, F. I., Rossanese, O. W. & Hoelder, S. (2020). J. Med. Chem. 63, 4047–4068. [DOI] [PMC free article] [PubMed]
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Beyer, A., Reucher, C. M. M. & Bolm, C. (2011). Org. Lett. 13, 2876–2879. [DOI] [PubMed]
- Bouayad-Gervais, S., Nielsen, C. D. T., Turksoy, A., Sperger, T., Deckers, K. & Schoenebeck, F. (2022). J. Am. Chem. Soc. 144, 6100–6106. [DOI] [PubMed]
- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dombroski, M. A., Letavic, M. A., McClure, K. F., Barberia, J. T., Carty, T. J., Cortina, S. R., Csiki, C., Dipesa, A. J., Elliott, N. C., Gabel, C. A., Jordan, C. K., Labasi, J. M., Martin, W. H., Peese, K. M., Stock, I. A., Svensson, L., Sweeney, F. J. & Yu, C. H. (2004). Bioorg. Med. Chem. Lett. 14, 919–923. [DOI] [PubMed]
- Elsinga, P. H., van Waarde, A., Jaeggi, K. A., Schreiber, G., Heldoorn, M. & Vaalburg, W. (1997). J. Med. Chem. 40, 3829–3835. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gustin, D. J., Sehon, C. A., Wei, J., Cai, H., Meduna, S. P., Khatuya, H., Sun, S., Gu, Y., Jiang, W., Thurmond, R. L., Karlsson, L. & Edwards, J. P. (2005). Bioorg. Med. Chem. Lett. 15, 1687–1691. [DOI] [PubMed]
- Hammach, A., Barbosa, A., Gaenzler, F. C., Fadra, T., Goldberg, D., Hao, M.-H., Kroe, R. R., Liu, P., Qian, K. C., Ralph, M., Sarko, C., Soleymanzadeh, F. & Moss, N. (2006). Bioorg. Med. Chem. Lett. 16, 6316–6320. [DOI] [PubMed]
- Henning, R., Lattrell, R., Gerhards, H. J. & Leven, M. (1987). J. Med. Chem. 30, 814–819. [DOI] [PubMed]
- Kawamoto, H., Nakashima, H., Kato, T., Arai, S., Kamata, K. & Iwasawa, Y. (2001). Tetrahedron, 57, 981–986.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Li, Q., Li, T., Woods, K. W., Gu, W.-Z., Cohen, J., Stoll, V. S., Galicia, T., Hutchins, C., Frost, D., Rosenberg, S. H. & Sham, H. L. (2005). Bioorg. Med. Chem. Lett. 15, 2918–2922. [DOI] [PubMed]
- Liu, P., Wang, Z. & Hu, X. (2012). Eur. J. Org. Chem. pp. 1994–2000.
- Łukasik, E. & Wróbel, Z. (2016). Synthesis, 48, 1159–1166.
- Mark, C., Bornatowicz, B., Mitterhauser, M., Hendl, M., Nics, L., Haeusler, D., Lanzenberger, R., Berger, M. L., Spreitzer, H. & Wadsak, W. (2013). Nucl. Med. Biol. 40, 295–303. [DOI] [PubMed]
- Metz, H.-J. & Morgenroth, F. (2009). In High Performance Pigments, edited by E. B. Faulkner & R. J. Schwarz, pp. 139–164. Weinheim: Wiley-VCH.
- Monforte, A.-M., Logoteta, P., De Luca, L., Iraci, N., Ferro, S., Maga, G., De Clercq, E., Pannecouque, C. & Chimirri, A. (2010). Bioorg. Med. Chem. 18, 1702–1710. [DOI] [PubMed]
- Monforte, A.-M., Logoteta, P., Ferro, S., De Luca, L., Iraci, N., Maga, G., Clercq, E. D., Pannecouque, C. & Chimirri, A. (2009). Bioorg. Med. Chem. 17, 5962–5967. [DOI] [PubMed]
- Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822. [DOI] [PMC free article] [PubMed]
- Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283. [DOI] [PMC free article] [PubMed]
- Palin, R., Clark, J. K., Evans, L., Houghton, A. K., Jones, P. S., Prosser, A., Wishart, G. & Yoshiizumi, K. (2008). Bioorg. Med. Chem. 16, 2829–2851. [DOI] [PubMed]
- Poulain, R., Horvath, D., Bonnet, B., Eckhoff, C., Chapelain, B., Bodinier, M.-C. & Déprez, B. (2001). J. Med. Chem. 44, 3378–3390. [DOI] [PubMed]
- Pribut, N., Basson, A. E., van Otterlo, W. A. L., Liotta, D. C. & Pelly, S. C. (2019). ACS Med. Chem. Lett. 10, 196–202. [DOI] [PMC free article] [PubMed]
- Qi, X., Zhou, R., Peng, J.-B., Ying, J. & Wu, X.-F. (2019). Eur. J. Org. Chem. pp. 5161–5164.
- Roger, G., Lagnel, B., Besret, L., Bramoullé, Y., Coulon, C., Ottaviani, M., Kassiou, M., Bottlaender, M., Valette, H. & Dollé, F. (2003). Bioorg. Med. Chem. 11, 5401–5408. [DOI] [PubMed]
- Rong, Y., Al-Harbi, A., Kriegel, B. & Parkin, G. (2013). Inorg. Chem. 52, 7172–7182. [DOI] [PubMed]
- Sebhaoui, J., El Bakri, Y., Lai, C.-H., Karthikeyan, S., Anouar, E. H., Mague, J. T. & Essassi, E. M. (2021). J. Biomol. Struct. Dyn. 39, 4859–4877. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
- Tapia, I., Alonso-Cires, L., López-Tudanca, P. L., Mosquera, R., Labeaga, L., Innerárity, A. & Orjales, A. (1999). J. Med. Chem. 42, 2870–2880. [DOI] [PubMed]
- Yu, B., Zhang, H., Zhao, Y., Chen, S., Xu, J., Hao, L. & Liu, Z. (2013). ACS Catal. 3, 2076–2082.
- Zhang, P., Terefenko, E. A., McComas, C. C., Mahaney, P. E., Vu, A., Trybulski, E., Koury, E., Johnston, G., Bray, J. & Deecher, D. (2008). Bioorg. Med. Chem. Lett. 18, 6067–6070. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023003961/vm2281sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023003961/vm2281Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023003961/vm2281IIsup3.hkl
Supporting information file. DOI: 10.1107/S2056989023003961/vm2281Isup4.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report




