Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 May 26;79(Pt 6):567–570. doi: 10.1107/S2056989023004383

Crystal structure and Hirshfeld surface analysis of 5-oxo-7-phenyl-2-(phenyl­amino)-1H-[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbo­nitrile dimethyl sulfoxide monosolvate

Farid N Naghiyev a, Victor N Khrustalev b,c, Huseyn M Mamedov d, Mehmet Akkurt e, Ali N Khalilov a, Ajaya Bhattarai f,*, İbrahim G Mamedov a
Editor: B Therrieng
PMCID: PMC10242740  PMID: 37288458

In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds connect mol­ecules into chains along the b-axis direction through the dimethyl sulfoxide solvent mol­ecule, forming C(10) Inline graphic (6) motifs. These chains are connected via S—O⋯π inter­actions, π–π stacking inter­actions and van der Waals inter­actions.

Keywords: crystal structure; [1,2,4]triazolo[1,5-a]pyridine; hydrogen bond; Hirshfeld surface analysis

Abstract

In the title compound, C20H12N6O·C2H6OS, the [1,2,4]triazolo[1,5-a]pyridine ring system is almost planar and makes dihedral angles of 16.33 (7) and 46.80 (7)°, respectively, with the phenyl­amino and phenyl rings. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds into chains along the b-axis direction through the dimethyl sulfoxide solvent mol­ecule, forming C(10)R 2 1(6) motifs. These chains are connected via S—O⋯π inter­actions, π–π stacking inter­actions between the pyridine rings [centroid-to-centroid distance = 3.6662 (9) Å] and van der Waals inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (28.1%), C⋯H/H⋯C (27.2%), N⋯H/H⋯N (19.4%) and O⋯H/H⋯O (9.8%) inter­actions.

1. Chemical context

Diverse carbon–carbon and carbon–heteroatom bond-formation reactions are considered fundamental tools in organic synthesis. The reaction has also been amplified, extending these methods to different fields of chemistry, as well to the synthesis of natural products, in medicinal and pharmaceutical chemistry, material science, supra­molecular chemistry etc (Çelik et al., 2023; Chalkha et al., 2023; Tapera et al., 2022; Gurbanov et al., 2020; Zubkov et al., 2018). Triazolo[1,5-a]pyridines are accessible heterocyclic compounds and α-substituted pyridines are among the most widely used starting materials for their synthesis. The most common synthetic pathways to these compounds are well-reviewed in the literature (Jones & Abarca, 2010; Soliman et al., 2014; Kotovshchikov et al., 2021). The triazolo[1,5-a]pyridine moiety is a widespread structural motif in various synthetic biologically active compounds, possessing cardiovascular, trypanocidal, nitric oxide synthase inhibitor and anti­microbial activity, and in non-hormonal compounds with anti­fertility activity and leishmanicidal activity (Jones & Abarca, 2010; Mohamed et al., 2013; Poustforoosh et al., 2022).

A literature survey shows that the title compound 3 was previously synthesized in a two-pot reaction protocol (Barsy et al., 2008), wherein the imino­phospho­rane 1-amino-6-(tri­phenyl­phospho­ranyl­idene­amino)-2-oxo-4-phenyl-1,2-di­hydro­pyri­dine-3,5-dicarbo­nitrile 2 prepared from 1,6-di­amino­pyridine 1 reacted with phenyl­iso­cyanate method to prepare 3 (B pathway, Fig. 1). Herein, we disclose a more straightforward one-pot synthesis method of 3 using the same starting compound 1 at room temperature (A pathway, Fig. 1), but through a different pathway. 1.

Figure 1.

Figure 1

The synthesis routes or the title compound 3.

Continuing our investigations of heterocyclic systems with biological activity and in the framework of our ongoing structural studies (Maharramov et al., 2021, 2022; Naghiyev et al., 2020, 2021, 2022), we report the crystal structure and Hirshfeld surface analysis of the title compound, 5-oxo-7-phenyl-2-(phenyl­amino)-1,5-di­hydro-[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbo­nitrile, which crystallized as a DMSO solvate.

2. Structural commentary

In the title compound, (Fig. 2), the [1,2,4]triazolo[1,5-a]pyridine ring system (N1/N3/N4/C2/C5–C8/C8A) is almost planar [maximum deviation = 0.043 (2) Å for C5] and subtends dihedral angles of 16.33 (7) and 46.80 (7)°, respectively, with the phenyl­amino and phenyl rings (C9–C14 and C16–C21). The geometric properties of the title compound are normal and consistent with those of the related compounds listed in the Database survey (Section 4).

Figure 2.

Figure 2

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds into chains along the b-axis direction through the dimethyl sulfoxide solvent mol­ecule, forming C(10) Inline graphic (6) motifs (Bernstein et al., 1995; Table 1). These chains are connected via S—O⋯π inter­actions [S1—O2⋯Cg2i: O2⋯Cg2i = 3.1775 (14) Å; S1⋯Cg2i = 4.0054 (8) Å; S1—O2⋯Cg2i = 111.93 (6)°; symmetry code: (i) 1 − x, 1 − y, 1 − z; Cg2 is the centroid of the pyridine ring (N4/C5–C8/C8A)], π–π stacking inter­actions [Cg2⋯Cg2ii = 3.6662 (9) Å; slippage = 1.468 Å; symmetry code: (ii) −x, 1 − y, 1 − z] and van der Waals inter­actions (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 (2) 1.84 (2) 2.6249 (16) 146.9 (17)
N2—H2⋯O2 0.90 (2) 2.07 (2) 2.8680 (16) 147.7 (17)
C10—H10⋯N3 0.95 2.39 2.9956 (19) 121
C23—H23B⋯O1i 0.98 2.44 3.166 (2) 131
C24—H24B⋯N22 0.98 2.53 3.474 (2) 162

Symmetry code: (i) Inline graphic .

Figure 3.

Figure 3

A view along the c axis of the N—H⋯O and C—H⋯O bonds in the title compound.

CrystalExplorer17.5 (Spackman et al., 2021) was used to compute Hirshfeld surfaces of the title mol­ecule and two-dimensional fingerprints. The Hirshfeld surfaces were mapped over d norm in the range −0.6769 (red) to +1.1190 (blue) a.u. The inter­actions given in Table 2 play a key role in the mol­ecular packing of the title compound. The most important inter­atomic contact is H⋯H as it makes the highest contribution to the crystal packing (28.1%, Fig. 4 b). Other major contributors are C⋯H/H⋯C (27.2%, Fig. 4 c), N⋯H/H⋯N (19.4%, Fig. 4 d) and N⋯H/H⋯N (9.8%, Fig. 4 e) inter­actions. Smaller contributions are made by N⋯C/C⋯N (6.7%), C⋯C (3.6%), O⋯C/C⋯O(1.7%), N⋯N (1.5%), S⋯H/H⋯S (1.0%), O⋯N/N⋯O (0.7%), S⋯C/C⋯S(0.2%) and O⋯S/S⋯O (0.1%) inter­actions.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
O1⋯H23B 2.44 −1 + x, −1 + y, z
H17⋯O1 2.65 x, 1 − y, 1 − z
O1⋯H24A 2.63 1 − x, 1 − y, 1 − z
H1⋯O2 1.84 x, y, z
H14⋯C21 2.98 1 − x, 1 − y, 1 − z
H19⋯N15 2.73 x, 1 − y, 2 − z
H18⋯N22 2.82 1 − x, 2 − y, 2 − z
C22⋯H23B 3.08 1 − x, 2 − y, 1 − z
C9⋯H20 3.05 x, y, −1 + z
C11⋯C11 3.53 x, −y, −z
C12⋯H18 3.05 x, −1 + y, −1 + z
H19⋯H23A 2.54 x, y, 1 + z
H12⋯H24A 2.41 −1 + x, −1 + y, −1 + z
H12⋯S1 3.04 1 − x, 1 − y, −z
H23C⋯H23C 2.43 1 − x, 2 − y, 1 − z

Figure 4.

Figure 4

Two-dimensional fingerprint plots for title mol­ecule showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N and (e) O⋯H/H⋯O inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for the central nine-membered ring system ‘1,5-di­hydro­[1,2,4]triazolo[1,5-a]pyridine’ yielded three compounds related to the title compound, viz. CSD refcodes HODQEZ (Gumus et al., 2019), HODQID (Gumus et al., 2019) and RETCAX (Aydemir et al., 2018).

In the crystal of HODQEZ, pairs of N—H⋯N hydrogen bonds link the mol­ecules, forming inversion dimers with an Inline graphic (8) ring motif. The dimers are linked by C—H⋯π and C—Br⋯π inter­actions, forming layers parallel to the bc plane. In the crystal of HODQID, mol­ecules are linked by N—H⋯N and C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. In the crystal of RETCAX, N—H⋯N hydrogen bonds link the mol­ecules into supra­molecular chains propagating along the c-axis direction.

5. Synthesis and crystallization

To a solution of 1,6-di­amino-2-oxo-4-phenyl-1,2-di­hydro­pyridine-3,5-dicarbo­nitrile (0.82 g, 5.1 mmol) in DMF (25 mL) was added 10 mL of an aqueous solution of potassium hydroxide (0.28 g, 5.1 mmol). The mixture was stirred at room temperature for 2 h. Then an equimolar amount of phenyl­iso­thio­cyanate (0.51 g, 5.2 mmol) was added to the vigorously stirred reaction mixture and left overnight. After completion of the reaction, monitored by TLC, the reaction mixture was acidified by adding conc. HCl (4 mL). The precipitated solids were separated by filtration and recrystallized from an ethanol/water (1:1) solution (yield 80%; m.p. 557–558 K). Single crystals were grown from a DMSO solution.

1H NMR (300 MHz, DMSO-d 6, p.p.m.): 4.3 (s, 1H, NH); 6.9 (t, 1H, CHarom, 3 J H—H = 7.5 MHz); 7.3 (t, 2H, CHarom, 3 J H—H = 7.5 MHz); 7.5 (m, 5H, CHarom); 7.7 (d, 2H, CHarom, 3 J H—H = 8.1 MHz); 9.6 (s, 1H, NH); 13C NMR (75 MHz, DMSO-d 6, p.p.m.): 76.4 (Cquat), 83.9 (Cquat), 117.0 (CHarom), 117.5 (CN), 118.9 (CN), 120.7 (CHarom), 128.9 (CHarom), 129.0 (CHarom), 129.2 (CHarom), 129.9 (CHarom), 136.3 (Carom), 141.4 (Carom), 152.2 (Cquat), 154.9 (Cquat), 156.2 (Cquat), 161.1 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The NH H atoms were located in a difference-Fourier map [N1—H1 = 0.88 (2) Å and N2—H2 = 0.90 (2) Å] and refined with U iso(H) = 1.2U eq(N). Carbon-bound H atoms were positioned geometrically [C—H = 0.95–0.98 Å;] and were included in the refinement in the riding-model approximation with U iso(H) = 1.2 or 1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C20H12N6O·C2H6OS
M r 430.48
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 9.87885 (12), 10.46018 (13), 11.48307 (12)
α, β, γ (°) 100.9305 (10), 105.3054 (11), 112.6790 (12)
V3) 997.81 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.73
Crystal size (mm) 0.22 × 0.16 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.660, 0.781
No. of measured, independent and observed [I > 2σ(I)] reflections 22299, 4314, 4124
R int 0.037
(sin θ/λ)max−1) 0.638
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.106, 1.08
No. of reflections 4314
No. of parameters 289
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.51

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023004383/tx2068sup1.cif

e-79-00567-sup1.cif (661.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004383/tx2068Isup2.hkl

e-79-00567-Isup2.hkl (343.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004383/tx2068Isup3.cml

CCDC reference: 2264500

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors’ contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and HMM; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and HMM; supervision, ANK and MA.

supplementary crystallographic information

Crystal data

C20H12N6O·C2H6OS Z = 2
Mr = 430.48 F(000) = 448
Triclinic, P1 Dx = 1.433 Mg m3
a = 9.87885 (12) Å Cu Kα radiation, λ = 1.54184 Å
b = 10.46018 (13) Å Cell parameters from 15870 reflections
c = 11.48307 (12) Å θ = 4.8–79.3°
α = 100.9305 (10)° µ = 1.73 mm1
β = 105.3054 (11)° T = 100 K
γ = 112.6790 (12)° Prism, colourless
V = 997.81 (2) Å3 0.22 × 0.16 × 0.12 mm

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 4124 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.037
φ and ω scans θmax = 79.5°, θmin = 4.2°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −12→9
Tmin = 0.660, Tmax = 0.781 k = −12→13
22299 measured reflections l = −14→14
4314 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.554P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
4314 reflections Δρmax = 0.41 e Å3
289 parameters Δρmin = −0.51 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier map Extinction coefficient: 0.0029 (4)

Special details

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.06967 (12) 0.20611 (11) 0.42668 (10) 0.0214 (2)
N1 0.37412 (14) 0.55891 (13) 0.44627 (11) 0.0171 (2)
H1 0.465 (2) 0.635 (2) 0.4612 (18) 0.021*
C2 0.29261 (16) 0.44403 (15) 0.33251 (13) 0.0163 (3)
N2 0.35694 (14) 0.44663 (14) 0.24222 (12) 0.0189 (3)
H2 0.453 (2) 0.523 (2) 0.2678 (18) 0.023*
N3 0.15858 (14) 0.34368 (13) 0.32865 (11) 0.0178 (2)
N4 0.15615 (14) 0.40235 (12) 0.44782 (11) 0.0159 (2)
C5 0.03861 (16) 0.32893 (15) 0.49174 (14) 0.0177 (3)
C6 0.06152 (16) 0.41513 (15) 0.61676 (13) 0.0176 (3)
C7 0.19229 (16) 0.55162 (15) 0.69078 (13) 0.0174 (3)
C8 0.30798 (16) 0.61215 (15) 0.63984 (13) 0.0172 (3)
C8A 0.28510 (16) 0.53211 (15) 0.51784 (13) 0.0167 (3)
C9 0.29501 (17) 0.34391 (15) 0.11906 (13) 0.0179 (3)
C10 0.13802 (18) 0.23723 (17) 0.06025 (15) 0.0227 (3)
H10 0.0659 0.2308 0.1023 0.027*
C11 0.08828 (19) 0.13987 (18) −0.06143 (15) 0.0262 (3)
H11 −0.0189 0.0670 −0.1026 0.031*
C12 0.19282 (19) 0.14769 (18) −0.12345 (15) 0.0265 (3)
H12 0.1581 0.0794 −0.2056 0.032*
C13 0.34888 (19) 0.25654 (18) −0.06421 (15) 0.0242 (3)
H13 0.4208 0.2634 −0.1065 0.029*
C14 0.39982 (17) 0.35488 (17) 0.05611 (14) 0.0211 (3)
H14 0.5062 0.4298 0.0958 0.025*
C15 −0.06863 (17) 0.35194 (15) 0.65539 (13) 0.0186 (3)
N15 −0.18041 (15) 0.29648 (14) 0.67726 (13) 0.0235 (3)
C16 0.21011 (16) 0.63048 (16) 0.82000 (13) 0.0178 (3)
C17 0.25352 (17) 0.78044 (16) 0.85674 (14) 0.0202 (3)
H17 0.2689 0.8319 0.7977 0.024*
C18 0.27428 (18) 0.85436 (16) 0.97909 (14) 0.0223 (3)
H18 0.3041 0.9563 1.0037 0.027*
C19 0.25145 (17) 0.77930 (17) 1.06577 (14) 0.0218 (3)
H19 0.2658 0.8301 1.1495 0.026*
C20 0.20758 (17) 0.62989 (17) 1.03002 (14) 0.0215 (3)
H20 0.1913 0.5788 1.0892 0.026*
C21 0.18757 (17) 0.55538 (16) 0.90782 (14) 0.0195 (3)
H21 0.1587 0.4537 0.8839 0.023*
C22 0.44758 (17) 0.74971 (16) 0.70142 (14) 0.0191 (3)
N22 0.56198 (16) 0.85887 (14) 0.74045 (13) 0.0251 (3)
S1 0.73840 (4) 0.86862 (4) 0.42677 (3) 0.01894 (11)
O2 0.63433 (12) 0.71002 (11) 0.41226 (10) 0.0215 (2)
C23 0.6060 (2) 0.94489 (18) 0.39068 (19) 0.0328 (4)
H23A 0.5447 0.9058 0.2985 0.049*
H23B 0.6662 1.0518 0.4170 0.049*
H23C 0.5340 0.9190 0.4366 0.049*
C24 0.83449 (19) 0.96161 (17) 0.59410 (15) 0.0249 (3)
H24A 0.9001 0.9187 0.6319 0.037*
H24B 0.7551 0.9518 0.6326 0.037*
H24C 0.9013 1.0657 0.6101 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0204 (5) 0.0187 (5) 0.0200 (5) 0.0048 (4) 0.0082 (4) 0.0039 (4)
N1 0.0170 (6) 0.0169 (5) 0.0174 (6) 0.0073 (5) 0.0079 (4) 0.0045 (4)
C2 0.0179 (6) 0.0170 (6) 0.0160 (6) 0.0096 (5) 0.0072 (5) 0.0054 (5)
N2 0.0173 (6) 0.0196 (6) 0.0181 (6) 0.0065 (5) 0.0089 (5) 0.0037 (5)
N3 0.0193 (6) 0.0192 (6) 0.0162 (6) 0.0087 (5) 0.0095 (5) 0.0049 (5)
N4 0.0174 (6) 0.0156 (5) 0.0157 (5) 0.0075 (5) 0.0080 (4) 0.0046 (4)
C5 0.0187 (6) 0.0193 (6) 0.0191 (7) 0.0108 (5) 0.0086 (5) 0.0083 (5)
C6 0.0195 (7) 0.0199 (7) 0.0177 (7) 0.0109 (6) 0.0091 (5) 0.0081 (5)
C7 0.0198 (7) 0.0198 (7) 0.0178 (7) 0.0128 (6) 0.0077 (5) 0.0080 (5)
C8 0.0181 (6) 0.0175 (6) 0.0172 (7) 0.0089 (5) 0.0073 (5) 0.0058 (5)
C8A 0.0175 (6) 0.0187 (6) 0.0178 (7) 0.0109 (5) 0.0075 (5) 0.0076 (5)
C9 0.0204 (7) 0.0190 (6) 0.0161 (6) 0.0102 (5) 0.0077 (5) 0.0058 (5)
C10 0.0210 (7) 0.0257 (7) 0.0210 (7) 0.0090 (6) 0.0106 (6) 0.0063 (6)
C11 0.0227 (7) 0.0272 (8) 0.0200 (7) 0.0057 (6) 0.0072 (6) 0.0032 (6)
C12 0.0298 (8) 0.0277 (8) 0.0168 (7) 0.0104 (7) 0.0088 (6) 0.0025 (6)
C13 0.0263 (8) 0.0301 (8) 0.0211 (7) 0.0144 (6) 0.0138 (6) 0.0085 (6)
C14 0.0197 (7) 0.0253 (7) 0.0202 (7) 0.0107 (6) 0.0093 (6) 0.0082 (6)
C15 0.0214 (7) 0.0187 (6) 0.0173 (7) 0.0105 (6) 0.0075 (5) 0.0058 (5)
N15 0.0241 (6) 0.0250 (6) 0.0239 (6) 0.0114 (5) 0.0123 (5) 0.0083 (5)
C16 0.0170 (6) 0.0211 (7) 0.0170 (7) 0.0100 (5) 0.0070 (5) 0.0058 (5)
C17 0.0222 (7) 0.0216 (7) 0.0206 (7) 0.0115 (6) 0.0105 (6) 0.0080 (6)
C18 0.0230 (7) 0.0212 (7) 0.0221 (7) 0.0107 (6) 0.0090 (6) 0.0039 (6)
C19 0.0209 (7) 0.0273 (7) 0.0174 (7) 0.0122 (6) 0.0079 (6) 0.0041 (6)
C20 0.0213 (7) 0.0266 (7) 0.0195 (7) 0.0122 (6) 0.0093 (6) 0.0087 (6)
C21 0.0187 (6) 0.0207 (7) 0.0199 (7) 0.0096 (5) 0.0078 (5) 0.0066 (6)
C22 0.0231 (7) 0.0216 (7) 0.0179 (6) 0.0130 (6) 0.0108 (6) 0.0072 (5)
N22 0.0255 (7) 0.0221 (6) 0.0252 (7) 0.0082 (5) 0.0114 (5) 0.0053 (5)
S1 0.01723 (18) 0.01879 (19) 0.01979 (19) 0.00657 (14) 0.00849 (13) 0.00567 (13)
O2 0.0199 (5) 0.0174 (5) 0.0244 (5) 0.0061 (4) 0.0091 (4) 0.0048 (4)
C23 0.0242 (8) 0.0246 (8) 0.0444 (10) 0.0123 (7) 0.0037 (7) 0.0111 (7)
C24 0.0269 (8) 0.0197 (7) 0.0224 (7) 0.0085 (6) 0.0062 (6) 0.0038 (6)

Geometric parameters (Å, º)

O1—C5 1.2277 (18) C13—C14 1.384 (2)
N1—C8A 1.3439 (18) C13—H13 0.9500
N1—C2 1.3792 (18) C14—H14 0.9500
N1—H1 0.88 (2) C15—N15 1.152 (2)
C2—N3 1.3178 (18) C16—C17 1.399 (2)
C2—N2 1.3508 (18) C16—C21 1.403 (2)
N2—C9 1.4102 (18) C17—C18 1.388 (2)
N2—H2 0.90 (2) C17—H17 0.9500
N3—N4 1.4000 (16) C18—C19 1.392 (2)
N4—C8A 1.3504 (18) C18—H18 0.9500
N4—C5 1.4003 (18) C19—C20 1.393 (2)
C5—C6 1.4510 (19) C19—H19 0.9500
C6—C7 1.403 (2) C20—C21 1.391 (2)
C6—C15 1.4297 (19) C20—H20 0.9500
C7—C8 1.4088 (19) C21—H21 0.9500
C7—C16 1.4829 (19) C22—N22 1.151 (2)
C8—C8A 1.3988 (19) S1—O2 1.5253 (10)
C8—C22 1.429 (2) S1—C24 1.7764 (16)
C9—C10 1.390 (2) S1—C23 1.7788 (16)
C9—C14 1.394 (2) C23—H23A 0.9800
C10—C11 1.394 (2) C23—H23B 0.9800
C10—H10 0.9500 C23—H23C 0.9800
C11—C12 1.388 (2) C24—H24A 0.9800
C11—H11 0.9500 C24—H24B 0.9800
C12—C13 1.391 (2) C24—H24C 0.9800
C12—H12 0.9500
C8A—N1—C2 106.74 (12) C14—C13—H13 119.9
C8A—N1—H1 130.6 (12) C12—C13—H13 119.9
C2—N1—H1 122.6 (12) C13—C14—C9 119.96 (14)
N3—C2—N2 128.74 (13) C13—C14—H14 120.0
N3—C2—N1 112.99 (12) C9—C14—H14 120.0
N2—C2—N1 118.26 (13) N15—C15—C6 175.03 (16)
C2—N2—C9 128.42 (13) C17—C16—C21 119.42 (13)
C2—N2—H2 113.3 (12) C17—C16—C7 120.65 (13)
C9—N2—H2 118.3 (12) C21—C16—C7 119.90 (13)
C2—N3—N4 102.08 (11) C18—C17—C16 120.31 (13)
C8A—N4—N3 112.16 (11) C18—C17—H17 119.8
C8A—N4—C5 124.35 (12) C16—C17—H17 119.8
N3—N4—C5 123.34 (11) C17—C18—C19 120.05 (14)
O1—C5—N4 121.08 (13) C17—C18—H18 120.0
O1—C5—C6 126.58 (13) C19—C18—H18 120.0
N4—C5—C6 112.33 (12) C18—C19—C20 120.12 (14)
C7—C6—C15 122.14 (13) C18—C19—H19 119.9
C7—C6—C5 124.47 (13) C20—C19—H19 119.9
C15—C6—C5 113.26 (12) C21—C20—C19 120.12 (14)
C6—C7—C8 118.34 (13) C21—C20—H20 119.9
C6—C7—C16 121.23 (13) C19—C20—H20 119.9
C8—C7—C16 120.43 (13) C20—C21—C16 119.98 (13)
C8A—C8—C7 117.77 (13) C20—C21—H21 120.0
C8A—C8—C22 116.44 (12) C16—C21—H21 120.0
C7—C8—C22 125.79 (13) N22—C22—C8 173.67 (15)
N1—C8A—N4 106.01 (12) O2—S1—C24 105.38 (7)
N1—C8A—C8 131.52 (13) O2—S1—C23 105.07 (7)
N4—C8A—C8 122.47 (13) C24—S1—C23 99.29 (8)
C10—C9—C14 120.41 (13) S1—C23—H23A 109.5
C10—C9—N2 123.15 (13) S1—C23—H23B 109.5
C14—C9—N2 116.43 (13) H23A—C23—H23B 109.5
C9—C10—C11 118.88 (14) S1—C23—H23C 109.5
C9—C10—H10 120.6 H23A—C23—H23C 109.5
C11—C10—H10 120.6 H23B—C23—H23C 109.5
C12—C11—C10 121.06 (14) S1—C24—H24A 109.5
C12—C11—H11 119.5 S1—C24—H24B 109.5
C10—C11—H11 119.5 H24A—C24—H24B 109.5
C11—C12—C13 119.36 (14) S1—C24—H24C 109.5
C11—C12—H12 120.3 H24A—C24—H24C 109.5
C13—C12—H12 120.3 H24B—C24—H24C 109.5
C14—C13—C12 120.29 (14)
C8A—N1—C2—N3 −1.59 (16) N3—N4—C8A—C8 179.38 (12)
C8A—N1—C2—N2 178.85 (12) C5—N4—C8A—C8 −4.9 (2)
N3—C2—N2—C9 1.7 (2) C7—C8—C8A—N1 −178.46 (13)
N1—C2—N2—C9 −178.83 (13) C22—C8—C8A—N1 2.0 (2)
N2—C2—N3—N4 −179.43 (14) C7—C8—C8A—N4 1.4 (2)
N1—C2—N3—N4 1.07 (15) C22—C8—C8A—N4 −178.22 (13)
C2—N3—N4—C8A −0.17 (14) C2—N2—C9—C10 14.8 (2)
C2—N3—N4—C5 −175.92 (12) C2—N2—C9—C14 −166.01 (14)
C8A—N4—C5—O1 −174.55 (13) C14—C9—C10—C11 1.3 (2)
N3—N4—C5—O1 0.7 (2) N2—C9—C10—C11 −179.53 (14)
C8A—N4—C5—C6 6.19 (19) C9—C10—C11—C12 0.4 (2)
N3—N4—C5—C6 −178.59 (11) C10—C11—C12—C13 −1.4 (3)
O1—C5—C6—C7 176.10 (14) C11—C12—C13—C14 0.8 (2)
N4—C5—C6—C7 −4.69 (19) C12—C13—C14—C9 0.8 (2)
O1—C5—C6—C15 −7.8 (2) C10—C9—C14—C13 −1.9 (2)
N4—C5—C6—C15 171.43 (11) N2—C9—C14—C13 178.89 (13)
C15—C6—C7—C8 −173.97 (12) C6—C7—C16—C17 −134.34 (14)
C5—C6—C7—C8 1.8 (2) C8—C7—C16—C17 46.20 (19)
C15—C6—C7—C16 6.6 (2) C6—C7—C16—C21 47.42 (19)
C5—C6—C7—C16 −177.65 (12) C8—C7—C16—C21 −132.04 (14)
C6—C7—C8—C8A 0.09 (19) C21—C16—C17—C18 0.1 (2)
C16—C7—C8—C8A 179.57 (12) C7—C16—C17—C18 −178.18 (13)
C6—C7—C8—C22 179.62 (13) C16—C17—C18—C19 −0.2 (2)
C16—C7—C8—C22 −0.9 (2) C17—C18—C19—C20 −0.1 (2)
C2—N1—C8A—N4 1.35 (14) C18—C19—C20—C21 0.5 (2)
C2—N1—C8A—C8 −178.81 (14) C19—C20—C21—C16 −0.6 (2)
N3—N4—C8A—N1 −0.77 (15) C17—C16—C21—C20 0.3 (2)
C5—N4—C8A—N1 174.93 (12) C7—C16—C21—C20 178.61 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.88 (2) 1.84 (2) 2.6249 (16) 146.9 (17)
N2—H2···O2 0.90 (2) 2.07 (2) 2.8680 (16) 147.7 (17)
C10—H10···N3 0.95 2.39 2.9956 (19) 121
C23—H23B···O1i 0.98 2.44 3.166 (2) 131
C24—H24B···N22 0.98 2.53 3.474 (2) 162

Symmetry code: (i) x+1, y+1, z.

Funding Statement

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

  1. Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367–370. [DOI] [PMC free article] [PubMed]
  2. Barsy, M. A., El Rady, E. A. & El Latif, F. M. A. (2008). J. Heterocycl. Chem. 45, 773–778.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.
  5. Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Gumus, M. K., Kansiz, S., Yuksektepe Ataol, C., Dege, N. & Fritsky, I. O. (2019). Acta Cryst. E75, 492–498. [DOI] [PMC free article] [PubMed]
  9. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  10. Jones, G. & Abarca, B. (2010). Adv. Heterocycl. Chem. 100, 195–252.
  11. Kotovshchikov, Y. N., Voloshkin, V. A., Latyshev, G. V., Lukashev, N. V. & Beletskaya, I. P. (2021). Russ. J. Org. Chem. 57, 1212–1244. [DOI] [PubMed]
  12. Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.
  13. Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.
  14. Mohamed, S. K., Soliman, A. M., El Remaily, M. A. A. & Abdel-Ghany, H. (2013). J. Heterocycl. Chem. 50, 1425–1430.
  15. Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. [DOI] [PMC free article] [PubMed]
  16. Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. [DOI] [PMC free article] [PubMed]
  17. Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. [DOI] [PMC free article] [PubMed]
  18. Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241. [DOI] [PMC free article] [PubMed]
  19. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Soliman, A. M., Mohamed, S. K., El-Remaily, M. A. A. & Abdel-Ghany, H. (2014). J. Heterocycl. Chem. 51, 1202–1209.
  23. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  24. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  25. Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.
  26. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023004383/tx2068sup1.cif

e-79-00567-sup1.cif (661.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004383/tx2068Isup2.hkl

e-79-00567-Isup2.hkl (343.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004383/tx2068Isup3.cml

CCDC reference: 2264500

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES