Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 May 5;79(Pt 6):531–533. doi: 10.1107/S2056989023003948

Crystal structure of 4-[(4-methyl­benz­yl)­oxy]-N′-(4-nitro­benzyl­idene)benzohydrazide: a new hydrazone derivative

Md Hasan Al Banna a,*, Md Chanmiya Sheikh b, Ryuta Miyatake c, Md Belayet Hossain Howlader a, Ennio Zangrando d
Editor: M Weile
PMCID: PMC10242741  PMID: 37288456

The title aroylhydrazone ether exists in an E-configuration with respect to the double bond of the hydrazone bridge and with an ac­yl–hydrazone (—CH=N—NH—CO—) torsion angle of 166.0 (3)°. The mol­ecule exhibits a non-planar conformation, likely induced by packing requirements.

Keywords: crystal structure, hydrazine, hydrazone

Abstract

The mol­ecular structure of the title compound, C22H19N3O4, shows a non-coplanar conformation, with dihedral angles between the phenyl rings of 73.3 (1) and 80.9 (1)°. These deformations are induced by the crystal packing that is mainly governed by N—H⋯O and C—H⋯O hydrogen bonds, forming a mono-periodic arrangement parallel to the b axis.

1. Chemical context

Hydrazones are a special class of Schiff bases, which can be obtained by condensation between an alkyl or aryl hydrazine and a carbonyl compound (aldehyde or ketone). The active pharmacophore group, —CH=N—NH—C=O—, present in a hydrazone is primarily responsible for its broad spectrum of biological aspects (Taha et al., 2013). The presence of tautomeric forms facilitates their coordination behavior in neutral or anionic species (Banna et al., 2022) with metal ions (Zülfikaroğlu et al., 2020). The chemical diversity and pharmacological accessibility of hydrazone and its derivatives paves the way for research exploring drug design and discovery (Verma et al., 2014). 1.

In this context and in a continuation of our recent work (Banna et al., 2023), we report here on the synthesis and crystal-structure determination of another derivatized aroylhydrazone bearing an ether group.

2. Structural commentary

The mol­ecular structure of the hydrazone compound is shown in Fig. 1. The ac­yl–hydrazone (—CH=N—NH—C=O—) group connects the p-nitro­phenyl group and the central phenyl ring, which in turn is bound to the p-methyl­benz­yloxy fragment. An E-configuration is observed with respect to the double bond of the hydrazone bridge N2=C16. The N1—N2 bond length of 1.376 (4) Å is slightly shorter than that of 1.397 (4) Å determined in the corresponding derivative having a thienyl ring replacing the p-nitro­phenyl group (Banna et al., 2023). On the other hand, the O2=C15 bond of 1.237 (4) Å is close to that determined in the thienyl derivative [1.236 (4) Å], and typical of a ketonic linkage, while an equilibrium between the keto and enol forms is present in solution. The nitro­phenyl group and the benzohydrazone fragment form a dihedral angle of 73.3 (1)° while the terminal 4-methyl­benzyl group is rotated by 80.9 (1)° with respect to the central phenyl ring.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2 depicts a superimposition of the mol­ecular structure of the title compound with the thienyl derivative (Banna et al., 2023). It is worth noting the different orientations of the carbohydrazide CO—NH—N moiety, likely induced by crystal-packing requirements.

Figure 2.

Figure 2

Overlay plot of the mol­ecule of the title compound and the reported thienyl derivative (Banna et al., 2023).

3. Supra­molecular features

The crystal packing is governed by hydrogen-bonding inter­actions (Table 1, with corresponding symmetry codes) realized between the imino group N1—H1 with carbonyl oxygen atom O2ii of a symmetry-related mol­ecule. This results in a mono-periodic arrangement parallel to the b axis. In addition, non-classical C16—H16⋯O2ii hydrogen bonds between a methine group and the carbonyl O atom and C21—H21⋯O4iii between an aromatic C—H group and one of the nitro O atoms are also present, as shown in Fig. 3. The ribbons are further connected by C14—H14⋯N2i inter­actions (Table 1). No significant π-stacking inter­action is found in the crystal (all centroid-to-centroid distances between phenyl rings are > 5.0 Å).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N2i 0.95 2.68 3.524 (5) 148
C16—H16⋯O2ii 0.95 2.45 3.259 (4) 143
C21—H21⋯O4iii 0.95 2.59 3.532 (5) 171
N1—H1⋯O2ii 0.90 (4) 2.04 (4) 2.911 (4) 161 (3)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 3.

Figure 3

Crystal packing of the title compound showing the mono-periodic arrangement parallel to the b axis built by N—H⋯O and C—H⋯O hydrogen bonds (dashed lines).

4. Database survey

For a closely related structure with a thienyl moiety, see: Banna et al. (2023); for some other aroylhydrazones, see: Ban & Li (2009); Chantrapromma et al. (2016); Horkaew et al. (2011); Zong & Wu (2013). All these mol­ecules exhibit an E-configuration about the double bond of the hydrazone bridge, and they have comparable bond lengths and angles in the C=N—NH—C moiety, in agreement with the present geometrical parameters. For reference bond-length data, see: Allen et al. (1987).

5. Synthesis and crystallization

The synthesis of the compound follows a procedure previously described (Banna et al., 2023). To a solution of 4-[(4-methyl­benz­yl)­oxy]benzoyl­hydrazine (0.25 g, 0.97 mmol in 20 ml of absolute ethanol), a solution of 4-nitro­benzaldehyde (0.14 g, 0.97 mmol) in 5 ml ethanol was added and the mixture was heated and refluxed for 2 h. A colorless precipitate was obtained, filtered off, and washed several times with hot ethanol to eliminate any types of starting materials prior to being dried in a desiccator. The title compound was recrystallized from a mixture of DMF and ethanol. Colorless crystals suitable for X-ray diffraction were obtained after 60 d of keeping the sample solution undisturbed.

Yield: 0.29 g, 79%; melting point (m.p.): 531–533 K; FT–IR: 1636 ν(C=Oamide), 3315 ν(N—H), 1606 ν(C=Nazomethine). LC–MS (FAB) m/z: [M + H]+ calculated for C22H19N3O4; 390.1446; found 390.1448.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed at geometrical positions, except for the N—H hydrogen atom, the position of which was located in a difference-Fourier map and freely refined. The Flack parameter of −0.8 (9) indicates that the absolute structure cannot confidently be derived from the data based on Mo radiation.

Table 2. Experimental details.

Crystal data
Chemical formula C22H19N3O4
M r 389.40
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 8.9485 (8), 5.0612 (5), 20.949 (2)
β (°) 96.585 (7)
V3) 942.54 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.28 × 0.03
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995)
T min, T max 0.749, 0.997
No. of measured, independent and observed [I > 2σ(I)] reflections 9086, 3799, 2635
R int 0.050
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.126, 1.04
No. of reflections 3799
No. of parameters 266
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.16
Absolute structure Unknown: Flack x determined using 741 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.8 (9)

Computer programs: RAPID-AUTO (Rigaku, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023003948/wm5682sup1.cif

e-79-00531-sup1.cif (285KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023003948/wm5682Isup2.hkl

e-79-00531-Isup2.hkl (302.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023003948/wm5682Isup3.cml

CCDC reference: 2232132

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors express their gratitude to the Department of Chemistry, University of Rajshahi for laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama for providing facilities for single-crystal X-ray analyses.

supplementary crystallographic information

Crystal data

C22H19N3O4 F(000) = 408
Mr = 389.40 Dx = 1.372 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71075 Å
a = 8.9485 (8) Å Cell parameters from 5984 reflections
b = 5.0612 (5) Å θ = 2.3–27.5°
c = 20.949 (2) Å µ = 0.10 mm1
β = 96.585 (7)° T = 173 K
V = 942.54 (16) Å3 Platel, colorless
Z = 2 0.30 × 0.28 × 0.03 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 2635 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.050
ω scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −11→11
Tmin = 0.749, Tmax = 0.997 k = −5→6
9086 measured reflections l = −27→27
3799 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.0221P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.19 e Å3
3799 reflections Δρmin = −0.16 e Å3
266 parameters Absolute structure: Flack x determined using 741 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.8 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1477 (3) 0.5424 (5) 0.66816 (11) 0.0476 (7)
O2 0.3072 (3) 0.1188 (5) 0.39878 (10) 0.0407 (6)
O3 0.7195 (4) 0.3955 (11) 0.04333 (15) 0.0967 (14)
O4 0.5966 (4) 0.7477 (8) 0.00909 (14) 0.0786 (10)
N1 0.3611 (4) 0.5542 (5) 0.38830 (13) 0.0369 (7)
H1 0.354 (4) 0.724 (8) 0.4011 (17) 0.044*
N2 0.4173 (3) 0.5102 (5) 0.33080 (12) 0.0359 (7)
N3 0.6379 (4) 0.5860 (10) 0.05105 (16) 0.0632 (11)
C1 −0.1011 (5) 0.8823 (12) 0.93031 (19) 0.0716 (14)
H1A −0.136189 1.063016 0.920871 0.086*
H1B −0.010078 0.886972 0.961152 0.086*
H1C −0.179652 0.782238 0.948641 0.086*
C2 −0.0660 (4) 0.7506 (9) 0.86904 (16) 0.0472 (10)
C3 0.0290 (5) 0.5425 (10) 0.86983 (18) 0.0648 (13)
H3 0.074131 0.476727 0.909949 0.078*
C4 0.0622 (5) 0.4232 (10) 0.81397 (18) 0.0661 (13)
H4 0.130000 0.278228 0.816291 0.079*
C5 −0.0019 (4) 0.5115 (8) 0.75470 (16) 0.0401 (8)
C6 −0.0974 (5) 0.7189 (9) 0.75353 (18) 0.0554 (11)
H6 −0.143298 0.783136 0.713380 0.067*
C7 −0.1295 (5) 0.8387 (11) 0.80936 (19) 0.0655 (13)
H7 −0.196585 0.984825 0.806939 0.079*
C8 0.0349 (4) 0.3846 (8) 0.69368 (16) 0.0462 (9)
H8A 0.072933 0.203070 0.702463 0.055*
H8B −0.056490 0.374539 0.662284 0.055*
C9 0.1823 (4) 0.4840 (7) 0.60809 (15) 0.0360 (8)
C10 0.1222 (4) 0.2735 (7) 0.57052 (15) 0.0387 (9)
H10 0.052049 0.156850 0.586470 0.046*
C11 0.1652 (4) 0.2362 (7) 0.51033 (15) 0.0382 (8)
H11 0.123802 0.092481 0.485007 0.046*
C12 0.2679 (4) 0.4034 (6) 0.48530 (15) 0.0311 (8)
C13 0.3289 (4) 0.6103 (7) 0.52395 (15) 0.0388 (8)
H13 0.399403 0.727021 0.508241 0.047*
C14 0.2876 (4) 0.6465 (7) 0.58475 (16) 0.0419 (9)
H14 0.332136 0.785035 0.610979 0.050*
C15 0.3126 (4) 0.3454 (7) 0.42105 (15) 0.0318 (8)
C16 0.4317 (4) 0.7143 (7) 0.29601 (16) 0.0410 (8)
H16 0.404496 0.884332 0.310034 0.049*
C17 0.4910 (4) 0.6807 (7) 0.23383 (16) 0.0405 (9)
C18 0.5876 (5) 0.4754 (8) 0.22322 (18) 0.0463 (9)
H18 0.620600 0.356662 0.257043 0.056*
C19 0.6358 (5) 0.4437 (9) 0.16319 (18) 0.0509 (10)
H19 0.702781 0.304857 0.155381 0.061*
C20 0.5843 (4) 0.6185 (9) 0.11485 (17) 0.0491 (10)
C21 0.4894 (5) 0.8217 (8) 0.12357 (17) 0.0545 (11)
H21 0.455193 0.937239 0.089234 0.065*
C22 0.4445 (5) 0.8546 (8) 0.18362 (17) 0.0526 (10)
H22 0.380496 0.998273 0.191162 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0515 (15) 0.0606 (18) 0.0328 (13) −0.0128 (14) 0.0139 (11) −0.0079 (12)
O2 0.0605 (16) 0.0307 (12) 0.0321 (12) 0.0011 (13) 0.0101 (11) −0.0015 (11)
O3 0.076 (2) 0.168 (4) 0.0489 (19) 0.040 (3) 0.0199 (16) −0.007 (2)
O4 0.113 (3) 0.086 (2) 0.0419 (17) −0.015 (2) 0.0324 (17) 0.0032 (17)
N1 0.0571 (18) 0.0288 (16) 0.0259 (14) 0.0000 (15) 0.0105 (12) −0.0017 (12)
N2 0.0492 (17) 0.0322 (15) 0.0274 (15) 0.0007 (14) 0.0087 (12) −0.0020 (12)
N3 0.059 (2) 0.094 (3) 0.038 (2) −0.011 (2) 0.0142 (17) −0.008 (2)
C1 0.065 (3) 0.110 (4) 0.043 (2) −0.008 (3) 0.023 (2) −0.018 (2)
C2 0.0412 (19) 0.068 (3) 0.035 (2) −0.014 (2) 0.0156 (15) −0.0043 (19)
C3 0.092 (3) 0.069 (3) 0.031 (2) 0.011 (3) −0.002 (2) 0.0080 (19)
C4 0.083 (3) 0.070 (3) 0.044 (2) 0.034 (3) −0.001 (2) 0.002 (2)
C5 0.0385 (19) 0.049 (2) 0.0337 (18) −0.0054 (19) 0.0090 (15) −0.0003 (16)
C6 0.064 (2) 0.065 (3) 0.035 (2) 0.015 (2) −0.0024 (18) 0.0006 (19)
C7 0.055 (2) 0.094 (4) 0.046 (2) 0.025 (3) 0.0002 (19) −0.015 (2)
C8 0.048 (2) 0.056 (2) 0.037 (2) −0.008 (2) 0.0126 (16) −0.0022 (18)
C9 0.0385 (19) 0.042 (2) 0.0282 (17) 0.0001 (17) 0.0049 (14) −0.0003 (15)
C10 0.0410 (19) 0.037 (2) 0.0396 (19) −0.0052 (17) 0.0121 (16) −0.0015 (16)
C11 0.0473 (19) 0.0326 (17) 0.0349 (19) −0.0044 (17) 0.0051 (15) −0.0069 (15)
C12 0.0395 (19) 0.0279 (17) 0.0259 (16) 0.0045 (16) 0.0035 (14) −0.0016 (13)
C13 0.0467 (19) 0.039 (2) 0.0311 (17) −0.0066 (18) 0.0073 (15) −0.0001 (16)
C14 0.049 (2) 0.043 (2) 0.0333 (19) −0.0072 (19) 0.0019 (15) −0.0074 (16)
C15 0.0373 (19) 0.0297 (18) 0.0276 (16) 0.0041 (16) 0.0006 (14) −0.0006 (14)
C16 0.061 (2) 0.0318 (18) 0.0320 (18) −0.0014 (18) 0.0108 (16) −0.0054 (15)
C17 0.056 (2) 0.036 (2) 0.0312 (18) −0.0137 (18) 0.0114 (16) −0.0051 (15)
C18 0.054 (2) 0.048 (2) 0.038 (2) −0.008 (2) 0.0104 (17) −0.0014 (17)
C19 0.051 (2) 0.057 (2) 0.047 (2) −0.009 (2) 0.0170 (18) −0.010 (2)
C20 0.051 (2) 0.068 (3) 0.0306 (19) −0.019 (2) 0.0144 (16) −0.007 (2)
C21 0.079 (3) 0.054 (3) 0.032 (2) −0.018 (2) 0.0133 (19) 0.0022 (18)
C22 0.082 (3) 0.040 (2) 0.039 (2) −0.006 (2) 0.021 (2) 0.0025 (17)

Geometric parameters (Å, º)

O1—C9 1.363 (4) C8—H8A 0.9900
O1—C8 1.437 (4) C8—H8B 0.9900
O2—C15 1.237 (4) C9—C14 1.382 (5)
O3—N3 1.231 (6) C9—C10 1.395 (5)
O4—N3 1.227 (5) C10—C11 1.373 (4)
N1—C15 1.358 (4) C10—H10 0.9500
N1—N2 1.376 (4) C11—C12 1.395 (5)
N1—H1 0.90 (4) C11—H11 0.9500
N2—C16 1.279 (4) C12—C13 1.396 (5)
N3—C20 1.480 (5) C12—C15 1.477 (4)
C1—C2 1.511 (5) C13—C14 1.379 (5)
C1—H1A 0.9800 C13—H13 0.9500
C1—H1B 0.9800 C14—H14 0.9500
C1—H1C 0.9800 C16—C17 1.472 (5)
C2—C3 1.353 (6) C16—H16 0.9500
C2—C7 1.386 (5) C17—C18 1.385 (5)
C3—C4 1.379 (6) C17—C22 1.398 (5)
C3—H3 0.9500 C18—C19 1.385 (5)
C4—C5 1.381 (5) C18—H18 0.9500
C4—H4 0.9500 C19—C20 1.383 (6)
C5—C6 1.352 (6) C19—H19 0.9500
C5—C8 1.500 (5) C20—C21 1.360 (6)
C6—C7 1.377 (5) C21—C22 1.374 (5)
C6—H6 0.9500 C21—H21 0.9500
C7—H7 0.9500 C22—H22 0.9500
C9—O1—C8 117.8 (3) C14—C9—C10 119.3 (3)
C15—N1—N2 119.1 (3) C11—C10—C9 119.5 (3)
C15—N1—H1 124 (2) C11—C10—H10 120.2
N2—N1—H1 117 (2) C9—C10—H10 120.2
C16—N2—N1 116.0 (3) C10—C11—C12 121.9 (3)
O4—N3—O3 124.3 (4) C10—C11—H11 119.1
O4—N3—C20 118.1 (4) C12—C11—H11 119.1
O3—N3—C20 117.7 (4) C11—C12—C13 117.9 (3)
C2—C1—H1A 109.5 C11—C12—C15 118.8 (3)
C2—C1—H1B 109.5 C13—C12—C15 123.3 (3)
H1A—C1—H1B 109.5 C14—C13—C12 120.4 (3)
C2—C1—H1C 109.5 C14—C13—H13 119.8
H1A—C1—H1C 109.5 C12—C13—H13 119.8
H1B—C1—H1C 109.5 C13—C14—C9 120.9 (3)
C3—C2—C7 117.0 (4) C13—C14—H14 119.5
C3—C2—C1 121.6 (4) C9—C14—H14 119.5
C7—C2—C1 121.4 (4) O2—C15—N1 122.1 (3)
C2—C3—C4 121.8 (4) O2—C15—C12 121.7 (3)
C2—C3—H3 119.1 N1—C15—C12 116.2 (3)
C4—C3—H3 119.1 N2—C16—C17 118.7 (3)
C3—C4—C5 120.9 (4) N2—C16—H16 120.6
C3—C4—H4 119.5 C17—C16—H16 120.6
C5—C4—H4 119.5 C18—C17—C22 119.3 (3)
C6—C5—C4 117.6 (4) C18—C17—C16 121.6 (3)
C6—C5—C8 121.1 (3) C22—C17—C16 119.1 (3)
C4—C5—C8 121.2 (4) C19—C18—C17 119.8 (4)
C5—C6—C7 121.3 (4) C19—C18—H18 120.1
C5—C6—H6 119.3 C17—C18—H18 120.1
C7—C6—H6 119.3 C20—C19—C18 118.6 (4)
C6—C7—C2 121.4 (4) C20—C19—H19 120.7
C6—C7—H7 119.3 C18—C19—H19 120.7
C2—C7—H7 119.3 C21—C20—C19 123.1 (3)
O1—C8—C5 108.1 (3) C21—C20—N3 118.5 (4)
O1—C8—H8A 110.1 C19—C20—N3 118.4 (4)
C5—C8—H8A 110.1 C20—C21—C22 117.9 (4)
O1—C8—H8B 110.1 C20—C21—H21 121.1
C5—C8—H8B 110.1 C22—C21—H21 121.1
H8A—C8—H8B 108.4 C21—C22—C17 121.3 (4)
O1—C9—C14 115.7 (3) C21—C22—H22 119.3
O1—C9—C10 125.0 (3) C17—C22—H22 119.3
C15—N1—N2—C16 166.0 (3) C10—C9—C14—C13 2.9 (5)
C7—C2—C3—C4 0.3 (7) N2—N1—C15—O2 −5.3 (5)
C1—C2—C3—C4 −179.5 (5) N2—N1—C15—C12 174.1 (3)
C2—C3—C4—C5 −0.5 (8) C11—C12—C15—O2 −25.7 (5)
C3—C4—C5—C6 0.2 (7) C13—C12—C15—O2 151.0 (3)
C3—C4—C5—C8 179.3 (4) C11—C12—C15—N1 154.8 (3)
C4—C5—C6—C7 0.2 (6) C13—C12—C15—N1 −28.5 (5)
C8—C5—C6—C7 −178.9 (4) N1—N2—C16—C17 −179.9 (3)
C5—C6—C7—C2 −0.4 (7) N2—C16—C17—C18 −27.8 (5)
C3—C2—C7—C6 0.2 (7) N2—C16—C17—C22 149.9 (4)
C1—C2—C7—C6 179.9 (4) C22—C17—C18—C19 −0.4 (5)
C9—O1—C8—C5 −170.9 (3) C16—C17—C18—C19 177.2 (4)
C6—C5—C8—O1 80.9 (4) C17—C18—C19—C20 −0.6 (5)
C4—C5—C8—O1 −98.2 (5) C18—C19—C20—C21 0.5 (6)
C8—O1—C9—C14 177.9 (3) C18—C19—C20—N3 179.1 (4)
C8—O1—C9—C10 −3.5 (5) O4—N3—C20—C21 1.5 (5)
O1—C9—C10—C11 179.5 (3) O3—N3—C20—C21 −177.5 (4)
C14—C9—C10—C11 −2.0 (5) O4—N3—C20—C19 −177.2 (4)
C9—C10—C11—C12 0.0 (5) O3—N3—C20—C19 3.9 (5)
C10—C11—C12—C13 1.1 (5) C19—C20—C21—C22 0.7 (6)
C10—C11—C12—C15 177.9 (3) N3—C20—C21—C22 −177.9 (3)
C11—C12—C13—C14 −0.2 (5) C20—C21—C22—C17 −1.8 (6)
C15—C12—C13—C14 −176.9 (3) C18—C17—C22—C21 1.7 (6)
C12—C13—C14—C9 −1.8 (5) C16—C17—C22—C21 −176.0 (3)
O1—C9—C14—C13 −178.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···N2i 0.95 2.68 3.524 (5) 148
C16—H16···O2ii 0.95 2.45 3.259 (4) 143
C21—H21···O4iii 0.95 2.59 3.532 (5) 171
N1—H1···O2ii 0.90 (4) 2.04 (4) 2.911 (4) 161 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x, y+1, z; (iii) −x+1, y+1/2, −z.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Ban, H.-Y. & Li, C.-M. (2009). Acta Cryst. E65, o3272. [DOI] [PMC free article] [PubMed]
  3. Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C., Ansary, M. R. H. & Zangrando, E. (2023). Acta Cryst. E79, 207–211. [DOI] [PMC free article] [PubMed]
  4. Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081–1083. [DOI] [PMC free article] [PubMed]
  5. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Chantrapromma, S., Prachumrat, P., Ruanwas, P., Boonnak, N. & Kassim, M. B. (2016). Acta Cryst. E72, 1339–1342. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  9. Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985. [DOI] [PMC free article] [PubMed]
  10. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  11. Rigaku (2018). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Taha, M., Ismail, N. H., Jamil, W., Yousuf, S., Jaafar, F. M., Ali, M. I., Kashif, S. M. & Hussain, E. (2013). Molecules, 18, 10912–10929. [DOI] [PMC free article] [PubMed]
  15. Verma, G., Marella, A., Shaquiquzzaman, M., Akhtar, M., Ali, M. R. & Alam, M. M. (2014). J. Pharm. Bioallied. Sci. 6, 69–80. [DOI] [PMC free article] [PubMed]
  16. Zong, Q.-S. & Wu, J.-Y. (2013). J. Struct. Chem. 54, 1151–1156.
  17. Zülfikaroğlu, A., Yüksektepe Ataol, Ç., Çelikoğlu, E., Çelikoğlu, U. & İdil, Ö. (2020). J. Mol. Struct. 1199, 127012.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023003948/wm5682sup1.cif

e-79-00531-sup1.cif (285KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023003948/wm5682Isup2.hkl

e-79-00531-Isup2.hkl (302.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023003948/wm5682Isup3.cml

CCDC reference: 2232132

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES