Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 May 19;79(Pt 6):557–561. doi: 10.1107/S2056989023004267

Synthesis and crystal structure studies of 5-(tri­fluoro­meth­yl)-1,3,4-thia­diazol-2(3H)-one at 180 K

Doreswamy Geetha a, Thaluru M Mohan Kumar b, Haleyur G Anil Kumar c, Mellekatte T Shreenivas d, Yeriyur B Basavaraju a,*, Hemmige S Yathirajan a,*, Sean Parkin e
Editor: L Van Meerveltf
PMCID: PMC10242744  PMID: 37288459

The synthesis and crystal structure of 5-(tri­fluoro­meth­yl)-1,3,4-thia­diazol-2(3H)-one, a heterocycle of importance as a pharmaceutical building block, are presented.

Keywords: 1,3,4-thia­diazole; heterocycle; high Z′; Z′ = 6; hydrogen bonding; disorder; crystal structure

Abstract

The synthesis and crystal structure of C3HF3N2OS, systematic name 5-(tri­fluoro­meth­yl)-1,3,4-thia­diazol-2(3H)-one (5-TMD-2-one), a compound containing the pharmacologically important heterocycle 1,3,4-thia­diazole, is presented. The asymmetric unit comprises six independent mol­ecules (Z′ = 6), all of which are planar. The r.m.s. deviations from each mean plane range from 0.0063 to 0.0381 Å, not including the CF3 fluorine atoms. Within the crystal, two of the mol­ecules form hydrogen-bonded dimers that in turn combine with inversion-related copies to form tetra­meric constructs. Similar tetra­mers, but lacking inversion symmetry, are formed by the remaining four mol­ecules. The tetra­mers are linked into tape-like motifs by S⋯O and O⋯O close contacts. The environments of each symmetry-independent mol­ecule were compared via a Hirshfeld surface analysis. The most abundant atom–atom contacts are between fluorine atoms, while the strongest result from N—H⋯O hydrogen bonds.

1. Chemical context

The 1,3,4-thia­diazole ring is a pharmacologically important heterocycle found in compounds covering a broad spectrum of bioactivity (Moussa et al., 2023). Recent reviews have highlighted the beneficial properties of 1,3,4-thia­diazole derivatives, including microbiological activity (Barbosa & de Aguiar, 2019) and their potential use as scaffolds for drug design and development (Han et al., 2021). A series of 2,5-disubstituted 1,3,4-thia­diazole derivatives were synthesized and investigated for anti­tuberculosis structure–activity relationships by Oruç et al. (2004). The structures and thermal behaviour of substituted 1,3,4-thia­diazole organic crystals have been investigated by Shen et al. (2005). Reviews of progress covering the biological activities of 1,3,4-thia­diazole and its derivatives were reported by Jain et al. (2013) and by Anthwal et al. (2022). Their use as scaffolds for promising anti­microbial agents (Serban et al., 2018) and anti-cancer agents (Çevik et al., 2020) have also been published. The inter­play of inter- and intra­molecular inter­actions in the crystal structures of 1,3,4-thia­diazole resorcinol derivatives was reported by Hoser et al. (2018). A series of four biologically active 2-benzamido-5-(4-fluoro-3-phen­oxy­phen­yl)-1,3,4-thia­diazo­les derivatives were synthesized by Panini et al. (2013) and their crystal structures studied to evaluate the effects of systematic variations in the functional group attached at the para position of the benzamido ring. Lastly, the crystal structures of three 6-aryl-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazo­les were reported by Shamanth et al. (2020).

Overall, the 1,3,4-thia­diazole heterocycle provides the basis of a promising area of research in medicinal chemistry and drug discovery, with a wide range of potential applications. The reported findings provide insights into the mol­ecular properties and biological activities of 1,3,4-thia­diazole derivatives, contributing to the development of novel therapeutic agents. With the importance of 1,3,4-thia­diazo­les in drug discovery research in mind, this paper reports the synthesis and crystal structure of 5-(tri­fluoro­meth­yl)-1,3,4-thia­diazol-2(3H)-one, C3HF3N2OS (5-TMD-2-one). 1.

2. Structural commentary

The mol­ecular structure of 5-TMD-2-one consists of a 1,3,4-thia­diazone ring, essentially a flat penta­gonal heterocycle with two adjacent nitro­gen atoms, each flanked by carbon atoms, with a sulfur atom completing the ring. The simplicity of the mol­ecular structure notwithstanding, the crystal structure of 5-TMD-2-one is far more complex, as the asymmetric unit contains six mol­ecules (Z′ = 6; designated AF in Fig. 1). In each mol­ecule, one of the nitro­gen atoms (N1) carries a hydrogen atom and is single bonded to C1, while N2 is double bonded to C2. Atom C1 forms a carbonyl group with O1, and C2 carries a tri­fluoro­methyl substituent. Deviations (r.m.s.) from planarity range from 0.0063 Å in mol­ecule B to 0.0381 Å in mol­ecule D, with the largest deviation for any atom (aside from fluorine), being 0.065 (8) Å for C3D, the tri­fluoro­methyl carbon of mol­ecule D. The only inter­nal degree of freedom is the torsion of the tri­fluoro­methyl group, which is disordered in all six symmetry-independent mol­ecules in the structure. Indeed, the CF3 orientations and the refined occupancies of the disorder components, which range from 0.500 (5):0.500 (5) for mol­ecule D to 0.908 (2):0.092 (2) for mol­ecule F, are the only significant differences between the six mol­ecules.

Figure 1.

Figure 1

An ellipsoid plot (30% probability) of the asymmetric unit of 5-TMD-2-one. The CF3 groups on all six independent mol­ecules are disordered over two orientations, but only the major components are shown.

The crystals were observed to shatter when cooled to 90 K, but remained intact and gave sharp diffraction at 180 K. This observation prompted us to investigate whether warming the crystals might lead to a simpler crystal structure, i.e., with fewer mol­ecules in the asymmetric unit. A crystal mounted at room temperature, however, indexed to give essentially the same unit cell and structure (again with Z′ = 6) as at 180 K.

3. Supra­molecular features

The main supra­molecular constructs in crystals of 5-TMD-2-one are hydrogen-bonded tetra­mers. There are, however, slight differences for tetra­mers formed by mol­ecules A and B (with inversion-related copies) and by mol­ecules C, D, E and F. Within the chosen asymmetric unit, mol­ecules A and B are joined by one short N1A—H1A⋯O1B [dD–A = 2.726 (2) Å] and one longer N1B—H1B⋯O1A [dD–A = 3.328 (2) Å] hydrogen bond, leading to Inline graphic (8) dimer motifs. Pairs of these dimers are connected to inversion-related copies by N1B—H1B⋯O1A i [dD–A = 2.955 (2) Å; symmetry code: (i) 2 − x, 1 − y, 1 − z] hydrogen bonds, producing Inline graphic (4) motifs in which the hydrogen atoms act as bifurcated donors (Fig. 2), thereby generating tetra­mers. Adjacent tetra­mers of A and B mol­ecules are in close contact [via S1B⋯O1B ii = 2.9743 (14) Å and O1B⋯O1B ii = 2.996 (3) Å; symmetry code: (ii) 1 − x, 1 − y, 1 − z] contacts, forming tape-like structures parallel to (011) that extend along the [100] direction. For mol­ecules C, D, E and F, the individual motifs are similar (see Table 1), but lack the constraints of inversion symmetry, leading to tapes with a slightly V-shaped cross section, as shown in Fig. 3. Owing to the complexity, however, the overall packing is best viewed using a mol­ecular graphics program such as Mercury (Macrae et al., 2020). Hydrogen bonding and close-contact distances are given in Table 1.

Figure 2.

Figure 2

A partial packing plot of 5-TMD-2-one viewed down the c-axis for the A and B mol­ecules, showing N—H⋯O hydrogen bonds (dashed lines) and inter­molecular contacts (S⋯O and O⋯O, dotted lines), forming a tape-like motif parallel to (011) that extends along the a-axis direction. The hydrogen bonding and inter­molecular contacts for mol­ecules C, D, E and F are similar, but lack crystallographically imposed inversion symmetry.

Table 1. Hydrogen bonds and other inter­molecular contacts (Å, °) for 5-TMD-2-one.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A—O1B 0.819 (16) 1.918 (16) 2.726 (2) 169 (2)
N1B—H1B—O1A 0.826 (15) 2.574 (17) 3.328 (2) 152.3 (19)
N1B—H1B—O1A i 0.826 (15) 2.347 (19) 2.955 (2) 131.0 (18)
N1C—H1C—O1D 0.829 (15) 1.927 (16) 2.7485 (19) 171 (2)
N1D—H1D—O1C 0.821 (15) 2.605 (17) 3.342 (2) 150 (2)
N1D—H1D—O1F 0.821 (15) 2.280 (19) 2.908 (2) 134 (2)
N1E—H1E—O1C 0.814 (15) 2.262 (19) 2.912 (2) 137 (2)
N1E—H1E—O1F 0.814 (15) 2.643 (18) 3.359 (2) 148 (2)
N1F—H1F—O1E 0.820 (16) 1.952 (16) 2.764 (2) 171 (2)
S1B⋯O1B ii     2.9743 (14)  
O1B⋯O1B ii     2.996 (3)  
S1D⋯O1E iii     3.0279 (14)  
O1D⋯O1E iii     3.0686 (18)  
O1D⋯S1E iii     3.0093 (14)  

Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1; (iii) x − 1, y, z.

Figure 3.

Figure 3

A partial packing plot of 5-TMD-2-one viewed down the a-axis, showing the main difference between the A/B tape motif and those formed by mol­ecules C, D, E and F, which have a shallow V-shaped cross section.

Atom–atom contact two-dimensional fingerprint plots calculated using CrystalExplorer (Spackman et al., 2021) for each of the six independent mol­ecules show that their environments are similar (Fig. 4 af). The most abundant contacts in each case are F⋯F (shown in blue and green), ranging from 39.8% in mol­ecule A (Fig. 4 a) to 25.6% in mol­ecule E (Fig. 4 e).

Figure 4.

Figure 4

Hirshfeld surface two-dimensional fingerprint plots for each of the six independent mol­ecules AF [depicted in panels (a)–(f)] of 5-TMD-2-one. The F⋯F contacts, highlighted in blue and green have the greatest coverage. The N—H⋯O hydrogen bonds are apparent as grey spikes extending to the lower left in each panel. The longer, sharper spikes correspond to the shorter, stronger inter­actions in each case.

4. Database survey

A search of the Cambridge Structural Database (CSD, v5.43 with updates to November 2022; Groom et al., 2016) for ‘thia­diazole’ returned 2068 hits, while ‘1,3,4-thia­diazole’ gave 745 hits. A subsequent search using just the 1,3,4-thia­diazole ring fragment with ‘any substituent’ specified at the equivalent of C1, C2, and N1 produced 682 hits. This fragment, but with hydrogen attached to N1 gave 114 hits. A search with tri­fluoro­methyl added at C2 gave no hits, while a search with ‘any oxygen-bound’ substituent on C1 returned only four hits. These are GAQVIF (Zhang et al., 2012), which is 5-meth­oxy-1,3,4-thia­diazol-2(3H)-one, LAPSAY (Kang et al., 2012a ), which is a DMSO solvate of 5,5′-[1,4-phenyl­enebis(methyl­enesulfanedi­yl)]bis­[1,3,4-thia­diazol-2(3H)-one], and triclinic (YAXWAX: Kang et al., 2012b ) and monoclinic (YAXWAX01: Kim & Kang, 2014) polymorphs of 5-amino-1,3,4-thia­diazol-2(3H)-one.

A few other crystal structures of compounds related to 5-TMD-2-one include MAZZIX and NIYDOO01 (Boechat et al., 2006), 1,3,4-thia­diazo­lium-2-thiol­ate (Hu et al., 2006) and 3-(mercaptometh­yl)-1,3,4-thia­diazol-2(3H)-one (HORZAQ; Hartung et al., 2009).

Although crystal structures with Z′ > 1 are not uncommon, their scarcity increases with Z′. In a detailed survey of structures with high Z′, Brock (2016) estimated that only about 12% of structures in the Cambridge Structural Database at the time (CSD; Groom et al., 2016) had Z′ > 1, and < 0.1% had Z′ > 4. Without any attempt to filter duplicates or pathological cases, in the current version of the CSD (v5.43, vide supra) there are 655 entries with Z′ = 6 out of over 1.2 million (∼0.05%), so by this criterion alone, the structure of 5-TMD-2-one is unusual, though not unprecedented.

5. Synthesis, crystallization and spectroscopic details

Synthesis of 2-amino-5-tri­fluoro­methyl-1,3,4-thia­diazole

To a clean and dry 1 L round-bottom flask, 14.5 g of thio­semicarbazide suspended in 500 ml of 1,4 dioxane was added, with stirring. 12.0 ml of CF3COOH and 15.0 mL of POCl3 were slowly added over about 30 min. The reaction was maintained for 3 h, during which time, a large amount of HCl gas was produced. After completion of HCl gas liberation, the reaction mixture was poured into 100 mL of cold water with stirring and the pH adjusted to 9 with 50% NaOH solution, to give a solid precipitate. The product, 2-amino-5-tri­fluoro­methyl-1,3,4-thia­diazole, was filtered, washed with cold water and dried at 363 K (20.6 g).

Synthesis of 5-TMD-2-one

In a 250 ml round-bottomed flask, 20.6 g of 2-amino-5-tri­fluoro­methyl-1,3,4-thia­diazole was suspended with 150 ml conc. hydro­chloric acid, with stirring. The reaction mixture was cooled to between 263 and 268 K. Then, 350 mL of aqueous NaNO2 were added slowly (21.2 g, 0.307 mol, 4 eq.) while maintaining the temperature at 263–268 K with continued stirring. After 2 h, 100 ml of H2O were added with warming up to 333–353 K and stirred for a further 3 h. The reaction mixture was then cooled to room temperature, 150 mL of CH2Cl2 were added, the organic layer separated and a further 150 ml CH2Cl2 were added. The combined organic layers were washed with water twice and dried with sodium sulfate, then finally distilled completely. The crude product was purified by chromatography over SiO2 (hexa­ne:EtOAc, 9:1). The resulting product, pure 5-TMD-2-one (12.5 g) was recrystallized from hexane. MS m/z: 169.12 (M − H)+.

A generalized reaction scheme is presented in Fig. 5.

Figure 5.

Figure 5

A general scheme for the synthesis of 5-TMD-2-one.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were found in difference-Fourier maps. Their coordinates were refined freely with U iso parameters set to 1.2U eq of their attached nitro­gen atom. To ensure satisfactory refinement of the disordered CF3 groups, a combination of constraints (EADP in SHELXL) and restraints (SHELXL commands SAME, SADI, SIMU, and RIGU) were employed.

Table 2. Experimental details.

Crystal data
Chemical formula C3HF3N2OS
M r 170.12
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 180
a, b, c (Å) 10.8996 (7), 13.9700 (8), 14.1351 (9)
α, β, γ (°) 63.253 (2), 71.160 (2), 67.954 (2)
V3) 1750.38 (19)
Z 12
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.32 × 0.29 × 0.28
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.922, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 52212, 8021, 6646
R int 0.045
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.090, 1.02
No. of reflections 8021
No. of parameters 728
No. of restraints 273
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.41, −0.31

Computer programs: APEX3 (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2019/2 (Sheldrick, 2015b ), XP in SHELXTL (Sheldrick, 2008), SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023004267/vm2283sup1.cif

e-79-00557-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004267/vm2283Isup2.hkl

e-79-00557-Isup2.hkl (636.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004267/vm2283Isup3.cml

CCDC reference: 2263179

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

DG is grateful to the DOS in Chemistry, University of Mysore, for providing research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

supplementary crystallographic information

Crystal data

C3HF3N2OS Z = 12
Mr = 170.12 F(000) = 1008
Triclinic, P1 Dx = 1.937 Mg m3
a = 10.8996 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.9700 (8) Å Cell parameters from 9954 reflections
c = 14.1351 (9) Å θ = 2.4–33.1°
α = 63.253 (2)° µ = 0.54 mm1
β = 71.160 (2)° T = 180 K
γ = 67.954 (2)° Block, colourless
V = 1750.38 (19) Å3 0.32 × 0.29 × 0.28 mm

Data collection

Bruker D8 Venture dual source diffractometer 8021 independent reflections
Radiation source: microsource 6646 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1 Rint = 0.045
φ and ω scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −14→14
Tmin = 0.922, Tmax = 0.971 k = −17→18
52212 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Only H-atom coordinates refined
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0319P)2 + 1.258P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
8021 reflections Δρmax = 0.41 e Å3
728 parameters Δρmin = −0.31 e Å3
273 restraints Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0078 (13)

Special details

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998). The crystals appeared to undergo a destructive phase transition when cooled to 90K. Visual inspection of crystal integrity and diffraction quality vs temperature established a safe temperature for data collection of -93° C.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1A 0.96653 (5) 0.22146 (4) 0.77875 (4) 0.03426 (12)
O1A 0.95363 (14) 0.40427 (12) 0.59471 (11) 0.0408 (3)
N1A 0.76657 (16) 0.34097 (14) 0.68704 (13) 0.0350 (4)
H1A 0.720 (2) 0.3890 (16) 0.6429 (16) 0.042*
N2A 0.71853 (16) 0.25921 (14) 0.77307 (13) 0.0365 (4)
C1A 0.89728 (18) 0.33853 (15) 0.66966 (14) 0.0286 (4)
C2A 0.81231 (18) 0.19210 (15) 0.82619 (14) 0.0294 (4)
C3A 0.7884 (12) 0.0917 (7) 0.9244 (7) 0.0411 (6) 0.731 (9)
F1A 0.8079 (7) 0.0963 (5) 1.0078 (2) 0.1020 (18) 0.731 (9)
F2A 0.8728 (5) 0.0021 (2) 0.9115 (4) 0.1037 (19) 0.731 (9)
F3A 0.6673 (3) 0.0848 (4) 0.9448 (4) 0.0895 (16) 0.731 (9)
C3A' 0.792 (3) 0.0889 (17) 0.9217 (17) 0.0411 (6) 0.269 (9)
F1A' 0.7891 (17) 0.0107 (7) 0.8980 (6) 0.081 (4) 0.269 (9)
F2A' 0.6812 (11) 0.1049 (7) 0.9895 (8) 0.084 (4) 0.269 (9)
F3A' 0.8842 (9) 0.0400 (8) 0.9797 (8) 0.068 (3) 0.269 (9)
S1B 0.55246 (4) 0.65799 (4) 0.34668 (4) 0.03139 (12)
O1B 0.63289 (14) 0.48600 (12) 0.52132 (12) 0.0451 (4)
N1B 0.77624 (15) 0.59413 (13) 0.40477 (12) 0.0291 (3)
H1B 0.8414 (18) 0.5583 (16) 0.4356 (16) 0.035*
N2B 0.78780 (15) 0.68295 (13) 0.31098 (12) 0.0313 (3)
C1B 0.65984 (18) 0.56361 (15) 0.44064 (15) 0.0300 (4)
C2B 0.67908 (18) 0.72306 (15) 0.27328 (14) 0.0291 (4)
C3B 0.6649 (7) 0.8230 (4) 0.1690 (4) 0.0376 (6) 0.802 (7)
F1B 0.5873 (4) 0.8191 (3) 0.1169 (2) 0.0688 (9) 0.802 (7)
F2B 0.6098 (5) 0.91515 (18) 0.1856 (2) 0.0919 (15) 0.802 (7)
F3B 0.7804 (2) 0.8280 (3) 0.1034 (2) 0.0872 (14) 0.802 (7)
C3B' 0.657 (3) 0.8255 (15) 0.1755 (15) 0.0376 (6) 0.198 (7)
F1B' 0.7410 (13) 0.8816 (9) 0.152 (1) 0.069 (4) 0.198 (7)
F2B' 0.6675 (19) 0.8020 (9) 0.0960 (8) 0.076 (4) 0.198 (7)
F3B' 0.5395 (10) 0.8927 (9) 0.1870 (9) 0.073 (3) 0.198 (7)
S1C 0.51557 (5) 0.34764 (4) 1.01026 (4) 0.03561 (13)
O1C 0.52164 (14) 0.50625 (12) 0.80892 (11) 0.0396 (3)
N1C 0.33717 (16) 0.43878 (13) 0.89515 (13) 0.0323 (4)
H1C 0.295 (2) 0.4746 (17) 0.8448 (15) 0.039*
N2C 0.28288 (16) 0.36498 (13) 0.98623 (13) 0.0338 (4)
C1C 0.46203 (18) 0.44504 (15) 0.88628 (14) 0.0285 (4)
C2C 0.36572 (18) 0.31244 (15) 1.05150 (14) 0.0297 (4)
C3C 0.3342 (8) 0.2217 (5) 1.1581 (4) 0.0396 (6) 0.789 (5)
F1C 0.3650 (4) 0.2303 (2) 1.23606 (15) 0.0761 (10) 0.789 (5)
F2C 0.4036 (4) 0.12531 (17) 1.1556 (2) 0.0997 (16) 0.789 (5)
F3C 0.2062 (2) 0.2288 (3) 1.1867 (2) 0.0937 (14) 0.789 (5)
C3C' 0.335 (3) 0.2182 (18) 1.1521 (14) 0.0396 (6) 0.211 (5)
F1C' 0.2788 (13) 0.1565 (8) 1.1434 (6) 0.069 (3) 0.211 (5)
F2C' 0.2543 (14) 0.2491 (6) 1.2276 (7) 0.079 (4) 0.211 (5)
F3C' 0.4371 (9) 0.1531 (10) 1.1961 (9) 0.084 (4) 0.211 (5)
S1D 0.12479 (5) 0.74725 (4) 0.55582 (4) 0.03674 (13)
O1D 0.22315 (13) 0.56130 (11) 0.71384 (11) 0.0359 (3)
N1D 0.34765 (15) 0.68830 (13) 0.61291 (13) 0.0316 (3)
H1D 0.4136 (18) 0.6541 (17) 0.6423 (17) 0.038*
N2D 0.34835 (16) 0.78693 (14) 0.52875 (13) 0.0367 (4)
C1D 0.23960 (18) 0.64841 (15) 0.64245 (14) 0.0280 (4)
C2D 0.2393 (2) 0.82565 (16) 0.49213 (15) 0.0343 (4)
C3D 0.2279 (17) 0.9296 (11) 0.3921 (11) 0.0446 (16) 0.499 (5)
F1D 0.2101 (9) 1.0139 (4) 0.4116 (5) 0.112 (3) 0.499 (5)
F2D 0.3266 (4) 0.9244 (3) 0.3131 (3) 0.0764 (15) 0.499 (5)
F3D 0.1208 (4) 0.9442 (4) 0.3547 (4) 0.087 (2) 0.499 (5)
C3D' 0.2036 (17) 0.9381 (11) 0.4023 (11) 0.0446 (16) 0.501 (5)
F1D' 0.2156 (10) 0.9282 (4) 0.3157 (3) 0.116 (3) 0.501 (5)
F2D' 0.0860 (4) 1.0024 (3) 0.4237 (4) 0.0802 (16) 0.501 (5)
F3D' 0.2875 (4) 0.9973 (4) 0.3863 (5) 0.0759 (18) 0.501 (5)
S1E 1.01005 (4) 0.44778 (4) 0.86856 (4) 0.03126 (12)
O1E 0.94784 (14) 0.58947 (12) 0.67573 (11) 0.0405 (3)
N1E 0.79039 (15) 0.50383 (13) 0.80787 (13) 0.0314 (3)
H1E 0.7261 (19) 0.5320 (17) 0.7778 (17) 0.038*
N2E 0.77016 (15) 0.42897 (13) 0.91058 (13) 0.0312 (3)
C1E 0.91157 (18) 0.52690 (15) 0.76578 (15) 0.0293 (4)
C2E 0.87636 (18) 0.39383 (14) 0.95031 (14) 0.0280 (4)
C3E 0.8872 (13) 0.3062 (9) 1.0617 (6) 0.0361 (6) 0.69 (3)
F1E 0.9321 (9) 0.3380 (7) 1.1172 (7) 0.0522 (13) 0.69 (3)
F2E 0.9686 (10) 0.2101 (6) 1.0618 (7) 0.0684 (17) 0.69 (3)
F3E 0.7664 (7) 0.2929 (10) 1.1172 (8) 0.0677 (19) 0.69 (3)
C3E' 0.880 (3) 0.308 (2) 1.0615 (14) 0.0361 (6) 0.31 (3)
F1E' 0.926 (3) 0.2096 (11) 1.0533 (14) 0.072 (4) 0.31 (3)
F2E' 0.7658 (15) 0.3082 (18) 1.1266 (18) 0.051 (3) 0.31 (3)
F3E' 0.965 (2) 0.312 (2) 1.1065 (16) 0.063 (4) 0.31 (3)
S1F 0.58836 (5) 0.88473 (4) 0.44640 (4) 0.03321 (12)
O1F 0.62033 (14) 0.68089 (11) 0.60648 (11) 0.0388 (3)
N1F 0.79719 (17) 0.75904 (14) 0.52504 (13) 0.0367 (4)
H1F 0.849 (2) 0.7086 (16) 0.5639 (17) 0.044*
N2F 0.83663 (16) 0.85025 (14) 0.44911 (13) 0.0364 (4)
C1F 0.66894 (18) 0.75638 (15) 0.54119 (14) 0.0296 (4)
C2F 0.73824 (18) 0.92081 (15) 0.40304 (14) 0.0298 (4)
C3F 0.7544 (3) 1.0293 (2) 0.3131 (2) 0.0362 (5) 0.908 (2)
F1F 0.7885 (3) 1.02172 (14) 0.21920 (11) 0.0763 (7) 0.908 (2)
F2F 0.64084 (16) 1.11017 (12) 0.31281 (15) 0.0615 (5) 0.908 (2)
F3F 0.84528 (19) 1.06373 (14) 0.32310 (15) 0.0662 (5) 0.908 (2)
C3F' 0.759 (2) 1.0237 (17) 0.3096 (18) 0.0362 (5) 0.092 (2)
F1F' 0.718 (3) 1.1043 (14) 0.3427 (12) 0.0763 (7) 0.092 (2)
F2F' 0.8847 (15) 1.0179 (13) 0.2641 (15) 0.0615 (5) 0.092 (2)
F3F' 0.6761 (19) 1.0648 (15) 0.2436 (15) 0.0662 (5) 0.092 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0256 (2) 0.0354 (2) 0.0310 (2) −0.01036 (19) −0.00812 (18) 0.00015 (19)
O1A 0.0352 (7) 0.0419 (8) 0.0344 (7) −0.0201 (6) −0.0069 (6) 0.0029 (6)
N1A 0.0300 (8) 0.0348 (8) 0.0300 (8) −0.0151 (7) −0.0127 (7) 0.0062 (7)
N2A 0.0319 (8) 0.0372 (9) 0.0322 (8) −0.0176 (7) −0.0099 (7) 0.0031 (7)
C1A 0.0299 (9) 0.0288 (8) 0.0245 (8) −0.0112 (7) −0.0072 (7) −0.0036 (7)
C2A 0.0290 (9) 0.0304 (9) 0.0245 (8) −0.0118 (7) −0.0056 (7) −0.0033 (7)
C3A 0.0385 (12) 0.0386 (11) 0.0327 (11) −0.0159 (10) −0.0089 (9) 0.0040 (9)
F1A 0.176 (5) 0.108 (3) 0.0278 (12) −0.085 (3) −0.0336 (19) 0.0169 (14)
F2A 0.094 (3) 0.0308 (12) 0.099 (3) −0.0039 (15) 0.022 (2) 0.0103 (13)
F3A 0.0565 (16) 0.088 (2) 0.080 (3) −0.0527 (17) −0.0287 (16) 0.0425 (19)
C3A' 0.0385 (12) 0.0386 (11) 0.0327 (11) −0.0159 (10) −0.0089 (9) 0.0040 (9)
F1A' 0.16 (1) 0.047 (4) 0.042 (3) −0.057 (5) −0.021 (5) 0.004 (3)
F2A' 0.064 (5) 0.046 (4) 0.061 (5) −0.005 (4) 0.027 (4) 0.012 (3)
F3A' 0.064 (5) 0.060 (5) 0.058 (5) −0.034 (4) −0.039 (4) 0.027 (3)
S1B 0.0244 (2) 0.0297 (2) 0.0311 (2) −0.01107 (18) −0.01094 (18) 0.00303 (18)
O1B 0.0392 (8) 0.0442 (8) 0.0402 (8) −0.0244 (7) −0.0213 (6) 0.0140 (6)
N1B 0.0224 (7) 0.0317 (8) 0.0298 (8) −0.0101 (6) −0.0082 (6) −0.0042 (6)
N2B 0.0282 (8) 0.0332 (8) 0.0295 (8) −0.0137 (6) −0.0034 (6) −0.0064 (6)
C1B 0.0263 (9) 0.0291 (9) 0.0309 (9) −0.0097 (7) −0.0121 (7) −0.0017 (7)
C2B 0.0290 (9) 0.0269 (8) 0.0277 (9) −0.0118 (7) −0.0036 (7) −0.0048 (7)
C3B 0.0402 (13) 0.034 (1) 0.0306 (11) −0.0157 (9) −0.0072 (10) −0.0006 (9)
F1B 0.085 (2) 0.0696 (17) 0.0473 (14) −0.0416 (16) −0.0370 (14) 0.0152 (11)
F2B 0.176 (4) 0.0276 (10) 0.0484 (13) −0.0149 (16) −0.024 (2) −0.0022 (9)
F3B 0.0469 (12) 0.091 (2) 0.0511 (15) −0.0233 (12) 0.0028 (10) 0.0301 (14)
C3B' 0.0402 (13) 0.034 (1) 0.0306 (11) −0.0157 (9) −0.0072 (10) −0.0006 (9)
F1B' 0.075 (7) 0.056 (6) 0.063 (6) −0.049 (5) −0.037 (5) 0.032 (4)
F2B' 0.137 (11) 0.053 (5) 0.036 (4) −0.018 (7) −0.029 (6) −0.013 (4)
F3B' 0.060 (5) 0.035 (5) 0.070 (6) 0.005 (3) −0.017 (4) 0.014 (4)
S1C 0.0280 (2) 0.0413 (3) 0.0296 (2) −0.0141 (2) −0.01040 (18) 0.0006 (2)
O1C 0.0328 (7) 0.0437 (8) 0.0311 (7) −0.0191 (6) −0.0046 (6) 0.0013 (6)
N1C 0.0303 (8) 0.0344 (8) 0.0259 (8) −0.0143 (7) −0.0109 (6) 0.0024 (6)
N2C 0.0308 (8) 0.0344 (8) 0.0306 (8) −0.0151 (7) −0.0078 (7) −0.0010 (7)
C1C 0.0263 (9) 0.0291 (9) 0.0264 (9) −0.0092 (7) −0.0057 (7) −0.0054 (7)
C2C 0.0271 (9) 0.0294 (9) 0.0275 (9) −0.0097 (7) −0.0047 (7) −0.0049 (7)
C3C 0.0377 (11) 0.0379 (11) 0.0316 (12) −0.0139 (9) −0.0066 (9) −0.0003 (9)
F1C 0.112 (2) 0.0858 (19) 0.0287 (10) −0.0521 (18) −0.0219 (12) 0.0062 (10)
F2C 0.151 (4) 0.0261 (10) 0.0597 (17) −0.0153 (14) 0.0255 (19) −0.002 (1)
F3C 0.0472 (12) 0.113 (3) 0.0635 (18) −0.0458 (14) −0.0143 (11) 0.0371 (16)
C3C' 0.0377 (11) 0.0379 (11) 0.0316 (12) −0.0139 (9) −0.0066 (9) −0.0003 (9)
F1C' 0.111 (8) 0.062 (5) 0.043 (4) −0.066 (6) −0.015 (5) 0.007 (3)
F2C' 0.114 (8) 0.039 (4) 0.042 (4) −0.018 (5) 0.024 (5) −0.008 (3)
F3C' 0.052 (4) 0.072 (7) 0.066 (6) −0.017 (4) −0.027 (4) 0.035 (5)
S1D 0.0316 (2) 0.0360 (3) 0.0367 (3) −0.0148 (2) −0.0166 (2) 0.0028 (2)
O1D 0.0348 (7) 0.0359 (7) 0.0326 (7) −0.0158 (6) −0.0154 (6) 0.0020 (6)
N1D 0.0236 (8) 0.0372 (8) 0.0312 (8) −0.0114 (7) −0.0083 (6) −0.0059 (7)
N2D 0.0320 (8) 0.0407 (9) 0.0331 (9) −0.0182 (7) −0.0032 (7) −0.0056 (7)
C1D 0.0258 (9) 0.0318 (9) 0.0243 (8) −0.0091 (7) −0.0073 (7) −0.0061 (7)
C2D 0.0358 (10) 0.0347 (10) 0.0285 (9) −0.0163 (8) −0.0053 (8) −0.0036 (8)
C3D 0.044 (5) 0.0404 (18) 0.037 (2) −0.019 (2) −0.009 (2) 0.0020 (16)
F1D 0.234 (9) 0.0336 (19) 0.068 (3) −0.025 (4) −0.056 (5) −0.0092 (19)
F2D 0.064 (2) 0.069 (2) 0.0406 (18) −0.0176 (18) 0.0047 (16) 0.0153 (15)
F3D 0.064 (2) 0.088 (3) 0.066 (3) −0.038 (2) −0.040 (2) 0.039 (2)
C3D' 0.044 (5) 0.0404 (18) 0.037 (2) −0.019 (2) −0.009 (2) 0.0020 (16)
F1D' 0.255 (9) 0.059 (2) 0.038 (2) −0.043 (5) −0.054 (4) −0.0030 (18)
F2D' 0.060 (2) 0.0460 (19) 0.089 (3) −0.0044 (15) −0.0225 (19) 0.0116 (18)
F3D' 0.068 (2) 0.047 (3) 0.089 (4) −0.035 (2) −0.034 (2) 0.023 (2)
S1E 0.0248 (2) 0.0340 (2) 0.0298 (2) −0.01272 (18) −0.00930 (17) −0.00089 (18)
O1E 0.0323 (7) 0.0462 (8) 0.0326 (7) −0.0175 (6) −0.0125 (6) 0.0039 (6)
N1E 0.0236 (8) 0.0353 (8) 0.0323 (8) −0.0104 (6) −0.0086 (6) −0.0059 (7)
N2E 0.0262 (8) 0.0325 (8) 0.0331 (8) −0.0121 (6) −0.0028 (6) −0.0095 (7)
C1E 0.0244 (8) 0.0299 (9) 0.0305 (9) −0.0088 (7) −0.0084 (7) −0.0053 (7)
C2E 0.0268 (9) 0.0265 (8) 0.0299 (9) −0.0113 (7) −0.0033 (7) −0.0080 (7)
C3E 0.0355 (16) 0.0319 (10) 0.0338 (10) −0.0124 (10) −0.0049 (9) −0.0047 (8)
F1E 0.071 (3) 0.053 (2) 0.0369 (16) −0.022 (2) −0.020 (2) −0.0093 (14)
F2E 0.089 (4) 0.0332 (16) 0.049 (2) 0.0112 (18) −0.016 (2) −0.0081 (13)
F3E 0.048 (2) 0.091 (5) 0.041 (3) −0.043 (3) −0.0090 (19) 0.014 (2)
C3E' 0.0355 (16) 0.0319 (10) 0.0338 (10) −0.0124 (10) −0.0049 (9) −0.0047 (8)
F1E' 0.123 (10) 0.023 (3) 0.041 (4) −0.013 (5) −0.015 (6) 0.004 (3)
F2E' 0.048 (5) 0.051 (4) 0.033 (4) −0.013 (4) 0.010 (4) −0.010 (3)
F3E' 0.061 (6) 0.076 (9) 0.043 (5) −0.038 (6) −0.021 (5) 0.009 (4)
S1F 0.0259 (2) 0.0324 (2) 0.0338 (2) −0.00987 (18) −0.00592 (18) −0.00442 (19)
O1F 0.0346 (7) 0.0387 (7) 0.0349 (7) −0.0186 (6) −0.0050 (6) −0.0010 (6)
N1F 0.0307 (8) 0.0396 (9) 0.0290 (8) −0.0158 (7) −0.0110 (7) 0.0047 (7)
N2F 0.0332 (8) 0.0418 (9) 0.0283 (8) −0.0187 (7) −0.0079 (7) 0.0001 (7)
C1F 0.0286 (9) 0.0327 (9) 0.0247 (9) −0.0110 (7) −0.0046 (7) −0.0065 (7)
C2F 0.0305 (9) 0.0348 (9) 0.0225 (8) −0.0144 (8) −0.0032 (7) −0.0060 (7)
C3F 0.0387 (10) 0.0366 (10) 0.0297 (10) −0.0167 (9) −0.0051 (8) −0.0052 (8)
F1F 0.141 (2) 0.0501 (9) 0.0212 (7) −0.0369 (11) 0.0040 (9) −0.0042 (6)
F2F 0.0500 (9) 0.0390 (8) 0.0646 (11) −0.0093 (7) −0.0085 (8) 0.0026 (7)
F3F 0.0679 (11) 0.0567 (10) 0.0703 (11) −0.0422 (9) −0.0275 (9) 0.0095 (8)
C3F' 0.0387 (10) 0.0366 (10) 0.0297 (10) −0.0167 (9) −0.0051 (8) −0.0052 (8)
F1F' 0.141 (2) 0.0501 (9) 0.0212 (7) −0.0369 (11) 0.0040 (9) −0.0042 (6)
F2F' 0.0500 (9) 0.0390 (8) 0.0646 (11) −0.0093 (7) −0.0085 (8) 0.0026 (7)
F3F' 0.0679 (11) 0.0567 (10) 0.0703 (11) −0.0422 (9) −0.0275 (9) 0.0095 (8)

Geometric parameters (Å, º)

S1A—C2A 1.7279 (18) S1D—C2D 1.7262 (19)
S1A—C1A 1.7825 (18) S1D—C1D 1.7728 (17)
O1A—C1A 1.213 (2) O1D—C1D 1.214 (2)
N1A—C1A 1.355 (2) N1D—C1D 1.355 (2)
N1A—N2A 1.358 (2) N1D—N2D 1.357 (2)
N1A—H1A 0.819 (16) N1D—H1D 0.821 (15)
N2A—C2A 1.277 (2) N2D—C2D 1.279 (3)
C2A—C3A' 1.497 (13) C2D—C3D 1.501 (9)
C2A—C3A 1.500 (5) C2D—C3D' 1.516 (9)
C3A—F3A 1.289 (12) C3D—F1D 1.26 (2)
C3A—F1A 1.295 (12) C3D—F2D 1.284 (15)
C3A—F2A 1.296 (12) C3D—F3D 1.34 (2)
C3A'—F3A' 1.29 (3) C3D'—F1D' 1.25 (2)
C3A'—F2A' 1.29 (3) C3D'—F2D' 1.293 (15)
C3A'—F1A' 1.29 (3) C3D'—F3D' 1.35 (2)
S1B—C2B 1.7251 (18) S1E—C2E 1.7262 (18)
S1B—C1B 1.7725 (17) S1E—C1E 1.7764 (18)
O1B—C1B 1.213 (2) O1E—C1E 1.214 (2)
N1B—N2B 1.357 (2) N1E—C1E 1.357 (2)
N1B—C1B 1.358 (2) N1E—N2E 1.360 (2)
N1B—H1B 0.826 (15) N1E—H1E 0.814 (15)
N2B—C2B 1.282 (2) N2E—C2E 1.281 (2)
C2B—C3B' 1.481 (15) C2E—C3E' 1.490 (13)
C2B—C3B 1.509 (4) C2E—C3E 1.506 (6)
C3B—F2B 1.294 (7) C3E—F2E 1.301 (12)
C3B—F3B 1.305 (7) C3E—F3E 1.329 (11)
C3B—F1B 1.317 (7) C3E—F1E 1.333 (12)
C3B'—F2B' 1.27 (2) C3E'—F2E' 1.29 (2)
C3B'—F3B' 1.28 (2) C3E'—F3E' 1.31 (2)
C3B'—F1B' 1.29 (2) C3E'—F1E' 1.32 (3)
S1C—C2C 1.7261 (18) S1F—C2F 1.7297 (18)
S1C—C1C 1.7835 (18) S1F—C1F 1.7881 (18)
O1C—C1C 1.211 (2) O1F—C1F 1.213 (2)
N1C—N2C 1.357 (2) N1F—C1F 1.354 (2)
N1C—C1C 1.358 (2) N1F—N2F 1.357 (2)
N1C—H1C 0.829 (15) N1F—H1F 0.820 (16)
N2C—C2C 1.279 (2) N2F—C2F 1.275 (2)
C2C—C3C' 1.485 (14) C2F—C3F' 1.484 (17)
C2C—C3C 1.506 (4) C2F—C3F 1.505 (3)
C3C—F2C 1.283 (8) C3F—F1F 1.300 (4)
C3C—F3C 1.299 (8) C3F—F3F 1.319 (4)
C3C—F1C 1.317 (7) C3F—F2F 1.326 (4)
C3C'—F2C' 1.27 (2) C3F'—F1F' 1.28 (2)
C3C'—F3C' 1.28 (2) C3F'—F3F' 1.30 (2)
C3C'—F1C' 1.29 (2) C3F'—F2F' 1.30 (2)
C2A—S1A—C1A 88.14 (8) C2D—S1D—C1D 87.99 (9)
C1A—N1A—N2A 119.32 (15) C1D—N1D—N2D 118.36 (15)
C1A—N1A—H1A 119.3 (16) C1D—N1D—H1D 122.7 (16)
N2A—N1A—H1A 121.2 (16) N2D—N1D—H1D 118.9 (16)
C2A—N2A—N1A 109.19 (15) C2D—N2D—N1D 109.65 (15)
O1A—C1A—N1A 126.00 (17) O1D—C1D—N1D 127.28 (16)
O1A—C1A—S1A 127.78 (15) O1D—C1D—S1D 125.59 (14)
N1A—C1A—S1A 106.22 (12) N1D—C1D—S1D 107.14 (13)
N2A—C2A—C3A' 121.6 (12) N2D—C2D—C3D 117.0 (8)
N2A—C2A—C3A 120.8 (5) N2D—C2D—C3D' 123.4 (8)
N2A—C2A—S1A 117.06 (14) N2D—C2D—S1D 116.86 (14)
C3A'—C2A—S1A 121.2 (12) C3D—C2D—S1D 125.9 (9)
C3A—C2A—S1A 122.1 (5) C3D'—C2D—S1D 119.7 (8)
F3A—C3A—F1A 107.9 (8) F1D—C3D—F2D 110.1 (14)
F3A—C3A—F2A 109.2 (8) F1D—C3D—F3D 108.4 (10)
F1A—C3A—F2A 107.7 (8) F2D—C3D—F3D 103.9 (14)
F3A—C3A—C2A 112.0 (7) F1D—C3D—C2D 111.5 (13)
F1A—C3A—C2A 110.0 (7) F2D—C3D—C2D 114.5 (9)
F2A—C3A—C2A 109.9 (7) F3D—C3D—C2D 107.9 (12)
F3A'—C3A'—F2A' 104.3 (17) F1D'—C3D'—F2D' 109.6 (14)
F3A'—C3A'—F1A' 103.3 (17) F1D'—C3D'—F3D' 108.4 (10)
F2A'—C3A'—F1A' 104.3 (18) F2D'—C3D'—F3D' 102.7 (14)
F3A'—C3A'—C2A 115.2 (19) F1D'—C3D'—C2D 111.5 (13)
F2A'—C3A'—C2A 114.1 (18) F2D'—C3D'—C2D 114.9 (9)
F1A'—C3A'—C2A 114.4 (18) F3D'—C3D'—C2D 109.0 (13)
C2B—S1B—C1B 87.86 (8) C2E—S1E—C1E 88.10 (8)
N2B—N1B—C1B 118.20 (15) C1E—N1E—N2E 118.65 (15)
N2B—N1B—H1B 119.2 (15) C1E—N1E—H1E 126.0 (16)
C1B—N1B—H1B 122.4 (15) N2E—N1E—H1E 115.3 (16)
C2B—N2B—N1B 109.50 (15) C2E—N2E—N1E 109.35 (15)
O1B—C1B—N1B 127.14 (16) O1E—C1E—N1E 127.58 (17)
O1B—C1B—S1B 125.52 (14) O1E—C1E—S1E 125.56 (14)
N1B—C1B—S1B 107.33 (12) N1E—C1E—S1E 106.86 (13)
N2B—C2B—C3B' 122.3 (10) N2E—C2E—C3E' 119.3 (11)
N2B—C2B—C3B 120.5 (3) N2E—C2E—C3E 121.9 (5)
N2B—C2B—S1B 117.11 (14) N2E—C2E—S1E 117.02 (14)
C3B'—C2B—S1B 120.5 (10) C3E'—C2E—S1E 123.7 (11)
C3B—C2B—S1B 122.4 (3) C3E—C2E—S1E 121.0 (5)
F2B—C3B—F3B 108.9 (5) F2E—C3E—F3E 109.1 (9)
F2B—C3B—F1B 106.6 (5) F2E—C3E—F1E 107.0 (8)
F3B—C3B—F1B 106.2 (5) F3E—C3E—F1E 105.9 (9)
F2B—C3B—C2B 111.7 (4) F2E—C3E—C2E 113.5 (9)
F3B—C3B—C2B 112.1 (4) F3E—C3E—C2E 110.5 (9)
F1B—C3B—C2B 111.0 (4) F1E—C3E—C2E 110.5 (8)
F2B'—C3B'—F3B' 106.6 (18) F2E'—C3E'—F3E' 109 (2)
F2B'—C3B'—F1B' 109.8 (18) F2E'—C3E'—F1E' 106 (2)
F3B'—C3B'—F1B' 105.5 (16) F3E'—C3E'—F1E' 106.1 (19)
F2B'—C3B'—C2B 110.7 (16) F2E'—C3E'—C2E 116 (2)
F3B'—C3B'—C2B 112.6 (16) F3E'—C3E'—C2E 111.9 (19)
F1B'—C3B'—C2B 111.4 (15) F1E'—C3E'—C2E 107.3 (18)
C2C—S1C—C1C 88.23 (8) C2F—S1F—C1F 88.00 (9)
N2C—N1C—C1C 119.38 (15) C1F—N1F—N2F 119.42 (16)
N2C—N1C—H1C 118.0 (16) C1F—N1F—H1F 120.7 (17)
C1C—N1C—H1C 122.4 (16) N2F—N1F—H1F 119.7 (17)
C2C—N2C—N1C 109.16 (15) C2F—N2F—N1F 109.29 (15)
O1C—C1C—N1C 125.55 (17) O1F—C1F—N1F 126.26 (17)
O1C—C1C—S1C 128.35 (14) O1F—C1F—S1F 127.58 (15)
N1C—C1C—S1C 106.10 (12) N1F—C1F—S1F 106.16 (13)
N2C—C2C—C3C' 118.9 (10) N2F—C2F—C3F' 120 (1)
N2C—C2C—C3C 120.8 (3) N2F—C2F—C3F 120.8 (2)
N2C—C2C—S1C 117.10 (14) N2F—C2F—S1F 117.12 (14)
C3C'—C2C—S1C 123.7 (10) C3F'—C2F—S1F 122.7 (10)
C3C—C2C—S1C 122.0 (3) C3F—C2F—S1F 122.07 (17)
F2C—C3C—F3C 111.2 (5) F1F—C3F—F3F 108.5 (3)
F2C—C3C—F1C 106.7 (5) F1F—C3F—F2F 107.2 (3)
F3C—C3C—F1C 105.0 (5) F3F—C3F—F2F 105.7 (3)
F2C—C3C—C2C 110.8 (5) F1F—C3F—C2F 111.7 (2)
F3C—C3C—C2C 111.8 (5) F3F—C3F—C2F 112.0 (2)
F1C—C3C—C2C 111.0 (4) F2F—C3F—C2F 111.4 (2)
F2C'—C3C'—F3C' 101.9 (16) F1F'—C3F'—F3F' 97.7 (18)
F2C'—C3C'—F1C' 103.9 (17) F1F'—C3F'—F2F' 106 (2)
F3C'—C3C'—F1C' 107.0 (17) F3F'—C3F'—F2F' 115.2 (19)
F2C'—C3C'—C2C 113.3 (17) F1F'—C3F'—C2F 108.7 (18)
F3C'—C3C'—C2C 113.8 (17) F3F'—C3F'—C2F 114.3 (17)
F1C'—C3C'—C2C 115.6 (16) F2F'—C3F'—C2F 113.6 (16)
C1A—N1A—N2A—C2A 1.5 (3) C1D—N1D—N2D—C2D 0.5 (3)
N2A—N1A—C1A—O1A 177.87 (19) N2D—N1D—C1D—O1D 178.44 (19)
N2A—N1A—C1A—S1A −2.7 (2) N2D—N1D—C1D—S1D −1.0 (2)
C2A—S1A—C1A—O1A −178.3 (2) C2D—S1D—C1D—O1D −178.59 (19)
C2A—S1A—C1A—N1A 2.28 (14) C2D—S1D—C1D—N1D 0.85 (14)
N1A—N2A—C2A—C3A' −176.0 (14) N1D—N2D—C2D—C3D −174.6 (9)
N1A—N2A—C2A—C3A −178.6 (6) N1D—N2D—C2D—C3D' 176.2 (9)
N1A—N2A—C2A—S1A 0.6 (2) N1D—N2D—C2D—S1D 0.2 (2)
C1A—S1A—C2A—N2A −1.78 (17) C1D—S1D—C2D—N2D −0.65 (18)
C1A—S1A—C2A—C3A' 174.9 (14) C1D—S1D—C2D—C3D 173.7 (9)
C1A—S1A—C2A—C3A 177.4 (6) C1D—S1D—C2D—C3D' −176.8 (9)
N2A—C2A—C3A—F3A 0.0 (11) N2D—C2D—C3D—F1D −73.1 (13)
S1A—C2A—C3A—F3A −179.1 (6) S1D—C2D—C3D—F1D 112.6 (14)
N2A—C2A—C3A—F1A −120.0 (7) N2D—C2D—C3D—F2D 53 (2)
S1A—C2A—C3A—F1A 60.9 (10) S1D—C2D—C3D—F2D −121.5 (14)
N2A—C2A—C3A—F2A 121.6 (7) N2D—C2D—C3D—F3D 167.9 (8)
S1A—C2A—C3A—F2A −57.5 (10) S1D—C2D—C3D—F3D −6.4 (16)
N2A—C2A—C3A'—F3A' −167.5 (15) N2D—C2D—C3D'—F1D' 106.3 (15)
S1A—C2A—C3A'—F3A' 16 (3) S1D—C2D—C3D'—F1D' −77.8 (13)
N2A—C2A—C3A'—F2A' −47 (3) N2D—C2D—C3D'—F2D' −128.1 (14)
S1A—C2A—C3A'—F2A' 136.6 (18) S1D—C2D—C3D'—F2D' 48 (2)
N2A—C2A—C3A'—F1A' 73 (2) N2D—C2D—C3D'—F3D' −13.4 (16)
S1A—C2A—C3A'—F1A' −103 (2) S1D—C2D—C3D'—F3D' 162.4 (7)
C1B—N1B—N2B—C2B 0.5 (2) C1E—N1E—N2E—C2E 0.9 (2)
N2B—N1B—C1B—O1B 178.8 (2) N2E—N1E—C1E—O1E 178.64 (19)
N2B—N1B—C1B—S1B −0.7 (2) N2E—N1E—C1E—S1E −1.6 (2)
C2B—S1B—C1B—O1B −179.0 (2) C2E—S1E—C1E—O1E −178.87 (19)
C2B—S1B—C1B—N1B 0.47 (14) C2E—S1E—C1E—N1E 1.36 (14)
N1B—N2B—C2B—C3B' 175.6 (12) N1E—N2E—C2E—C3E' −178.1 (13)
N1B—N2B—C2B—C3B 179.9 (3) N1E—N2E—C2E—C3E −177.4 (6)
N1B—N2B—C2B—S1B −0.1 (2) N1E—N2E—C2E—S1E 0.3 (2)
C1B—S1B—C2B—N2B −0.25 (16) C1E—S1E—C2E—N2E −1.04 (16)
C1B—S1B—C2B—C3B' −176.0 (11) C1E—S1E—C2E—C3E' 177.3 (14)
C1B—S1B—C2B—C3B 179.8 (3) C1E—S1E—C2E—C3E 176.7 (6)
N2B—C2B—C3B—F2B −92.6 (5) N2E—C2E—C3E—F2E 108.4 (9)
S1B—C2B—C3B—F2B 87.3 (6) S1E—C2E—C3E—F2E −69.2 (11)
N2B—C2B—C3B—F3B 29.9 (6) N2E—C2E—C3E—F3E −14.5 (13)
S1B—C2B—C3B—F3B −150.1 (4) S1E—C2E—C3E—F3E 167.9 (8)
N2B—C2B—C3B—F1B 148.5 (4) N2E—C2E—C3E—F1E −131.3 (8)
S1B—C2B—C3B—F1B −31.5 (6) S1E—C2E—C3E—F1E 51.0 (12)
N2B—C2B—C3B'—F2B' 105.9 (18) N2E—C2E—C3E'—F2E' −29 (3)
S1B—C2B—C3B'—F2B' −79 (2) S1E—C2E—C3E'—F2E' 152.8 (17)
N2B—C2B—C3B'—F3B' −134.9 (15) N2E—C2E—C3E'—F3E' −155 (2)
S1B—C2B—C3B'—F3B' 41 (2) S1E—C2E—C3E'—F3E' 27 (3)
N2B—C2B—C3B'—F1B' −17 (2) N2E—C2E—C3E'—F1E' 89 (2)
S1B—C2B—C3B'—F1B' 158.9 (14) S1E—C2E—C3E'—F1E' −89 (2)
C1C—N1C—N2C—C2C 0.7 (3) C1F—N1F—N2F—C2F −0.9 (3)
N2C—N1C—C1C—O1C 179.06 (19) N2F—N1F—C1F—O1F −179.47 (19)
N2C—N1C—C1C—S1C −1.6 (2) N2F—N1F—C1F—S1F 1.2 (2)
C2C—S1C—C1C—O1C −179.2 (2) C2F—S1F—C1F—O1F 179.82 (19)
C2C—S1C—C1C—N1C 1.48 (14) C2F—S1F—C1F—N1F −0.88 (14)
N1C—N2C—C2C—C3C' −173.3 (12) N1F—N2F—C2F—C3F' −174.3 (13)
N1C—N2C—C2C—C3C −177.6 (4) N1F—N2F—C2F—C3F −178.5 (2)
N1C—N2C—C2C—S1C 0.6 (2) N1F—N2F—C2F—S1F 0.1 (2)
C1C—S1C—C2C—N2C −1.29 (17) C1F—S1F—C2F—N2F 0.50 (17)
C1C—S1C—C2C—C3C' 172.3 (12) C1F—S1F—C2F—C3F' 174.7 (13)
C1C—S1C—C2C—C3C 176.9 (4) C1F—S1F—C2F—C3F 179.1 (2)
N2C—C2C—C3C—F2C 105.1 (6) N2F—C2F—C3F—F1F 92.2 (3)
S1C—C2C—C3C—F2C −73.0 (6) S1F—C2F—C3F—F1F −86.3 (3)
N2C—C2C—C3C—F3C −19.6 (7) N2F—C2F—C3F—F3F −29.7 (4)
S1C—C2C—C3C—F3C 162.2 (4) S1F—C2F—C3F—F3F 151.8 (2)
N2C—C2C—C3C—F1C −136.5 (4) N2F—C2F—C3F—F2F −147.8 (2)
S1C—C2C—C3C—F1C 45.4 (7) S1F—C2F—C3F—F2F 33.6 (3)
N2C—C2C—C3C'—F2C' −82 (2) N2F—C2F—C3F'—F1F' −98.9 (19)
S1C—C2C—C3C'—F2C' 104.1 (19) S1F—C2F—C3F'—F1F' 87 (2)
N2C—C2C—C3C'—F3C' 161.8 (15) N2F—C2F—C3F'—F3F' 153.2 (17)
S1C—C2C—C3C'—F3C' −12 (3) S1F—C2F—C3F'—F3F' −21 (3)
N2C—C2C—C3C'—F1C' 37 (2) N2F—C2F—C3F'—F2F' 18 (3)
S1C—C2C—C3C'—F1C' −136.1 (15) S1F—C2F—C3F'—F2F' −155.7 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O1B 0.82 (2) 1.92 (2) 2.726 (2) 169 (2)
N1B—H1B···O1A 0.83 (2) 2.57 (2) 3.328 (2) 152 (2)
N1B—H1B···O1Ai 0.83 (2) 2.35 (2) 2.955 (2) 131 (2)
N1C—H1C···O1D 0.83 (2) 1.93 (2) 2.7485 (19) 171 (2)
N1D—H1D···O1C 0.82 (2) 2.61 (2) 3.342 (2) 150 (2)
N1D—H1D···O1F 0.82 (2) 2.28 (2) 2.908 (2) 134 (2)
N1E—H1E···O1C 0.81 (2) 2.26 (2) 2.912 (2) 137 (2)
N1E—H1E···O1F 0.81 (2) 2.64 (2) 3.359 (2) 148 (2)
N1F—H1F···O1E 0.82 (2) 1.95 (2) 2.764 (2) 171 (2)

Symmetry code: (i) −x+2, −y+1, −z+1.

Funding Statement

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE-1625732 to SP).

References

  1. Anthwal, T., Paliwal, S. & Nain, S. (2022). Chemistry, 4, 1654–1671.
  2. Barbosa, G. A. D. & de Aguiar, A. P. (2019). Rev. Virtual Quim., 11, 806–848.
  3. Boechat, N., Ferreira, S. B., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, S. M. S. V. (2006). Acta Cryst. C62, o42–o44. [DOI] [PubMed]
  4. Brock, C. P. (2016). Acta Cryst. B72, 807–821. [DOI] [PubMed]
  5. Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Çevik, U. A., Osmaniye, D., Levent, S., Sağlik, B. N., Çavuşoğlu, B. K., Özkay, Y. & Kaplancikl, Z. A. (2020). Heterocycl. Commun. 26, 6–13.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Han, X., Yu, Y. L., Hu, Y. S. & Liu, X. H. (2021). Curr. Top. Med. Chem. 21, 2546–2573. [DOI] [PubMed]
  9. Hartung, R., Golz, G., Schlaf, S., Silvenoinen, G., Polborn, K., Mayer, P. & Pfaendler, H. R. (2009). Synthesis, pp. 495–501.
  10. Hoser, A. A., Kamiński, D. M., Skrzypek, A., Matwijczuk, A., Niewiadomy, A., Gagoś, M. & Woźniak, K. (2018). Cryst. Growth Des. 18, 3851–3862.
  11. Hu, P.-Z., Wang, J.-G., Ma, L.-F., Zhao, B.-T. & Wang, L.-Y. (2006). Acta Cryst. E62, o350–o351.
  12. Jain, A. K., Sharma, S., Vaidya, A., Ravichandran, V. & Agrawal, R. K. (2013). Chem. Biol. Drug Des. 81, 557–576. [DOI] [PubMed]
  13. Kang, S. K., Cho, N. S. & Jang, S. (2012a). Acta Cryst. E68, o781. [DOI] [PMC free article] [PubMed]
  14. Kang, S. K., Cho, N. S. & Jang, S. (2012b). Acta Cryst. E68, o1198. [DOI] [PMC free article] [PubMed]
  15. Kim, N. & Kang, S. K. (2014). Acta Cryst. E70, o922. [DOI] [PMC free article] [PubMed]
  16. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  17. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  18. Moussa, Z., Paz, A. P., Judeh, Z. M. A., Alzamly, A., Saadeh, H. A., Asghar, B. H., Alsaedi, S., Masoud, B., Almeqbaali, S., Estwani, S., Aljaberi, A., Al-Rooqi, M. M. & Ahmed, S. A. (2023). Int. J. Mol. Sci. 24, 3759. [DOI] [PMC free article] [PubMed]
  19. Oruç, E. E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767. [DOI] [PubMed]
  20. Panini, P., Mohan, T. P., Gangwar, U., Sankolli, R. & Chopra, D. (2013). CrystEngComm, 15, 4549–4564.
  21. Serban, G., Stanasel, O., Serban, E. & Bota, S. (2018). Drug. Des. Dev. Ther. Vol. 12, 1545–1566. [DOI] [PMC free article] [PubMed]
  22. Shamanth, S., Mantelingu, K., Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 18–24. [DOI] [PMC free article] [PubMed]
  23. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  24. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  25. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  26. Shen, X.-Q., Li, Z.-J., Zhang, H.-Y., Qiao, H.-B., Wu, Q.-A., Wang, H.-Y. & Zu, Y. (2005). J. Phys. Chem. Solids, 66, 1755–1760.
  27. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  28. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  29. Zhang, W.-Y., Liu, J. & Liu, Y.-J. (2012). Acta Cryst. E68, o475.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023004267/vm2283sup1.cif

e-79-00557-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004267/vm2283Isup2.hkl

e-79-00557-Isup2.hkl (636.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004267/vm2283Isup3.cml

CCDC reference: 2263179

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES