Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 May 26;79(Pt 6):575–577. doi: 10.1107/S2056989023004565

Synthesis and crystal structure of bis­(2-phthal­imido­eth­yl)ammonium chloride dihydrate

Barry S Young a,, Jamie L Lee a,, Milan Gembicky b, Jake Bailey b, Gary L N Smith a,*
Editor: J Ellenac
PMCID: PMC10242743  PMID: 37288457

The title compound is a phthalimide-protected polyamine with a protonated central nitro­gen atom. The crystal packing features a hydrogen-bond network, a two-coordinated chloride ion, and off-set π–π stacking.

Keywords: crystal structure, phthalimides, π–π inter­actions, tripodal ligand

Abstract

The title compound {systematic name: bis­[2-(1,3-dioxoisoindol-2-yl)eth­yl]aza­nium chloride dihydrate}, C20H18N3O4 +·Cl·2H2O, is a phthalimide-protected polyamine that was synthesized by a previous method. It was characterized by ESI–MS, 1H NMR, and FT–IR. Crystals were grown from a solution of H2O and 0.1 M HCl. The central nitro­gen atom is protonated and forms hydrogen bonds with the chloride ion and a water mol­ecule. The two phthalimide units make a dihedral angle of 22.07 (3)°. The crystal packing features a hydrogen-bond network, two-coordinated chloride, and off-set π–π stacking.

1. Chemical context

The title compound was synthesized by Frederick Mann in 1934 (Mann, 1934). It has been a key component for the synthesis of tripodal amines (Lundin et al., 2004; Blackman, 2005), Schiff base macrocycles (Keypour et al., 2008), MRI contrast agents of gadolinium(III) (Cheng et al., 2000), and as a tricyclic host for anions (Kang et al., 2010). Recently, it has also been used to functionalize graphene oxide (Ramesh & Jebasingh, 2019), build a nano-polymer dendrimer to uptake salicylic acid (Arshadi et al., 2019), and construct a fluorescent ligand (Saga et al., 2020). The compound itself has formed a complex with manganese as a superoxide dismutase mimetic (Piacham et al., 2014). A variety of phthalimide compounds have been of inter­est because of the variety of supra­molecular inter­actions that can exist (Howell et al., 2003). 1.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1. The compound is a protonated polyamine with two phthalimide groups protecting the terminal nitro­gens. It crystallizes in the monoclinic space group P21/c. The planes of the two phthalimide units (N1/C1–C8 and N3/C13–C20) make a dihedral angle of 22.07 (3)°. These units point in opposite directions to each other from the perspective of the central nitro­gen atom. The central tetra­hedral nitro­gen atom (NH2) forms hydrogen bonds with a water mol­ecule and the chloride ion.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing 50% probability ellipsoids.

3. Supra­molecular features

The crystal structure features off-set π–π stacking between phthalimide groups running along the b-axis direction (Fig. 2). The Cg (N1/C1–C8)⋯Cg (N3/C13–C20) centroid–centroid distance is 4.0143 (7) Å. A hydrogen-bond network (Table 1) exists between the protonated amine (N2—H2A), a water mol­ecule (O1W), and a second water mol­ecule (O2W). Both water mol­ecules (O1W—H1WB, O2W—H2WA) also form hydrogen bonds with phthalimide oxygen atoms (O4, O2). The chloride ions form two hydrogen bonds with the protonated amine and a water mol­ecule.

Figure 2.

Figure 2

Mol­ecular packing of the title compound showing π–π inter­actions, hydrogen bonding, and chloride coordination.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1W 0.930 (17) 1.848 (17) 2.7729 (16) 172.7 (14)
O1W—H1WA⋯O2W 0.87 1.88 2.7462 (15) 171
O1W—H1WB⋯O4i 0.87 2.05 2.9054 (14) 168
O2W—H2WA⋯O2ii 0.87 2.03 2.8929 (15) 172

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

4. Database survey

A search of the Cambridge Structural Database (version 5.41, update of July 2022; Groom et al., 2016) for related compounds with a phthalimide unit gave 2881 hits. A search for the skeletal structure of N(CH2CH2NH2)2 resulted in 1707 hits, while the structure with protonated amines +HN(CH2CH2NH3 +)2 resulted in 182 hits. One of these structures is the triprotonated di­ethyl­enetri­amine trichloride (ETACLA01; Ilioudis et al., 2000). This structure includes one chloride ion that is two-coordinate and two chlorides that are three-coordinate. A search for an amine with two phthalimide groups had 24 hits. The structure of a diphthalimidodi­ethyl­ammonium and hydrogen phthalate complex showed stabil­ization by offset π–π stacking, carbon­yl–carbonyl, and hydrogen-bonding inter­actions (REVZAT; Barrett et al., 1995). Hydrogen bonding occurs within the complex unit and connects adjacent units. The offset π–π stacking between phthalimide units is characterized by C⋯C distances ranging from 3.297–3.592 Å. We have previously reported a phthalimide-protected polyamine that exhibits offset π–π stacking (Holmberg et al., 2021).

5. Synthesis and crystallization

Following a previous protocol (Utz et al., 2008), 5.0 mL (48 mmol) of di­ethyl­enetri­amine were dissolved in 50 mL of methanol. To this, 15.0 g (101 mmol) of phthalic anhydride were slowly added, which turned the solution clear and yellow. The solution was kept at 333 K with minimal fluctuations and stirred for approximately 45 min. The solution became cloudy. It was removed from heat and stirred at room temperature for 7 days. A Büchner funnel and filter paper were saturated with MeOH, and the round-bottom flask was rinsed with MeOH prior to vacuum filtration. The precipitate was a pale-yellow solid. It was rinsed four times with 25 mL of MeOH and 4 × 25 mL of acetone to give 9.609 g of the product (55% yield). Characterization results align with previous work. ESI–MS: m/z = 364.1 (M + H+), 386.1 (M + Na+). 1H NMR (90 MHz, CDCl3) δ ppm 7.75 (m, 8H, aromatics), 3.75 (t, 4H, CH2—N), 3.0 (t, 4H, CH2—N), 1.60 (s, 1H, N—H). FTIR (cm−1) = 3326 ν(N—H), 1698 ν(C=O). Crystals suitable for X-ray crystallography were grown by evaporation, with the compound dissolved in a solution of H2O and 0.1 M HCl.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. N-bound H atoms were refined with U iso(H) = 1.2U eq(N). C-bound and water H atoms were positioned geometrically (C—H = 0.96–0.99 Å, O—H = 0.87 Å) and refined as riding with U iso(H) = 1.2–1.5U eq(C, O).

Table 2. Experimental details.

Crystal data
Chemical formula C20H18N3O4 +·Cl·2H2O
M r 435.85
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.0401 (6), 15.4829 (7), 11.2543 (6)
β (°) 105.7191 (17)
V3) 2019.52 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.18 × 0.18 × 0.05
 
Data collection
Diffractometer Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.666, 0.744
No. of measured, independent and observed [I > 2σ(I)] reflections 59713, 4126, 3430
R int 0.082
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.031, 0.077, 1.03
No. of reflections 4126
No. of parameters 284
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.23

Computer programs: APEX4 (Bruker, 2022), SAINT (Bruker, 2019), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023004565/ex2070sup1.cif

e-79-00575-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004565/ex2070Isup2.hkl

e-79-00575-Isup2.hkl (328.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004565/ex2070Isup3.mol

Supporting information file. DOI: 10.1107/S2056989023004565/ex2070Isup4.cml

CCDC reference: 2264952

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Dr Christal Sohl (San Diego State University) for support and Dr Greg Elliott (San Diego State University) for mass spectrometry.

supplementary crystallographic information

Crystal data

C20H18N3O4+·Cl·2H2O F(000) = 912
Mr = 435.85 Dx = 1.434 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.0401 (6) Å Cell parameters from 8573 reflections
b = 15.4829 (7) Å θ = 2.6–26.6°
c = 11.2543 (6) Å µ = 0.23 mm1
β = 105.7191 (17)° T = 100 K
V = 2019.52 (17) Å3 Plate, colourless
Z = 4 0.18 × 0.18 × 0.05 mm

Data collection

Bruker SMART APEXII area detector diffractometer 4126 independent reflections
Radiation source: Micro Focus Rotating Anode, Bruker TXS 3430 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromator Rint = 0.082
Detector resolution: 7.407 pixels mm-1 θmax = 26.4°, θmin = 2.6°
ω and φ scans h = −15→15
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −19→19
Tmin = 0.666, Tmax = 0.744 l = −14→14
59713 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0289P)2 + 1.0135P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.33 e Å3
4126 reflections Δρmin = −0.22 e Å3
284 parameters Extinction correction: SHELXL-2019/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0027 (5)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.30610 (3) 0.21490 (2) 0.23479 (3) 0.01891 (10)
O1 0.45753 (9) 0.41672 (7) 0.37854 (9) 0.0222 (2)
O2 0.18461 (8) 0.47720 (6) 0.01946 (9) 0.0188 (2)
O3 0.66232 (8) 0.16482 (7) 0.41798 (9) 0.0192 (2)
O4 0.77243 (9) 0.14778 (7) 0.06066 (9) 0.0203 (2)
N1 0.34112 (10) 0.44489 (7) 0.18374 (11) 0.0145 (3)
N2 0.49938 (11) 0.29689 (7) 0.14298 (11) 0.0132 (2)
H2A 0.5674 (14) 0.3152 (10) 0.1984 (15) 0.016*
H2B 0.4486 (14) 0.2814 (10) 0.1872 (15) 0.016*
N3 0.68861 (10) 0.15627 (7) 0.22242 (11) 0.0144 (3)
C1 0.36218 (13) 0.42849 (9) 0.31025 (13) 0.0168 (3)
C2 0.24799 (13) 0.43156 (9) 0.33647 (13) 0.0172 (3)
C3 0.21870 (14) 0.41977 (10) 0.44585 (14) 0.0232 (3)
H3 0.275327 0.407303 0.520828 0.028*
C4 0.10228 (15) 0.42703 (10) 0.44106 (15) 0.0264 (4)
H4 0.078868 0.418693 0.514353 0.032*
C5 0.01953 (14) 0.44615 (10) 0.33171 (16) 0.0254 (4)
H5 −0.059106 0.450841 0.331866 0.030*
C6 0.04974 (13) 0.45861 (9) 0.22169 (15) 0.0208 (3)
H6 −0.006455 0.471957 0.146751 0.025*
C7 0.16529 (13) 0.45060 (9) 0.22689 (13) 0.0165 (3)
C8 0.22447 (12) 0.45952 (9) 0.12767 (13) 0.0146 (3)
C9 0.43146 (12) 0.45125 (9) 0.12044 (13) 0.0163 (3)
H9A 0.504935 0.466733 0.181225 0.020*
H9B 0.411828 0.498362 0.058814 0.020*
C10 0.44862 (12) 0.36834 (9) 0.05565 (13) 0.0160 (3)
H10A 0.373203 0.349242 0.001902 0.019*
H10B 0.500022 0.380153 0.002199 0.019*
C11 0.51826 (12) 0.21954 (9) 0.07135 (13) 0.0147 (3)
H11A 0.571103 0.235377 0.021083 0.018*
H11B 0.443688 0.202189 0.014086 0.018*
C12 0.56858 (12) 0.14316 (9) 0.15283 (13) 0.0159 (3)
H12A 0.521779 0.132557 0.211393 0.019*
H12B 0.563460 0.091081 0.100582 0.019*
C13 0.72536 (12) 0.16741 (9) 0.35046 (13) 0.0144 (3)
C14 0.85216 (12) 0.18028 (9) 0.38127 (13) 0.0146 (3)
C15 0.93036 (12) 0.19494 (9) 0.49353 (13) 0.0173 (3)
H15 0.907043 0.196796 0.567657 0.021*
C16 1.04548 (13) 0.20700 (9) 0.49417 (14) 0.0196 (3)
H16 1.101625 0.218356 0.569922 0.024*
C17 1.07905 (12) 0.20260 (9) 0.38529 (14) 0.0192 (3)
H17 1.157746 0.211544 0.387946 0.023*
C18 0.99976 (12) 0.18540 (9) 0.27284 (14) 0.0176 (3)
H18 1.023044 0.180774 0.198902 0.021*
C19 0.88563 (12) 0.17528 (9) 0.27268 (13) 0.0152 (3)
C20 0.78104 (12) 0.15836 (9) 0.16934 (13) 0.0154 (3)
O1W 0.70481 (9) 0.36110 (7) 0.29278 (9) 0.0200 (2)
H1WA 0.715322 0.413414 0.269788 0.030*
H1WB 0.717563 0.364549 0.372498 0.030*
O2W 0.72498 (11) 0.52060 (7) 0.19391 (11) 0.0287 (3)
H2WA 0.758477 0.523958 0.134596 0.043*
H2WB 0.720782 0.573778 0.217062 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01688 (18) 0.02079 (19) 0.02101 (19) −0.00147 (14) 0.00846 (14) 0.00137 (14)
O1 0.0220 (6) 0.0210 (6) 0.0211 (6) 0.0023 (4) 0.0014 (5) 0.0030 (4)
O2 0.0189 (5) 0.0207 (5) 0.0168 (5) 0.0013 (4) 0.0049 (4) 0.0020 (4)
O3 0.0178 (5) 0.0221 (6) 0.0205 (5) 0.0004 (4) 0.0099 (4) −0.0007 (4)
O4 0.0240 (6) 0.0228 (6) 0.0151 (5) 0.0011 (4) 0.0071 (4) −0.0004 (4)
N1 0.0146 (6) 0.0143 (6) 0.0160 (6) 0.0023 (5) 0.0062 (5) 0.0014 (5)
N2 0.0133 (6) 0.0129 (6) 0.0139 (6) 0.0002 (5) 0.0048 (5) 0.0006 (5)
N3 0.0139 (6) 0.0141 (6) 0.0157 (6) 0.0007 (4) 0.0050 (5) −0.0005 (5)
C1 0.0221 (8) 0.0103 (7) 0.0180 (7) 0.0016 (6) 0.0053 (6) 0.0001 (5)
C2 0.0220 (7) 0.0110 (7) 0.0197 (7) 0.0016 (6) 0.0079 (6) −0.0008 (5)
C3 0.0337 (9) 0.0183 (8) 0.0201 (8) 0.0053 (6) 0.0116 (7) 0.0020 (6)
C4 0.0382 (10) 0.0219 (8) 0.0270 (9) 0.0029 (7) 0.0222 (8) 0.0011 (7)
C5 0.0251 (8) 0.0205 (8) 0.0372 (9) 0.0003 (6) 0.0198 (7) −0.0021 (7)
C6 0.0194 (8) 0.0180 (8) 0.0266 (8) 0.0017 (6) 0.0092 (6) −0.0016 (6)
C7 0.0202 (7) 0.0115 (7) 0.0198 (7) 0.0007 (5) 0.0087 (6) −0.0006 (6)
C8 0.0169 (7) 0.0102 (6) 0.0170 (7) 0.0006 (5) 0.0052 (6) −0.0016 (5)
C9 0.0147 (7) 0.0146 (7) 0.0218 (8) 0.0007 (5) 0.0085 (6) 0.0024 (6)
C10 0.0179 (7) 0.0151 (7) 0.0160 (7) 0.0033 (6) 0.0063 (6) 0.0043 (6)
C11 0.0154 (7) 0.0136 (7) 0.0154 (7) 0.0012 (5) 0.0046 (6) −0.0014 (5)
C12 0.0141 (7) 0.0141 (7) 0.0190 (7) −0.0003 (5) 0.0036 (6) −0.0003 (6)
C13 0.0179 (7) 0.0095 (7) 0.0168 (7) 0.0021 (5) 0.0063 (6) 0.0004 (5)
C14 0.0154 (7) 0.0108 (7) 0.0187 (7) 0.0024 (5) 0.0062 (6) 0.0009 (5)
C15 0.0196 (7) 0.0162 (7) 0.0169 (7) 0.0031 (6) 0.0063 (6) 0.0001 (6)
C16 0.0177 (7) 0.0179 (8) 0.0216 (8) 0.0026 (6) 0.0023 (6) −0.0003 (6)
C17 0.0136 (7) 0.0177 (7) 0.0270 (8) 0.0022 (6) 0.0067 (6) 0.0027 (6)
C18 0.0185 (7) 0.0171 (7) 0.0199 (7) 0.0030 (6) 0.0100 (6) 0.0031 (6)
C19 0.0180 (7) 0.0115 (7) 0.0167 (7) 0.0021 (5) 0.0058 (6) 0.0018 (5)
C20 0.0193 (7) 0.0102 (7) 0.0185 (8) 0.0021 (5) 0.0080 (6) 0.0017 (5)
O1W 0.0225 (6) 0.0178 (5) 0.0183 (5) −0.0029 (4) 0.0029 (4) 0.0011 (4)
O2W 0.0453 (7) 0.0196 (6) 0.0285 (6) 0.0027 (5) 0.0225 (6) 0.0041 (5)

Geometric parameters (Å, º)

O1—C1 1.2099 (17) C9—H9A 0.9900
O2—C8 1.2131 (17) C9—H9B 0.9900
O3—C13 1.2115 (17) C9—C10 1.5179 (19)
O4—C20 1.2103 (17) C10—H10A 0.9900
N1—C1 1.4001 (18) C10—H10B 0.9900
N1—C8 1.3936 (18) C11—H11A 0.9900
N1—C9 1.4561 (18) C11—H11B 0.9900
N2—H2A 0.930 (17) C11—C12 1.5184 (19)
N2—H2B 0.919 (17) C12—H12A 0.9900
N2—C10 1.4959 (17) C12—H12B 0.9900
N2—C11 1.4950 (17) C13—C14 1.4845 (19)
N3—C12 1.4594 (18) C14—C15 1.375 (2)
N3—C13 1.3988 (18) C14—C19 1.389 (2)
N3—C20 1.3988 (18) C15—H15 0.9500
C1—C2 1.483 (2) C15—C16 1.397 (2)
C2—C3 1.381 (2) C16—H16 0.9500
C2—C7 1.391 (2) C16—C17 1.392 (2)
C3—H3 0.9500 C17—H17 0.9500
C3—C4 1.393 (2) C17—C18 1.389 (2)
C4—H4 0.9500 C18—H18 0.9500
C4—C5 1.389 (2) C18—C19 1.382 (2)
C5—H5 0.9500 C19—C20 1.488 (2)
C5—C6 1.395 (2) O1W—H1WA 0.8699
C6—H6 0.9500 O1W—H1WB 0.8699
C6—C7 1.382 (2) O2W—H2WA 0.8700
C7—C8 1.485 (2) O2W—H2WB 0.8692
C1—N1—C9 123.81 (12) N2—C10—H10A 108.9
C8—N1—C1 111.88 (11) N2—C10—H10B 108.9
C8—N1—C9 124.21 (12) C9—C10—H10A 108.9
H2A—N2—H2B 108.2 (13) C9—C10—H10B 108.9
C10—N2—H2A 110.1 (10) H10A—C10—H10B 107.7
C10—N2—H2B 109.6 (10) N2—C11—H11A 109.0
C11—N2—H2A 111.8 (10) N2—C11—H11B 109.0
C11—N2—H2B 107.7 (10) N2—C11—C12 113.10 (11)
C11—N2—C10 109.44 (11) H11A—C11—H11B 107.8
C13—N3—C12 124.12 (11) C12—C11—H11A 109.0
C13—N3—C20 111.77 (11) C12—C11—H11B 109.0
C20—N3—C12 124.11 (12) N3—C12—C11 113.01 (11)
O1—C1—N1 123.53 (13) N3—C12—H12A 109.0
O1—C1—C2 130.53 (14) N3—C12—H12B 109.0
N1—C1—C2 105.92 (12) C11—C12—H12A 109.0
C3—C2—C1 130.34 (14) C11—C12—H12B 109.0
C3—C2—C7 121.60 (14) H12A—C12—H12B 107.8
C7—C2—C1 108.06 (12) O3—C13—N3 124.40 (13)
C2—C3—H3 121.6 O3—C13—C14 129.59 (13)
C2—C3—C4 116.88 (15) N3—C13—C14 105.99 (11)
C4—C3—H3 121.6 C15—C14—C13 129.93 (13)
C3—C4—H4 119.2 C15—C14—C19 121.88 (13)
C5—C4—C3 121.61 (14) C19—C14—C13 108.19 (12)
C5—C4—H4 119.2 C14—C15—H15 121.4
C4—C5—H5 119.4 C14—C15—C16 117.29 (13)
C4—C5—C6 121.25 (15) C16—C15—H15 121.4
C6—C5—H5 119.4 C15—C16—H16 119.6
C5—C6—H6 121.6 C17—C16—C15 120.89 (14)
C7—C6—C5 116.84 (15) C17—C16—H16 119.6
C7—C6—H6 121.6 C16—C17—H17 119.3
C2—C7—C8 108.21 (12) C18—C17—C16 121.30 (13)
C6—C7—C2 121.82 (14) C18—C17—H17 119.3
C6—C7—C8 129.97 (14) C17—C18—H18 121.3
O2—C8—N1 124.57 (13) C19—C18—C17 117.42 (13)
O2—C8—C7 129.49 (13) C19—C18—H18 121.3
N1—C8—C7 105.93 (12) C14—C19—C20 108.16 (12)
N1—C9—H9A 108.9 C18—C19—C14 121.18 (13)
N1—C9—H9B 108.9 C18—C19—C20 130.65 (13)
N1—C9—C10 113.25 (11) O4—C20—N3 124.62 (13)
H9A—C9—H9B 107.7 O4—C20—C19 129.53 (13)
C10—C9—H9A 108.9 N3—C20—C19 105.85 (11)
C10—C9—H9B 108.9 H1WA—O1W—H1WB 104.5
N2—C10—C9 113.22 (11) H2WA—O2W—H2WB 104.5
O1—C1—C2—C3 −1.7 (3) C9—N1—C1—O1 −1.2 (2)
O1—C1—C2—C7 177.56 (15) C9—N1—C1—C2 177.37 (12)
O3—C13—C14—C15 −2.0 (2) C9—N1—C8—O2 1.8 (2)
O3—C13—C14—C19 177.98 (14) C9—N1—C8—C7 −177.10 (12)
N1—C1—C2—C3 179.83 (14) C10—N2—C11—C12 −179.36 (11)
N1—C1—C2—C7 −0.86 (15) C11—N2—C10—C9 −177.34 (11)
N1—C9—C10—N2 −69.13 (15) C12—N3—C13—O3 2.3 (2)
N2—C11—C12—N3 −70.61 (15) C12—N3—C13—C14 −178.85 (12)
N3—C13—C14—C15 179.24 (14) C12—N3—C20—O4 −1.6 (2)
N3—C13—C14—C19 −0.76 (15) C12—N3—C20—C19 178.60 (12)
C1—N1—C8—O2 178.13 (13) C13—N3—C12—C11 110.75 (14)
C1—N1—C8—C7 −0.76 (15) C13—N3—C20—O4 177.76 (13)
C1—N1—C9—C10 97.89 (15) C13—N3—C20—C19 −1.99 (15)
C1—C2—C3—C4 179.82 (14) C13—C14—C15—C16 −178.35 (13)
C1—C2—C7—C6 −179.45 (13) C13—C14—C19—C18 179.61 (13)
C1—C2—C7—C8 0.42 (15) C13—C14—C19—C20 −0.42 (15)
C2—C3—C4—C5 −0.7 (2) C14—C15—C16—C17 −1.2 (2)
C2—C7—C8—O2 −178.64 (14) C14—C19—C20—O4 −178.29 (14)
C2—C7—C8—N1 0.18 (15) C14—C19—C20—N3 1.45 (15)
C3—C2—C7—C6 −0.1 (2) C15—C14—C19—C18 −0.4 (2)
C3—C2—C7—C8 179.80 (13) C15—C14—C19—C20 179.58 (13)
C3—C4—C5—C6 0.2 (2) C15—C16—C17—C18 −0.6 (2)
C4—C5—C6—C7 0.3 (2) C16—C17—C18—C19 1.8 (2)
C5—C6—C7—C2 −0.4 (2) C17—C18—C19—C14 −1.4 (2)
C5—C6—C7—C8 179.78 (14) C17—C18—C19—C20 178.68 (14)
C6—C7—C8—O2 1.2 (3) C18—C19—C20—O4 1.7 (3)
C6—C7—C8—N1 −179.96 (14) C18—C19—C20—N3 −178.59 (14)
C7—C2—C3—C4 0.6 (2) C19—C14—C15—C16 1.6 (2)
C8—N1—C1—O1 −177.56 (13) C20—N3—C12—C11 −69.92 (16)
C8—N1—C1—C2 1.01 (15) C20—N3—C13—O3 −177.07 (13)
C8—N1—C9—C10 −86.20 (16) C20—N3—C13—C14 1.75 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O1W 0.930 (17) 1.848 (17) 2.7729 (16) 172.7 (14)
O1W—H1WA···O2W 0.87 1.88 2.7462 (15) 171
O1W—H1WB···O4i 0.87 2.05 2.9054 (14) 168
O2W—H2WA···O2ii 0.87 2.03 2.8929 (15) 172

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z.

Funding Statement

Funding for this research was provided by: San Diego Miramar College Department of Chemistry.

References

  1. Arshadi, M., Abdolmaleki, M. K., Eskandarloo, H. & Abbaspourrad, A. (2019). J. Colloid Interface Sci. 540, 501–514. [DOI] [PubMed]
  2. Barrett, D. M. Y., Kahwa, I. A., Mague, J. T. & McPherson, G. L. (1995). J. Org. Chem. 60, 5946–5953.
  3. Blackman, A. G. (2005). Polyhedron, 24, 1–39.
  4. Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cheng, T.-H., Wang, Y.-M., Lee, W.-T. & Liu, G.-C. (2000). Polyhedron, 19, 2027–2037.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Holmberg, R., Franz, V., Moser, K. M., Solano, R., Moore, C., Rheingold, A. L. & Smith, G. L. N. (2021). Acta Cryst. E77, 83–85. [DOI] [PMC free article] [PubMed]
  10. Howell, R., Edwards, S., Gajadhar-Plummer, A., Kahwa, I., McPherson, G., Mague, J., White, A. & Williams, D. (2003). Molecules, 8, 565–592.
  11. Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787–798.
  12. Kang, S. O., Day, V. W. & Bowman-James, K. (2010). Inorg. Chem. 49, 8629–8636. [DOI] [PubMed]
  13. Keypour, H., Azadbakht, R. & Khavasi, H. (2008). Polyhedron, 27, 648–654.
  14. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  15. Lundin, N. J., Hamilton, I. G. & Blackman, A. G. (2004). Polyhedron, 23, 97–102.
  16. Mann, F. G. (1934). J. Chem. Soc. pp. 461–466.
  17. Piacham, T., Nantasenamat, C., Isarankura-Na-Ayudhya, C., Prachayasittikul, S. & Prachayasittikul, V. (2014). J. Chem. Pharm. Res. 6, 493–498.
  18. Ramesh, P. & Jebasingh, B. (2019). Mater. Chem. Phys. 222, 45–54.
  19. Saga, M., Sakane, G., Yamazaki, S. & Saito, K. (2020). Inorg. Chim. Acta, 502, Article 119368.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Utz, D., Kisslinger, S., Hampel, F. & Schindler, S. (2008). J. Inorg. Biochem. 102, 1236–1245. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023004565/ex2070sup1.cif

e-79-00575-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004565/ex2070Isup2.hkl

e-79-00575-Isup2.hkl (328.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004565/ex2070Isup3.mol

Supporting information file. DOI: 10.1107/S2056989023004565/ex2070Isup4.cml

CCDC reference: 2264952

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES