Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 May 16;79(Pt 6):549–551. doi: 10.1107/S2056989023004103

Synthesis and structure of photodegradable 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propyl N-butyl­carbamate

Takafumi Honda a, Michiko Ito a, Kazuo Yamaguchi a, Noriko Chikaraishi Kasuga a,*, Hiroyasu Sato b
Editor: J Ellenac
PMCID: PMC10242739  PMID: 37288466

1-(4,5-Dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propyl butyl­carbamate, which affords butyl­amine on photoirradiation, was prepared by the reaction of 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propan-1-ol and butyl­iso­cyanate using di­butyl­tin dilaurate as a catalyst. Single crystals of the carbamate were grown in a 1:1 mixed solution of hexane and ethyl acetate. Two nitro groups and one meth­oxy group of the novel photo-protecting group were twisted out of the plane of the aromatic ring and inter­molecular hydrogen bonds are observed between carbamate moieties.

Keywords: photolabile carbamate; 2,3-di­nitro­benzyl group; inter­molecular hydrogen bonding; crystal structure

Abstract

The reaction of 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propan-1-ol and butyl­iso­cyanate using di­butyl­tin dilaurate as a catalyst afforded 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propyl N-butyl­carbamate, C17H25N3O8, which released butyl­amine upon photoirradiation. Single crystals of the title compound were grown in a 1:1 mixed solution of hexane and ethyl acetate. Two nitro groups and one meth­oxy group are twisted out of the plane of the aromatic ring in the novel photo-protecting group. Inter­molecular hydrogen bonds are observed between N-butyl­carbamate moieties parallel to the a axis.

1. Chemical context

Photodegradable protective groups (PPGs) are common tools in the field of organic, biochemical, and materials sciences (Cambie et al., 2016; Ellis-Davies, 2020; Hansen et al., 2015). 2-Nitro­benzyl groups are widely used as PPGs because several precursors are available, they react with various functional groups and the resulting protected compounds are soluble in common organic solvents. To increase the sensitivity of 2-nitro­benzyl-group-protected derivatives, several chemical modifications, such as the introduction of substituents at the α-position, have been performed (Kasuga et al., 2016; Zhao et al., 2012). 1.

Herein, we report the synthesis and structure of the novel photolabile title compound 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propyl N-butyl­carbamate (1), which has an isopropyl group at the α-position and an additional nitro group at the 3-position. It was prepared from the corres­ponding alcohol and iso­cyanate using a tin catalyst based on a previously reported reaction with modifications (Stegmaier et al., 2008) and the amine was released upon photoirradiation, which indicated that the compound has high reactivity and the potential for application in various functional materials. Compound 1 exhibits a higher sensitivity to light than the corresponding compound with one nitro group at the ortho position (Kasuga et al., 2015).

2. Structural commentary

The asymmetric unit of 1 contains a single mol­ecule in which four functional groups and a carbamate linkage site are connected to the aromatic ring. The substituents are positioned in a manner that prevents steric repulsion (Fig. 1).

Figure 1.

Figure 1

Mol­ecular structure of photocleavable 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propyl butyl­carbamate. Displacement ellipsoids are drawn at the 50% probability level. The inter­molecular hydrogen bonds (Table 1) are drawn as dotted lines.

The aromatic ring (C1–C6) and five attached atoms (N1, N2, O5, O6, and C7) are almost planar, as indicated by the torsion angles N2—C3—C2—N1 = 4.4 (3)°, O5—C4—C5—O6 = −8.0 (3)°, and C7—C1—C2—N1 = −4.3 (3)°. However, the torsion angles involving the two nitro groups [O2—N1—C2—C1 = 56.9 (3)°, O1—N1—C2—C1 = −122.5 (2)°, O3—N2—C3—C2 = −125.9 (3)°, and O4—N2—C3—C2 = 53.9 (3)°] indicate that both NO2 groups are twisted relative to the plane of the aromatic ring. The torsion angles involving the two meth­oxy groups [C16—O5—C4—C3 and C17—O6—C5—C4) are −110.7 (2)° and 172.5 (2)°] indicate that one meth­oxy group (O5–C16) is twisted and the other (O6–C17) is located in the same plane as the aromatic ring.

In the related compound, 4,5-dimeth­oxy-2-nitro­benzyl acetate (shown in the scheme below), the nitro and dimeth­oxy groups are in the same plane as the aromatic ring and the whole mol­ecule is flat in the absence of substituents at the α-position (Kasuga et al., 2015). 2.

3. Supra­molecular features

In the crystal, N3—H3⋯O8i hydrogen bonds link the mol­ecules into chains parallel to the a axis (Fig. 2 and Table 1).

Figure 2.

Figure 2

Inter­molecular hydrogen bonds (Table 1) between the carbamate moieties, shown as dotted lines, link the molecules into chains parallel to the a axis.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O8i 0.78 (3) 2.26 (3) 3.042 (3) 176 (3)

Symmetry code: (i) Inline graphic .

4. Synthesis and crystallization

The synthesis of compound 1 was based on the method reported by Stegmaier et al. (2008) with modifications. The synthesis and photocleavage is shown in the scheme below. This di­nitro­benzyl protecting group photocleaved twice as fast as the corresponding 2-mono­nitro­benzyl group. Under an N2 atmosphere, a mixture of 1-(4,5-dimeth­oxy-2,3-di­nitro­phen­yl)-2-methyl­propan-1-ol (150 mg, 0.5 mmol), n-butyl iso­cyanate (85 µL, 0.75 mmol), di­butyl­tin laurate (15 µL), and 1.5 ml of tetra­hydro­furan were refluxed for 19 h. After removing the solvent, the crude solid was purified by silica gel column chromatography. Pale-yellow needle-shaped crystals were grown in a 1:1 mixed solution of hexane and ethyl acetate by slow evaporation. The crystals were washed with a small volume of ethyl acetate and dried in vacuo (50 mg). 4.

Analysis calculated for C17H25N3O8: C 51.12, H 6.31, N 10.52%. Found: C 51.07, H 6.20, N 10.42%. Prominent IR bands at 1800–400 cm−1 (KBr disc): 1693m, 1557m, 1359m. Melting point 379.9–381.1 K (uncorrected). 1H NMR (CDCl3, 292.2 K) 0.90 (3H, t), 0.91 (3H, d), 1.03 (3H, d), 1.32 (2H, m), 1.45 (2H, m), 2.18 (1H, m), 3.13 (2H, m), 3.93 (6H, s), 4.76 (1H, br), 5.61 (1H, d), 6.97 (1H, s). 13C NMR (CDCl3, 293.7 K) 13.69, 17.88, 19.21, 19.86, 31.88, 33.39, 40.85, 56.71, 62.58, 76.04, 111.29, 131.17, 134.82, 140.45, 141.14, 155.28, 155.84.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model with U iso(H) = 1.2 or 1.5U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C17H25N3O8
M r 399.40
Crystal system, space group Monoclinic, I a
Temperature (K) 120
a, b, c (Å) 9.9490 (4), 19.9223 (8), 10.2378 (4)
β (°) 97.616 (4)
V3) 2011.30 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.25 × 0.21 × 0.18
 
Data collection
Diffractometer Rigaku VariMax SaturnCCD724
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.906, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18806, 5927, 4720
R int 0.039
(sin θ/λ)max−1) 0.730
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.094, 1.04
No. of reflections 5927
No. of parameters 262
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.19

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023004103/ex2069sup1.cif

e-79-00549-sup1.cif (570.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004103/ex2069Isup2.hkl

e-79-00549-Isup2.hkl (471.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004103/ex2069Isup4.cdx

Supporting information file. DOI: 10.1107/S2056989023004103/ex2069Isup4.cml

CCDC reference: 2261578

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The support of Kanagawa University, including the use of the diffractometer, is gratefully acknowledged. Author contributions: conceptualization, MI, NCK, and KY; synthesis and analysis, HT, MI, and NCK; writing, NCK and KY; validation, NCK and HS.

supplementary crystallographic information

Crystal data

C17H25N3O8 Dx = 1.319 Mg m3
Mr = 399.40 Melting point = 380.1–274.2 K
Monoclinic, Ia Mo Kα radiation, λ = 0.71073 Å
a = 9.9490 (4) Å Cell parameters from 10281 reflections
b = 19.9223 (8) Å θ = 3.4–31.2°
c = 10.2378 (4) Å µ = 0.11 mm1
β = 97.616 (4)° T = 120 K
V = 2011.30 (14) Å3 Block, clear light yellow
Z = 4 0.25 × 0.21 × 0.18 mm
F(000) = 848

Data collection

Rigaku VariMax SaturnCCD724 diffractometer 5927 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 4720 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
ω scans θmax = 31.3°, θmin = 3.4°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) h = −14→14
Tmin = 0.906, Tmax = 1.000 k = −27→28
18806 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.040P)2 + 0.1525P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
5927 reflections Δρmax = 0.18 e Å3
262 parameters Δρmin = −0.18 e Å3
2 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.13662 (19) 0.40830 (14) 0.6373 (2) 0.0649 (7)
O2 0.18717 (19) 0.32139 (11) 0.5256 (2) 0.0512 (5)
O3 0.2890 (2) 0.41867 (10) 0.9547 (2) 0.0502 (5)
O4 0.2377 (2) 0.32211 (10) 0.8644 (2) 0.0483 (5)
O5 0.57340 (17) 0.39172 (8) 0.96576 (16) 0.0313 (4)
O6 0.75485 (16) 0.42284 (9) 0.80062 (16) 0.0341 (4)
O7 0.48515 (15) 0.43395 (7) 0.34698 (15) 0.0246 (3)
O8 0.30610 (16) 0.50552 (8) 0.34710 (17) 0.0349 (4)
N1 0.2168 (2) 0.36864 (14) 0.5995 (2) 0.0403 (6)
N2 0.3014 (2) 0.37462 (11) 0.8748 (2) 0.0346 (5)
N3 0.5126 (2) 0.54139 (9) 0.30272 (19) 0.0248 (4)
C1 0.4522 (2) 0.38928 (11) 0.5581 (2) 0.0242 (5)
C2 0.3608 (2) 0.38015 (11) 0.6472 (2) 0.0266 (5)
C3 0.4010 (2) 0.38545 (11) 0.7824 (2) 0.0270 (5)
C4 0.5334 (2) 0.39790 (11) 0.8338 (2) 0.0260 (5)
C5 0.6271 (2) 0.40978 (11) 0.7437 (2) 0.0255 (5)
C6 0.5857 (2) 0.40607 (11) 0.6096 (2) 0.0249 (5)
C7 0.4121 (2) 0.38328 (11) 0.4104 (2) 0.0262 (5)
C8 0.4431 (3) 0.31488 (12) 0.3535 (2) 0.0309 (5)
C9 0.5937 (3) 0.29733 (13) 0.3712 (3) 0.0413 (6)
C10 0.3836 (3) 0.31118 (14) 0.2093 (3) 0.0426 (7)
C11 0.4244 (2) 0.49560 (11) 0.3336 (2) 0.0233 (4)
C12 0.4751 (2) 0.61096 (11) 0.2740 (2) 0.0288 (5)
C13 0.4652 (2) 0.62909 (11) 0.1295 (2) 0.0289 (5)
C14 0.4296 (3) 0.70286 (12) 0.1055 (3) 0.0374 (6)
C15 0.4166 (3) 0.72204 (14) −0.0381 (3) 0.0421 (7)
C16 0.6073 (3) 0.45403 (14) 1.0351 (3) 0.0446 (7)
C17 0.8593 (2) 0.42724 (15) 0.7164 (3) 0.0412 (7)
H3 0.588 (3) 0.5291 (12) 0.310 (3) 0.026 (7)*
H6 0.648082 0.414974 0.551752 0.030*
H7 0.314682 0.392050 0.389922 0.031*
H8 0.397129 0.280852 0.400680 0.037*
H9A 0.642527 0.331190 0.330187 0.062*
H9B 0.606179 0.254638 0.331034 0.062*
H9C 0.627043 0.295128 0.463472 0.062*
H10A 0.288238 0.320714 0.200686 0.064*
H10B 0.397234 0.266968 0.176167 0.064*
H10C 0.427650 0.343506 0.159920 0.064*
H12A 0.541687 0.639913 0.323654 0.035*
H12B 0.388247 0.619657 0.303969 0.035*
H13A 0.396452 0.601434 0.079559 0.035*
H13B 0.551210 0.619674 0.098363 0.035*
H14A 0.344649 0.712310 0.138677 0.045*
H14B 0.499305 0.730341 0.154638 0.045*
H15A 0.500225 0.712690 −0.071672 0.063*
H15B 0.396447 0.769065 −0.047350 0.063*
H15C 0.344706 0.696579 −0.086689 0.063*
H16A 0.675426 0.477282 0.994558 0.067*
H16B 0.641171 0.444566 1.125445 0.067*
H16C 0.527663 0.481566 1.031391 0.067*
H17A 0.839687 0.463759 0.655666 0.062*
H17B 0.862726 0.386057 0.668233 0.062*
H17C 0.945213 0.434835 0.768997 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0257 (10) 0.1028 (19) 0.0698 (16) 0.0228 (11) 0.0194 (10) 0.0230 (14)
O2 0.0328 (10) 0.0666 (14) 0.0513 (13) −0.0210 (10) −0.0052 (9) 0.0176 (11)
O3 0.0577 (13) 0.0498 (12) 0.0502 (13) 0.0163 (10) 0.0334 (10) 0.0051 (9)
O4 0.0390 (11) 0.0518 (13) 0.0586 (14) −0.0083 (9) 0.0227 (9) 0.0144 (10)
O5 0.0398 (10) 0.0322 (9) 0.0233 (8) −0.0001 (7) 0.0097 (7) −0.0013 (7)
O6 0.0253 (8) 0.0503 (11) 0.0274 (9) −0.0058 (7) 0.0067 (7) −0.0059 (7)
O7 0.0201 (7) 0.0261 (8) 0.0288 (8) 0.0013 (6) 0.0069 (6) 0.0082 (6)
O8 0.0193 (8) 0.0366 (9) 0.0498 (11) 0.0031 (7) 0.0078 (7) 0.0056 (8)
N1 0.0195 (10) 0.0607 (15) 0.0417 (13) 0.0005 (10) 0.0079 (9) 0.0249 (11)
N2 0.0297 (11) 0.0389 (12) 0.0384 (12) 0.0114 (10) 0.0170 (9) 0.0152 (10)
N3 0.0199 (9) 0.0250 (10) 0.0301 (10) 0.0015 (8) 0.0051 (8) 0.0023 (7)
C1 0.0215 (11) 0.0249 (11) 0.0269 (12) 0.0025 (8) 0.0059 (9) 0.0063 (9)
C2 0.0197 (10) 0.0296 (12) 0.0316 (13) 0.0027 (9) 0.0073 (9) 0.0087 (9)
C3 0.0256 (11) 0.0253 (11) 0.0333 (12) 0.0052 (9) 0.0157 (9) 0.0087 (9)
C4 0.0298 (12) 0.0239 (11) 0.0259 (12) 0.0032 (9) 0.0105 (9) 0.0008 (8)
C5 0.0234 (11) 0.0259 (11) 0.0280 (12) 0.0006 (9) 0.0067 (9) −0.0016 (9)
C6 0.0208 (10) 0.0283 (12) 0.0278 (12) −0.0005 (9) 0.0114 (9) 0.0032 (9)
C7 0.0206 (10) 0.0303 (12) 0.0278 (12) −0.0034 (9) 0.0034 (9) 0.0104 (9)
C8 0.0343 (13) 0.0287 (12) 0.0293 (12) −0.0065 (10) 0.0021 (10) 0.0062 (9)
C9 0.0410 (15) 0.0332 (14) 0.0485 (17) 0.0066 (12) 0.0019 (12) −0.0069 (12)
C10 0.0525 (16) 0.0427 (15) 0.0310 (14) −0.0119 (13) −0.0006 (12) 0.0028 (11)
C11 0.0228 (11) 0.0278 (11) 0.0189 (10) 0.0037 (9) 0.0008 (8) 0.0024 (8)
C12 0.0302 (12) 0.0232 (11) 0.0332 (13) 0.0023 (9) 0.0050 (10) 0.0002 (9)
C13 0.0252 (11) 0.0268 (12) 0.0351 (13) 0.0001 (9) 0.0052 (9) 0.0028 (10)
C14 0.0370 (14) 0.0301 (13) 0.0459 (16) 0.0013 (11) 0.0087 (12) 0.0065 (11)
C15 0.0353 (14) 0.0404 (16) 0.0510 (17) 0.0019 (12) 0.0071 (12) 0.0169 (13)
C16 0.0603 (19) 0.0421 (16) 0.0335 (15) −0.0066 (13) 0.0147 (13) −0.0108 (11)
C17 0.0259 (13) 0.0651 (19) 0.0339 (15) −0.0097 (12) 0.0085 (11) −0.0077 (13)

Geometric parameters (Å, º)

O2—N1 1.219 (3) C8—C9 1.525 (4)
O3—N2 1.217 (3) C8—C10 1.518 (4)
O5—C4 1.363 (3) C9—H9A 0.9600
O5—C16 1.448 (3) C9—H9B 0.9600
O8—C11 1.220 (3) C9—H9C 0.9600
O6—C5 1.351 (3) C10—H10A 0.9600
O6—C17 1.438 (3) C10—H10B 0.9600
O7—C11 1.367 (3) C10—H10C 0.9600
O7—C7 1.447 (2) C12—H12A 0.9700
N1—O1 1.222 (3) C12—H12B 0.9700
N1—C2 1.469 (3) C12—C13 1.513 (3)
N2—O4 1.220 (3) C13—H13A 0.9700
N2—C3 1.473 (3) C13—H13B 0.9700
N3—C11 1.332 (3) C13—C14 1.524 (3)
N3—C12 1.455 (3) C14—H14A 0.9700
N3—H3 0.78 (3) C14—H14B 0.9700
C1—C6 1.402 (3) C14—C15 1.508 (4)
C1—C2 1.383 (3) C15—H15A 0.9600
C1—C7 1.517 (3) C15—H15B 0.9600
C3—C2 1.394 (3) C15—H15C 0.9600
C4—C3 1.374 (3) C16—H16A 0.9600
C4—C5 1.416 (3) C16—H16B 0.9600
C6—H6 0.9300 C16—H16C 0.9600
C6—C5 1.382 (3) C17—H17A 0.9600
C7—H7 0.9800 C17—H17B 0.9600
C8—H8 0.9800 C17—H17C 0.9600
C8—C7 1.529 (3)
O1—N1—C2 116.3 (3) C8—C9—H9C 109.5
O2—N1—O1 125.6 (2) C8—C10—H10A 109.5
O2—N1—C2 118.1 (2) C8—C10—H10B 109.5
O3—N2—O4 125.4 (2) C8—C10—H10C 109.5
O3—N2—C3 117.5 (2) C9—C8—H8 107.3
O4—N2—C3 117.1 (2) C9—C8—C7 113.8 (2)
O5—C4—C3 120.13 (19) C10—C8—H8 107.3
O5—C4—C5 122.0 (2) C10—C8—C7 110.0 (2)
O5—C16—H16A 109.5 C10—C8—C9 110.8 (2)
O5—C16—H16B 109.5 C11—O7—C7 115.47 (17)
O5—C16—H16C 109.5 C11—N3—C12 122.75 (19)
O6—C5—C4 114.47 (19) C11—N3—H3 114.4 (19)
O6—C5—C6 125.36 (19) C12—N3—H3 122.3 (19)
O6—C17—H17A 109.5 C12—C13—H13A 109.3
O6—C17—H17B 109.5 C12—C13—H13B 109.3
O6—C17—H17C 109.5 C12—C13—C14 111.8 (2)
O7—C7—C1 108.12 (17) C13—C12—H12A 108.8
O7—C7—C8 108.20 (18) C13—C12—H12B 108.8
O7—C7—H7 108.7 C13—C14—H14A 109.0
O8—C11—O7 123.68 (19) C13—C14—H14B 109.0
O8—C11—N3 126.3 (2) C14—C13—H13A 109.3
N3—C12—H12A 108.8 C14—C13—H13B 109.3
N3—C12—H12B 108.8 C14—C15—H15A 109.5
N3—C12—C13 113.99 (19) C14—C15—H15B 109.5
N3—C11—O7 110.05 (18) C14—C15—H15C 109.5
C1—C6—H6 119.0 C15—C14—C13 112.9 (2)
C1—C2—N1 120.0 (2) C15—C14—H14A 109.0
C1—C2—C3 121.2 (2) C15—C14—H14B 109.0
C1—C7—C8 114.22 (18) H9A—C9—H9B 109.5
C1—C7—H7 108.7 H9A—C9—H9C 109.5
C2—C3—N2 119.8 (2) H9B—C9—H9C 109.5
C2—C1—C6 117.2 (2) H10A—C10—H10B 109.5
C2—C1—C7 122.5 (2) H10A—C10—H10C 109.5
C3—C4—C5 117.5 (2) H10B—C10—H10C 109.5
C3—C2—N1 118.75 (19) H12A—C12—H12B 107.7
C4—O5—C16 115.31 (19) H13A—C13—H13B 107.9
C4—C3—N2 118.2 (2) H14A—C14—H14B 107.8
C4—C3—C2 121.9 (2) H15A—C15—H15B 109.5
C5—O6—C17 117.76 (18) H15A—C15—H15C 109.5
C5—C6—C1 121.93 (19) H15B—C15—H15C 109.5
C5—C6—H6 119.0 H16A—C16—H16B 109.5
C6—C1—C7 120.26 (19) H16A—C16—H16C 109.5
C6—C5—C4 120.2 (2) H16B—C16—H16C 109.5
C7—C8—H8 107.3 H17A—C17—H17B 109.5
C8—C7—H7 108.7 H17A—C17—H17C 109.5
C8—C9—H9A 109.5 H17B—C17—H17C 109.5
C8—C9—H9B 109.5
O1—N1—C2—C1 −122.5 (2) C5—C4—C3—C2 4.2 (3)
O1—N1—C2—C3 53.9 (3) C6—C1—C2—N1 174.4 (2)
O2—N1—C2—C1 56.9 (3) C6—C1—C2—C3 −1.9 (3)
O2—N1—C2—C3 −126.7 (2) C6—C1—C7—O7 −36.3 (3)
O3—N2—C3—C4 56.7 (3) C6—C1—C7—C8 84.2 (2)
O3—N2—C3—C2 −125.9 (3) C7—O7—C11—O8 −15.0 (3)
O4—N2—C3—C4 −123.5 (2) C7—O7—C11—N3 165.85 (18)
O4—N2—C3—C2 53.9 (3) C7—C1—C6—C5 −177.8 (2)
O5—C4—C3—N2 8.2 (3) C7—C1—C2—N1 −4.3 (3)
O5—C4—C3—C2 −169.1 (2) C7—C1—C2—C3 179.4 (2)
O5—C4—C5—O6 −8.0 (3) C9—C8—C7—O7 58.3 (3)
O5—C4—C5—C6 170.6 (2) C9—C8—C7—C1 −62.1 (3)
N2—C3—C2—N1 4.4 (3) C10—C8—C7—O7 −66.6 (2)
N2—C3—C2—C1 −179.3 (2) C10—C8—C7—C1 172.9 (2)
N3—C12—C13—C14 −178.41 (19) C11—O7—C7—C1 −86.6 (2)
C1—C6—C5—O6 177.1 (2) C11—O7—C7—C8 149.19 (18)
C1—C6—C5—C4 −1.4 (3) C11—N3—C12—C13 −106.4 (2)
C2—C1—C7—O7 142.3 (2) C12—N3—C11—O7 176.03 (19)
C2—C1—C7—C8 −97.2 (3) C12—N3—C11—O8 −3.1 (4)
C2—C1—C6—C5 3.6 (3) C12—C13—C14—C15 −178.9 (2)
C3—C4—C5—O6 178.9 (2) C16—O5—C4—C3 −110.7 (2)
C3—C4—C5—C6 −2.5 (3) C16—O5—C4—C5 76.3 (3)
C4—C3—C2—N1 −178.3 (2) C17—O6—C5—C4 172.5 (2)
C4—C3—C2—C1 −2.0 (3) C17—O6—C5—C6 −6.0 (3)
C5—C4—C3—N2 −178.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O8i 0.78 (3) 2.26 (3) 3.042 (3) 176 (3)

Symmetry code: (i) x+1/2, −y+1, z.

References

  1. Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V. & Noël, T. (2016). Chem. Rev. 116, 10276–10341. [DOI] [PubMed]
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Ellis-Davies, G. C. R. (2020). Acc. Chem. Res. 53, 1593–1604. [DOI] [PMC free article] [PubMed]
  4. Hansen, M. J., Velema, W. A., Lerch, M. M., Szymanski, W. & Feringa, B. L. (2015). Chem. Soc. Rev. 44, 3358–3377. [DOI] [PubMed]
  5. Kasuga, N. C., Saito, Y., Okamura, N., Miyazaki, T., Satou, H., Watanabe, K., Ohta, T., Morimoto, S. & Yamaguchi, K. (2016). J. Photochem. Photobiol. Chem. 321, 41–47.
  6. Kasuga, N. C., Saito, Y., Sato, H. & Yamaguchi, K. (2015). Acta Cryst. E71, 483–486. [DOI] [PMC free article] [PubMed]
  7. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  8. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  9. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  10. Stegmaier, P., Alonso, J. M. & Campo, A. D. (2008). Langmuir, 24, 11872–11879. [DOI] [PubMed]
  11. Zhao, H., Sterner, E. S., Coughlin, E. B. & Theato, P. (2012). Macromolecules, 45, 1723–1736.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023004103/ex2069sup1.cif

e-79-00549-sup1.cif (570.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004103/ex2069Isup2.hkl

e-79-00549-Isup2.hkl (471.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004103/ex2069Isup4.cdx

Supporting information file. DOI: 10.1107/S2056989023004103/ex2069Isup4.cml

CCDC reference: 2261578

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES