Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 May 23;79(Pt 6):562–566. doi: 10.1107/S2056989023004279

2-[3-(1H-Benzimidazol-2-yl)prop­yl]-1H-benzimidazol-3-ium 3,4,5-tri­hydroxy­benzoate–1,3-bis­(1H-benzimidazol-2-yl)propane–ethyl acetate (2/1/2.94): co-crystallization between a salt, a neutral mol­ecule and a solvent

José Carlos Palacios Rodríguez a, Angel Mendoza b, Martha Sosa Rivadeneyra a, Sylvain Bernès c,*
Editor: M Weild
PMCID: PMC10242745  PMID: 37288461

The title compound can be described as a salt (HL)+(Gal) (L = 1,3-bis­(benzimidazol-2-yl)propane (L); HGal = gallic acid) co-crystallized with a neutral mol­ecule L. The crystal also comprises disordered solvent ethyl acetate mol­ecules.

Keywords: crystal structure, co-crystal, hydrogen bonds, supra­molecular structure, solvent mask

Abstract

The chemical formula of the title compound, 2C17H17N4 +·2C7H5O5 ·C17H16N4·2.94C4H8O2, was established by X-ray diffraction of a single-crystal obtained by reacting 1,3-bis­(benzimidazol-2-yl)propane (L) and gallic acid (HGal) in ethyl acetate. The mol­ecular structure can be described as a salt (HL)+(Gal) co-crystallized with a mol­ecule L, with a stoichiometric relation of 2:1. Moreover, large voids in the crystal are filled with ethyl acetate, the amount of which was estimated by using a solvent mask during structure refinement, affording the chemical formula (HL +·Gal)2·L·(C4H8O2)2.94. The arrangement of components in the crystal is driven by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds rather than by π–π or C—H⋯π inter­actions. In the crystal, mol­ecules and ions shape the boundary of cylindrical tunnels parallel to [100] via R (rings) and D (discrete) supra­molecular motifs. These voids, which account for about 28% of the unit-cell volume, contain disordered solvent mol­ecules.

1. Chemical context

Bis-imidazole and bis-benzimidazole ligands are frequently used in coordination chemistry because of their chelating properties. Moreover, the size and the nature of the bridge connecting the imidazole moieties can modify the spectroscopic and physicochemical properties of the resulting complexes (Pandiyan et al., 1997). Such behaviour is useful in bioinorganic chemistry, in particular for the design of models of active centres in metalloproteins. In the specific case of 1,3-bis­(benzimidazol-2-yl)propane (C17H16N4, abbreviated L hereafter), coordination complexes with late transition metals have been reported (CoII, NiII, CuII, ZnII, AgI and CdII; see for example: van Albada et al., 1999).

Another salient aspect for these mol­ecules is that they include both acidic protons and protonable sites, allowing the formation of cations or anions, for example by modifying the pH value of the medium. However, the symmetric character of L leads to a reasonable assumption that both benzimidazole moieties should behave similarly, so that a dicationic species H2 L 2+ is more readily available compared to the dissymmetric cation HL +. We report herein the crystal structure of a compound overriding this rule of thumb, since it contains both neutral L and cationic HL + species, together with gallate anions Gal (3,4,5-tri­hydroxy­benzoate, C7H5O5 , derived from gallic acid, HGal) for charge balancing. Moreover, disordered solvent mol­ecules (ethyl acetate, C4H8O2) are present in the crystal, which can then be seen as an uncommon case of a solvated co-crystal between a salt and a mol­ecule. 1.

2. Structural commentary

The asymmetric unit of the compound under study contains one cation HL + and one anion Gal in general positions, and one-half of a mol­ecule L, placed on the twofold rotation axis of space group I2/a (Fig. 1). The mol­ecular formula is then (HL +·Gal)2·L. With this formula, the calculated Kitaigorodskii packing index (Kitaigorodskii, 1965), η = 0.534, is physically unreasonable, and the refinement can be greatly improved by considering the presence of disordered solvent mol­ecules in the crystal. Large voids of ca 2000 Å3 per unit cell, which equals 28% of the cell volume, are actually present in the crystal structure, forming wide tunnels running along [100], which are filled with solvent mol­ecules (Fig. 2). A solvent mask was calculated with OLEX2 (van der Sluis & Spek, 1990; Dolomanov et al., 2009), recovering a density of 564 electrons per unit cell. Since Z = 4 for the above-mentioned formula, and considering that only ethyl acetate was used as solvent during the synthesis and crystallization, the formula of the compound was derived as (HL +·Gal)2·L·(C4H8O2)2.94. However, it must be noted that the determination of the solvent amount via a SQUEEZE-like procedure is always inaccurate (e.g. Hernández Linares et al., 2016). The given formula is thus not meant to be precise regarding the overall solvent content. It rather points out that the crystallized compound is a solvated co-crystal between a salt, HL +·Gal, and a mol­ecule, L.

Figure 1.

Figure 1

The structures of the mol­ecular entities in the title compound, with displacement ellipsoids for non-H atoms at the 30% probability level. Non-labelled atoms in the neutral moiety (bottom mol­ecule) are generated by symmetry Inline graphic  − x, y, 1 − z (twofold rotation).

Figure 2.

Figure 2

Part of the crystal structure of the title compound showing tunnels in which the disordered ethyl acetate solvent mol­ecules are located (Macrae et al., 2020). The projection is almost normal to unit-cell axis a and the probe radius for the voids is 1.25 Å.

The presence of voids in the crystal is a consequence of the lack of efficient stacking inter­actions between the co-crystal components, although they contain aromatic heterocycles. This feature is, in turn, related to the different conformations observed for HL + and L. The mol­ecule L displays a transtrans conformation for the propane link bridging the benzimidazole heterocycles: torsion angles C18—C25—C26—C25i and C18i—C25i—C26i—C25 are equal by symmetry, 172.70 (12)° [symmetry code: (i) −x +  Inline graphic , y, −z + 1]. In contrast, the cation HL + is placed in a general position, and the propane chain displays a gauchetrans conformation, reflected in torsion angles C1—C8—C9—C10 = −63.93 (16)° and C11—C10—C9—C8 = 179.45 (11)°. Both L and HL + have a bent shape, with dihedral angles between the benzimidazole rings of 65.07 (2) and 37.58 (3)°, respectively. These twisted components do not stack with the gallate anions, probably because, in the first place, the crystal structure is stabilized via Coulombic attractions in the ionic part HL +·Gal. Only two significant π–π inter­molecular contacts are calculated by PLATON (Spek, 2020), for benzimidazole rings in inversion-related L mol­ecules [separation for π-stacked N5/N6/C18/C19/C24 rings: 3.6070 (8) Å, slippage 0.644 Å] and inversion-related HL + cations [separation for π stacking between N1/N2/C1/C2/C7 rings: 3.6672 (7) Å, slippage 0.720 Å]. The gallate anions Gal are arranged in rows parallel to [100], and do not inter­act with neighbouring aromatic rings: the angles between the Gal mean plane and surrounding benzimidazole rings are in the range 45.78 (7)–84.96 (6)°. No C—H⋯π inter­actions are observed in the crystal structure.

3. Supra­molecular features

Notwithstanding the absence of well-organized stacks in the crystal structure, all N—H, O—H and C=O functional groups are engaged in hydrogen bonds (Table 1), forming a tri-periodic framework. This is confirmed in the Hirshfeld surface calculated for the expanded asymmetric unit represented in Fig. 1, that is (HL +·GalL. This map (Fig. 3) shows typical spots for regions where inter­atomic distances are shorter than the sum of the van der Waals radii of the atoms. O⋯H and H⋯O contacts account for 16.1% of the Hirshfeld surface, while N⋯H and H⋯N contacts account for 6.0% of the surface. Both kinds of hydrogen bonds generate well-defined spikes in the 2D fingerprint plot, at short (d i, d e) coordinates. Apart from these stabilizing inter­actions, the map is dominated by H⋯H contacts (49.3% of the surface) related to van der Waals contacts.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.936 (16) 1.924 (17) 2.8204 (14) 159.7 (13)
N3—H3⋯O1 0.880 (16) 1.832 (16) 2.6433 (13) 152.4 (14)
N4—H4⋯O30ii 0.867 (16) 2.043 (16) 2.8509 (12) 154.6 (14)
N4—H4⋯O31ii 0.867 (16) 2.394 (16) 3.0199 (14) 129.5 (13)
N6—H6A⋯O1iii 0.893 (15) 1.955 (16) 2.8018 (12) 157.9 (13)
O30—H30⋯N1iv 0.946 (18) 1.785 (18) 2.7238 (12) 171.3 (16)
O31—H31⋯O2i 0.894 (18) 1.882 (18) 2.7314 (11) 157.8 (16)
O32—H32⋯N5 0.948 (19) 1.717 (19) 2.6515 (14) 167.9 (16)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 3.

Figure 3

Hirshfeld surface (Spackman et al., 2021) mapped over d norm in the range −0.5 Å (red) to 3.0 Å (blue). Labels 1–8 refer to entries in Table 1 for each hydrogen bond. Contact N3—H3⋯O1 (entry 2) is not visible, since it corresponds to an intra­molecular hydrogen bond in the inside pocket limited by the Hirshfeld surface. The deep-blue surface at the top of the map is the boundary with the region containing disordered solvent mol­ecules. The two-dimensional fingerprint plot including all contacts is shown in the inset.

Among the many motifs present in this supra­molecular framework, four are of particular importance for the building of the crystal structure, as they provide the cavities that are filled with disordered solvent mol­ecules. Ring motifs Inline graphic (5), Inline graphic (10) and Inline graphic (15) along with discrete motifs D(2) link four HL + cations, six Gal anions and two L mol­ecules, forming a ring-shaped supra­molecule (Fig. 4). Connecting these supra­molecular rings along [100], the remaining hydrogen bonds (entries 3, 4 and 6 in Table 1, i.e. those including ‘−x + 1’ in their symmetry operator for the acceptor site) generate the tunnels depicted in Fig. 2. The boundary of the cavity is formed by a sequence of twelve elements, alternating anions, cations and mol­ecules (Fig. 5).

Figure 4.

Figure 4

Supra­molecular arrangement of HL +, Gal and L, affording the boundary of the cavities containing the disordered solvent. HL + and L are coloured red, while Gal anions are coloured green. Hydrogen bonds are shown as dashed purple lines. All rings (R) and discrete (D) motifs involved in the building of the supra­molecular ring are indicated. All C-bound H atoms are omitted for clarity.

Figure 5.

Figure 5

The complete supra­molecular framework enclosing the disordered ethyl acetate solvent, as viewed down the symmetry axis, parallel to [100] in the crystal. The colour code is as for Fig. 4. All C-bound H atoms are omitted for clarity. The inset is the same framework in a spacefill representation, and including H atoms, showing the real void space available for disordered ethyl acetate mol­ecules. The crystallographic twofold rotation axis position is also shown.

The shape of this infinite supra­molecule is close to cylindrical, and its point group is approximately C 2v , which is compatible with the space group, I2/a. However, the crystallographic twofold rotation axis of I2/a is parallel to [010], and thus it does not coincide with the symmetry axis of the cylindrical supra­molecule, which is parallel to [100]. The most important feature for the crystallization of the title compound is depicted in Fig. 5: hydro­phobic benzene rings of HL + and L point towards the inside of the cylindrical supra­molecule. This arrangement prevents solvent mol­ecules filling these cavities from forming hydrogen bonds with (HL +·Gal)2·L, and, presumably, only weak C—H⋯O=C contacts are present. This explains why ethyl acetate is disordered in this solvated co-crystal.

4. Database survey

A search of the CSD (v. 5.43 with all updates; Groom et al., 2016) shows that crystal-structure determinations of compounds including cations H2 L 2+ or HL + are rather rare. Three salts of H2 L 2+ have been reported so far: H2 L(SO4)·3H2O (Clifford et al., 2012), H2 L·2(Cl)·2H2O (Hu et al., 2006) and H2 L(CoCl4) (Matthews et al., 2003). For HL +, three crystal structures have also been reported: HL(ClO4) (Sun et al., 2004), one co-crystal with trimesic acid and the corresponding carboxyl­ate anion (Feng & Jiang, 2010), and one CoII complex (Wen et al., 2014). However, more structures based on the neutral bis-benzimidazole L have been deposited in the CSD, with 22 hits, but all are coordination compounds. In particular, it is surprising that the crystal structure of L has never been reported.

Regarding the conformation of the cation HL + or the neutral mol­ecule L, all possibilities are represented, with central propane bridges found in transtrans, transgauche and gauchegauche conformations, although the transgauche conformation, observed for HL + in the present complex, is less common, being observed for only one example (Wang & An, 2016). With such flexibility, almost any relative position for the benzimidazole rings is possible. For the 28 hits retrieved from the CSD, the dihedral angles between benzimidazole rings span a range from 4 to 87°, and the distances between the centroids of the imidazole rings span the range from 3.33 to 5.29 Å.

5. Synthesis and crystallization

A solution of 1,3-bis­(1H-benzo[d]imidazol-2-yl)propane (L, 12.4 mg, 0.045 mmol) and gallic acid (HGal, 7.6 mg, 0.045 mmol) in 10 mL of ethyl acetate was heated at boiling temperature until dissolution of the reactants. After filtration, the solution was left at room temperature for slow evaporation of the solvent, giving purple crystals suitable for single-crystal X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2 where the solvent molecules are not considered in the given chemical formula and other crystal data. All H atoms bonded to heteroatoms were refined with free coordinates, in order to achieve an accurate hydrogen-bonding model. Other H atoms were placed in calculated positions. Atom C26 is placed on the twofold rotation axis in space group I2/a, and therefore, H atoms for this methyl­ene group were modelled with two H atoms (H26A and H26B) with occupancies of 1/2, in such a way that H26B is the image of H26A through the symmetry axis and vice versa (command HFIX 23 in SHELXL; Sheldrick, 2015b ).

Table 2. Experimental details.

Crystal data
Chemical formula 2C17H17N4 +·2C7H5O5 ·C17H16N4
M r 1169.25
Crystal system, space group Monoclinic, I2/a
Temperature (K) 295
a, b, c (Å) 16.82625 (15), 16.73298 (17), 26.7833 (3)
β (°) 105.2162 (11)
V3) 7276.57 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.60 × 0.48 × 0.37
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022)
T min, T max 0.761, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 188774, 11088, 8064
R int 0.064
(sin θ/λ)max−1) 0.714
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.149, 1.06
No. of reflections 11088
No. of parameters 414
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.18

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), XP in SHELXTL-Plus (Sheldrick, 2008), Mercury (Macrae et al., 2020), CrystalExplorer (Spackman et al., 2021) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023004279/wm5683sup1.cif

e-79-00562-sup1.cif (7.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004279/wm5683Isup2.hkl

e-79-00562-Isup2.hkl (879.9KB, hkl)

CCDC reference: 2263401

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

2C17H17N4+·2C7H5O5·C17H16N4 F(000) = 2456
Mr = 1169.25 Dx = 1.067 Mg m3
Monoclinic, I2/a Mo Kα radiation, λ = 0.71073 Å
a = 16.82625 (15) Å Cell parameters from 53060 reflections
b = 16.73298 (17) Å θ = 1.5–33.7°
c = 26.7833 (3) Å µ = 0.07 mm1
β = 105.2162 (11)° T = 295 K
V = 7276.57 (14) Å3 Block, purple
Z = 4 0.60 × 0.48 × 0.37 mm

Data collection

Xcalibur, Atlas, Gemini diffractometer 11088 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 8064 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.064
Detector resolution: 10.5564 pixels mm-1 θmax = 30.5°, θmin = 1.6°
ω scans h = −24→24
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) k = −23→23
Tmin = 0.761, Tmax = 1.000 l = −38→38
188774 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: mixed
wR(F2) = 0.149 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0782P)2 + 1.8337P] where P = (Fo2 + 2Fc2)/3
11088 reflections (Δ/σ)max = 0.001
414 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.18 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.62719 (6) 0.20714 (6) 0.69126 (4) 0.0409 (2)
N2 0.70426 (6) 0.31366 (7) 0.68709 (4) 0.0415 (2)
H2 0.7153 (9) 0.3686 (10) 0.6889 (6) 0.050*
N3 0.29155 (6) 0.28875 (6) 0.65905 (4) 0.0410 (2)
H3 0.2821 (9) 0.3375 (10) 0.6465 (6) 0.049*
N4 0.35419 (6) 0.17996 (6) 0.69126 (5) 0.0456 (3)
H4 0.3956 (10) 0.1491 (10) 0.7050 (6) 0.055*
C1 0.63565 (6) 0.28528 (7) 0.69822 (4) 0.0369 (2)
C2 0.69506 (7) 0.18377 (8) 0.67405 (5) 0.0417 (3)
C3 0.71780 (10) 0.10890 (10) 0.66007 (7) 0.0588 (4)
H3A 0.686161 0.063838 0.661591 0.071*
C4 0.78909 (12) 0.10380 (12) 0.64384 (8) 0.0715 (5)
H4A 0.805713 0.054293 0.634429 0.086*
C5 0.83663 (11) 0.17096 (12) 0.64124 (7) 0.0710 (5)
H5 0.884062 0.165163 0.629939 0.085*
C6 0.81553 (9) 0.24544 (11) 0.65486 (6) 0.0586 (4)
H6 0.847519 0.290187 0.653195 0.070*
C7 0.74379 (7) 0.25066 (8) 0.67130 (5) 0.0420 (3)
C8 0.58072 (7) 0.34195 (8) 0.71577 (6) 0.0454 (3)
H8A 0.570693 0.387335 0.692415 0.055*
H8B 0.609617 0.361623 0.749748 0.055*
C9 0.49824 (7) 0.30894 (8) 0.71883 (5) 0.0458 (3)
H9A 0.469890 0.349272 0.733691 0.055*
H9B 0.507561 0.263106 0.741808 0.055*
C10 0.44301 (7) 0.28374 (8) 0.66621 (6) 0.0454 (3)
H10A 0.432614 0.329527 0.643194 0.055*
H10B 0.471005 0.243466 0.651070 0.055*
C11 0.36365 (7) 0.25125 (7) 0.67136 (5) 0.0410 (3)
C12 0.23293 (7) 0.24029 (7) 0.67147 (5) 0.0403 (3)
C13 0.14945 (8) 0.25199 (9) 0.66602 (6) 0.0542 (4)
H13 0.123234 0.299434 0.653072 0.065*
C14 0.10775 (9) 0.18973 (11) 0.68079 (7) 0.0650 (4)
H14 0.051424 0.194600 0.677015 0.078*
C15 0.14755 (9) 0.11917 (10) 0.70137 (7) 0.0637 (4)
H15 0.116961 0.078516 0.711040 0.076*
C16 0.23059 (8) 0.10804 (9) 0.70774 (6) 0.0536 (3)
H16 0.257062 0.061314 0.721899 0.064*
C17 0.27263 (7) 0.17010 (8) 0.69195 (5) 0.0422 (3)
N5 0.45349 (6) 0.41770 (7) 0.53870 (4) 0.0448 (3)
N6 0.41648 (6) 0.41115 (7) 0.45294 (4) 0.0386 (2)
H6A 0.3833 (9) 0.4196 (9) 0.4214 (6) 0.046*
C18 0.39799 (6) 0.43829 (7) 0.49600 (4) 0.0363 (2)
C19 0.51184 (7) 0.37344 (8) 0.52212 (5) 0.0427 (3)
C20 0.58383 (9) 0.33716 (11) 0.55080 (6) 0.0620 (4)
H20 0.599317 0.339769 0.586743 0.074*
C21 0.63136 (10) 0.29722 (12) 0.52407 (7) 0.0707 (5)
H21 0.679105 0.271436 0.542360 0.085*
C22 0.60934 (9) 0.29471 (11) 0.47023 (7) 0.0655 (4)
H22 0.643155 0.267777 0.453395 0.079*
C23 0.53885 (8) 0.33102 (10) 0.44121 (6) 0.0533 (3)
H23 0.524628 0.329751 0.405239 0.064*
C24 0.48992 (6) 0.36969 (8) 0.46827 (5) 0.0392 (3)
C25 0.32225 (6) 0.48543 (8) 0.49463 (5) 0.0398 (3)
H25A 0.306067 0.514498 0.462208 0.048*
H25B 0.334742 0.524315 0.522463 0.048*
C26 0.250000 0.43372 (11) 0.500000 0.0390 (3)
H26A 0.232262 0.399658 0.469816 0.047* 0.5
H26B 0.267739 0.399662 0.530185 0.047* 0.5
C27 0.24259 (6) 0.48453 (6) 0.66505 (4) 0.0286 (2)
O1 0.22012 (4) 0.42873 (5) 0.63255 (3) 0.03592 (18)
O2 0.19661 (4) 0.51802 (5) 0.68876 (4) 0.0406 (2)
C28 0.33088 (5) 0.51107 (6) 0.67702 (4) 0.0279 (2)
C29 0.36507 (6) 0.55315 (6) 0.72219 (4) 0.0301 (2)
H29 0.332142 0.568311 0.743553 0.036*
C30 0.44827 (6) 0.57278 (6) 0.73570 (4) 0.0304 (2)
O30 0.48495 (5) 0.61169 (5) 0.78071 (4) 0.0434 (2)
H30 0.4435 (11) 0.6401 (11) 0.7912 (6) 0.065*
C31 0.49785 (6) 0.55062 (6) 0.70354 (4) 0.0305 (2)
O31 0.57953 (4) 0.56927 (6) 0.71834 (4) 0.0422 (2)
H31 0.6076 (11) 0.5401 (10) 0.7008 (7) 0.063*
C32 0.46247 (6) 0.51162 (7) 0.65697 (4) 0.0307 (2)
O32 0.51369 (5) 0.49489 (6) 0.62700 (3) 0.0442 (2)
H32 0.4854 (11) 0.4668 (11) 0.5968 (7) 0.066*
C33 0.37932 (6) 0.49074 (7) 0.64409 (4) 0.0307 (2)
H33 0.356292 0.463270 0.613533 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0334 (5) 0.0412 (5) 0.0503 (6) −0.0029 (4) 0.0148 (4) 0.0086 (4)
N2 0.0328 (5) 0.0429 (5) 0.0490 (6) −0.0068 (4) 0.0112 (4) 0.0071 (4)
N3 0.0297 (4) 0.0356 (5) 0.0566 (6) 0.0051 (4) 0.0091 (4) 0.0087 (4)
N4 0.0278 (4) 0.0397 (5) 0.0654 (7) 0.0072 (4) 0.0054 (4) 0.0122 (5)
C1 0.0278 (5) 0.0421 (6) 0.0392 (6) −0.0040 (4) 0.0059 (4) 0.0085 (5)
C2 0.0363 (6) 0.0467 (6) 0.0437 (6) −0.0009 (5) 0.0132 (5) 0.0077 (5)
C3 0.0602 (9) 0.0508 (8) 0.0708 (10) 0.0004 (7) 0.0269 (8) 0.0013 (7)
C4 0.0716 (11) 0.0710 (11) 0.0812 (12) 0.0131 (9) 0.0368 (9) −0.0051 (9)
C5 0.0561 (9) 0.0932 (13) 0.0751 (11) 0.0046 (9) 0.0373 (8) −0.0008 (10)
C6 0.0445 (7) 0.0755 (10) 0.0628 (9) −0.0070 (7) 0.0264 (7) 0.0043 (8)
C7 0.0346 (5) 0.0511 (7) 0.0410 (6) −0.0033 (5) 0.0112 (5) 0.0090 (5)
C8 0.0349 (6) 0.0421 (6) 0.0598 (8) −0.0039 (5) 0.0132 (5) −0.0001 (6)
C9 0.0343 (6) 0.0468 (7) 0.0581 (8) −0.0011 (5) 0.0155 (5) 0.0017 (6)
C10 0.0303 (5) 0.0464 (7) 0.0587 (8) 0.0019 (5) 0.0101 (5) 0.0086 (6)
C11 0.0274 (5) 0.0401 (6) 0.0524 (7) 0.0047 (4) 0.0051 (5) 0.0052 (5)
C12 0.0293 (5) 0.0403 (6) 0.0501 (7) 0.0040 (4) 0.0084 (5) 0.0056 (5)
C13 0.0334 (6) 0.0585 (8) 0.0719 (9) 0.0114 (6) 0.0159 (6) 0.0165 (7)
C14 0.0340 (6) 0.0784 (11) 0.0854 (11) 0.0052 (6) 0.0205 (7) 0.0242 (9)
C15 0.0445 (7) 0.0668 (10) 0.0807 (11) −0.0059 (7) 0.0181 (7) 0.0238 (8)
C16 0.0434 (7) 0.0478 (7) 0.0665 (9) 0.0008 (6) 0.0093 (6) 0.0170 (6)
C17 0.0304 (5) 0.0422 (6) 0.0505 (7) 0.0031 (4) 0.0047 (5) 0.0062 (5)
N5 0.0292 (4) 0.0697 (7) 0.0353 (5) 0.0067 (4) 0.0078 (4) −0.0058 (5)
N6 0.0260 (4) 0.0542 (6) 0.0341 (5) 0.0023 (4) 0.0056 (4) −0.0030 (4)
C18 0.0233 (4) 0.0482 (6) 0.0383 (6) −0.0028 (4) 0.0096 (4) −0.0035 (5)
C19 0.0271 (5) 0.0609 (8) 0.0392 (6) 0.0048 (5) 0.0074 (4) −0.0040 (5)
C20 0.0398 (7) 0.0968 (12) 0.0447 (7) 0.0201 (7) 0.0025 (6) 0.0013 (8)
C21 0.0443 (7) 0.0944 (13) 0.0682 (10) 0.0301 (8) 0.0057 (7) −0.0013 (9)
C22 0.0461 (7) 0.0837 (11) 0.0679 (10) 0.0210 (7) 0.0172 (7) −0.0135 (8)
C23 0.0434 (7) 0.0711 (9) 0.0458 (7) 0.0088 (6) 0.0126 (5) −0.0130 (6)
C24 0.0274 (5) 0.0507 (7) 0.0384 (6) 0.0014 (4) 0.0066 (4) −0.0054 (5)
C25 0.0251 (5) 0.0489 (7) 0.0473 (7) 0.0008 (4) 0.0130 (4) −0.0009 (5)
C26 0.0233 (6) 0.0469 (9) 0.0475 (9) 0.000 0.0106 (6) 0.000
C27 0.0185 (4) 0.0291 (5) 0.0372 (5) 0.0008 (3) 0.0053 (4) 0.0035 (4)
O1 0.0221 (3) 0.0364 (4) 0.0450 (4) −0.0009 (3) 0.0012 (3) −0.0033 (3)
O2 0.0209 (3) 0.0428 (4) 0.0608 (5) −0.0012 (3) 0.0156 (3) −0.0077 (4)
C28 0.0174 (4) 0.0298 (5) 0.0366 (5) 0.0004 (3) 0.0070 (3) 0.0014 (4)
C29 0.0203 (4) 0.0318 (5) 0.0403 (5) 0.0004 (3) 0.0116 (4) −0.0040 (4)
C30 0.0217 (4) 0.0303 (5) 0.0391 (5) −0.0007 (3) 0.0078 (4) −0.0061 (4)
O30 0.0251 (4) 0.0513 (5) 0.0539 (5) −0.0036 (3) 0.0104 (3) −0.0250 (4)
C31 0.0180 (4) 0.0323 (5) 0.0418 (6) −0.0009 (3) 0.0086 (4) −0.0024 (4)
O31 0.0183 (3) 0.0525 (5) 0.0571 (5) −0.0054 (3) 0.0124 (3) −0.0179 (4)
C32 0.0202 (4) 0.0394 (5) 0.0340 (5) 0.0008 (4) 0.0096 (4) −0.0001 (4)
O32 0.0231 (3) 0.0740 (6) 0.0385 (4) −0.0028 (4) 0.0137 (3) −0.0109 (4)
C33 0.0210 (4) 0.0388 (5) 0.0317 (5) −0.0007 (4) 0.0057 (4) −0.0024 (4)

Geometric parameters (Å, º)

N1—C1 1.3230 (16) C16—H16 0.9300
N1—C2 1.3950 (15) N5—C18 1.3184 (15)
N2—C1 1.3520 (14) N5—C19 1.3922 (15)
N2—C7 1.3712 (17) N6—C18 1.3496 (15)
N2—H2 0.936 (16) N6—C24 1.3822 (14)
N3—C11 1.3282 (14) N6—H6A 0.893 (15)
N3—C12 1.3831 (15) C18—C25 1.4910 (15)
N3—H3 0.880 (16) C19—C20 1.3920 (18)
N4—C11 1.3330 (16) C19—C24 1.3933 (17)
N4—C17 1.3872 (15) C20—C21 1.378 (2)
N4—H4 0.867 (16) C20—H20 0.9300
C1—C8 1.4841 (18) C21—C22 1.392 (2)
C2—C3 1.390 (2) C21—H21 0.9300
C2—C7 1.4007 (17) C22—C23 1.377 (2)
C3—C4 1.382 (2) C22—H22 0.9300
C3—H3A 0.9300 C23—C24 1.3909 (17)
C4—C5 1.392 (3) C23—H23 0.9300
C4—H4A 0.9300 C25—C26 1.5293 (15)
C5—C6 1.371 (3) C25—H25A 0.9700
C5—H5 0.9300 C25—H25B 0.9700
C6—C7 1.3921 (18) C26—H26A 0.9700
C6—H6 0.9300 C26—H26B 0.9700
C8—C9 1.5158 (16) C27—O2 1.2545 (12)
C8—H8A 0.9700 C27—O1 1.2648 (13)
C8—H8B 0.9700 C27—C28 1.5024 (13)
C9—C10 1.5298 (19) C28—C29 1.3876 (14)
C9—H9A 0.9700 C28—C33 1.3910 (14)
C9—H9B 0.9700 C29—C30 1.3903 (13)
C10—C11 1.4814 (16) C29—H29 0.9300
C10—H10A 0.9700 C30—O30 1.3665 (13)
C10—H10B 0.9700 C30—C31 1.3973 (14)
C12—C13 1.3874 (16) O30—H30 0.946 (18)
C12—C17 1.3909 (16) C31—O31 1.3629 (11)
C13—C14 1.371 (2) C31—C32 1.3953 (15)
C13—H13 0.9300 O31—H31 0.894 (18)
C14—C15 1.397 (2) C32—O32 1.3521 (12)
C14—H14 0.9300 C32—C33 1.3946 (13)
C15—C16 1.375 (2) O32—H32 0.948 (19)
C15—H15 0.9300 C33—H33 0.9300
C16—C17 1.3838 (18)
C1—N1—C2 104.86 (10) C17—C16—H16 121.8
C1—N2—C7 108.02 (10) C16—C17—N4 132.87 (11)
C1—N2—H2 120.2 (9) C16—C17—C12 121.54 (11)
C7—N2—H2 131.7 (9) N4—C17—C12 105.59 (10)
C11—N3—C12 109.02 (10) C18—N5—C19 105.11 (10)
C11—N3—H3 126.4 (10) C18—N6—C24 107.69 (10)
C12—N3—H3 124.5 (10) C18—N6—H6A 121.8 (9)
C11—N4—C17 109.51 (10) C24—N6—H6A 130.4 (9)
C11—N4—H4 122.3 (11) N5—C18—N6 112.55 (10)
C17—N4—H4 127.7 (11) N5—C18—C25 124.47 (10)
N1—C1—N2 112.50 (11) N6—C18—C25 122.98 (10)
N1—C1—C8 128.54 (10) C20—C19—N5 129.82 (12)
N2—C1—C8 118.96 (11) C20—C19—C24 120.47 (12)
C3—C2—N1 130.46 (12) N5—C19—C24 109.69 (10)
C3—C2—C7 119.99 (12) C21—C20—C19 117.68 (13)
N1—C2—C7 109.55 (11) C21—C20—H20 121.2
C4—C3—C2 117.62 (15) C19—C20—H20 121.2
C4—C3—H3A 121.2 C20—C21—C22 121.31 (14)
C2—C3—H3A 121.2 C20—C21—H21 119.3
C3—C4—C5 121.58 (16) C22—C21—H21 119.3
C3—C4—H4A 119.2 C23—C22—C21 121.81 (14)
C5—C4—H4A 119.2 C23—C22—H22 119.1
C6—C5—C4 121.89 (14) C21—C22—H22 119.1
C6—C5—H5 119.1 C22—C23—C24 116.82 (13)
C4—C5—H5 119.1 C22—C23—H23 121.6
C5—C6—C7 116.60 (15) C24—C23—H23 121.6
C5—C6—H6 121.7 N6—C24—C23 133.16 (11)
C7—C6—H6 121.7 N6—C24—C19 104.94 (10)
N2—C7—C6 132.60 (13) C23—C24—C19 121.89 (11)
N2—C7—C2 105.08 (10) C18—C25—C26 113.19 (11)
C6—C7—C2 122.32 (13) C18—C25—H25A 108.9
C1—C8—C9 116.07 (11) C26—C25—H25A 108.9
C1—C8—H8A 108.3 C18—C25—H25B 108.9
C9—C8—H8A 108.3 C26—C25—H25B 108.9
C1—C8—H8B 108.3 H25A—C25—H25B 107.8
C9—C8—H8B 108.3 C25i—C26—C25 111.10 (14)
H8A—C8—H8B 107.4 C25i—C26—H26A 109.4
C8—C9—C10 113.20 (11) C25—C26—H26A 109.4
C8—C9—H9A 108.9 C25i—C26—H26B 109.4
C10—C9—H9A 108.9 C25—C26—H26B 109.4
C8—C9—H9B 108.9 H26A—C26—H26B 108.0
C10—C9—H9B 108.9 O2—C27—O1 124.43 (9)
H9A—C9—H9B 107.8 O2—C27—C28 117.82 (9)
C11—C10—C9 111.09 (11) O1—C27—C28 117.73 (9)
C11—C10—H10A 109.4 C29—C28—C33 119.94 (9)
C9—C10—H10A 109.4 C29—C28—C27 119.76 (9)
C11—C10—H10B 109.4 C33—C28—C27 120.24 (9)
C9—C10—H10B 109.4 C28—C29—C30 120.36 (9)
H10A—C10—H10B 108.0 C28—C29—H29 119.8
N3—C11—N4 108.96 (10) C30—C29—H29 119.8
N3—C11—C10 126.19 (11) O30—C30—C29 122.21 (9)
N4—C11—C10 124.80 (10) O30—C30—C31 117.75 (8)
N3—C12—C13 131.16 (12) C29—C30—C31 120.02 (9)
N3—C12—C17 106.91 (10) C30—O30—H30 107.7 (11)
C13—C12—C17 121.92 (12) O31—C31—C32 121.88 (9)
C14—C13—C12 116.31 (13) O31—C31—C30 118.67 (9)
C14—C13—H13 121.8 C32—C31—C30 119.44 (9)
C12—C13—H13 121.8 C31—O31—H31 110.8 (11)
C13—C14—C15 121.82 (13) O32—C32—C33 123.76 (10)
C13—C14—H14 119.1 O32—C32—C31 116.02 (9)
C15—C14—H14 119.1 C33—C32—C31 120.21 (9)
C16—C15—C14 121.98 (14) C32—O32—H32 110.7 (11)
C16—C15—H15 119.0 C28—C33—C32 119.91 (10)
C14—C15—H15 119.0 C28—C33—H33 120.0
C15—C16—C17 116.41 (13) C32—C33—H33 120.0
C15—C16—H16 121.8
C2—N1—C1—N2 −0.44 (14) C13—C12—C17—N4 179.89 (13)
C2—N1—C1—C8 179.31 (12) C19—N5—C18—N6 −0.52 (15)
C7—N2—C1—N1 0.51 (14) C19—N5—C18—C25 178.77 (11)
C7—N2—C1—C8 −179.26 (11) C24—N6—C18—N5 −0.21 (14)
C1—N1—C2—C3 −179.18 (15) C24—N6—C18—C25 −179.51 (11)
C1—N1—C2—C7 0.21 (14) C18—N5—C19—C20 179.82 (16)
N1—C2—C3—C4 179.44 (15) C18—N5—C19—C24 1.06 (15)
C7—C2—C3—C4 0.1 (2) N5—C19—C20—C21 −179.31 (16)
C2—C3—C4—C5 −0.3 (3) C24—C19—C20—C21 −0.7 (2)
C3—C4—C5—C6 0.3 (3) C19—C20—C21—C22 1.5 (3)
C4—C5—C6—C7 −0.2 (3) C20—C21—C22—C23 −0.8 (3)
C1—N2—C7—C6 179.15 (14) C21—C22—C23—C24 −0.7 (3)
C1—N2—C7—C2 −0.35 (13) C18—N6—C24—C23 −178.24 (15)
C5—C6—C7—N2 −179.35 (15) C18—N6—C24—C19 0.84 (14)
C5—C6—C7—C2 0.1 (2) C22—C23—C24—N6 −179.50 (15)
C3—C2—C7—N2 179.55 (13) C22—C23—C24—C19 1.5 (2)
N1—C2—C7—N2 0.09 (14) C20—C19—C24—N6 179.93 (14)
C3—C2—C7—C6 0.0 (2) N5—C19—C24—N6 −1.18 (15)
N1—C2—C7—C6 −179.47 (12) C20—C19—C24—C23 −0.9 (2)
N1—C1—C8—C9 −9.7 (2) N5—C19—C24—C23 178.03 (13)
N2—C1—C8—C9 170.03 (11) N5—C18—C25—C26 −86.02 (14)
C1—C8—C9—C10 −63.93 (16) N6—C18—C25—C26 93.19 (13)
C8—C9—C10—C11 179.45 (11) C18—C25—C26—C25i 172.70 (12)
C12—N3—C11—N4 0.14 (15) O2—C27—C28—C29 18.00 (15)
C12—N3—C11—C10 −177.42 (13) O1—C27—C28—C29 −160.52 (10)
C17—N4—C11—N3 0.16 (16) O2—C27—C28—C33 −164.68 (10)
C17—N4—C11—C10 177.76 (13) O1—C27—C28—C33 16.80 (15)
C9—C10—C11—N3 103.86 (15) C33—C28—C29—C30 −2.24 (16)
C9—C10—C11—N4 −73.33 (17) C27—C28—C29—C30 175.09 (9)
C11—N3—C12—C13 −179.73 (15) C28—C29—C30—O30 −177.66 (10)
C11—N3—C12—C17 −0.38 (15) C28—C29—C30—C31 0.45 (16)
N3—C12—C13—C14 177.75 (15) O30—C30—C31—O31 −0.48 (16)
C17—C12—C13—C14 −1.5 (2) C29—C30—C31—O31 −178.67 (10)
C12—C13—C14—C15 1.5 (3) O30—C30—C31—C32 −179.25 (10)
C13—C14—C15—C16 −0.3 (3) C29—C30—C31—C32 2.55 (16)
C14—C15—C16—C17 −0.9 (3) O31—C31—C32—O32 −1.24 (16)
C15—C16—C17—N4 −178.51 (16) C30—C31—C32—O32 177.49 (10)
C15—C16—C17—C12 0.9 (2) O31—C31—C32—C33 177.48 (10)
C11—N4—C17—C16 179.11 (16) C30—C31—C32—C33 −3.78 (16)
C11—N4—C17—C12 −0.39 (15) C29—C28—C33—C32 1.01 (16)
N3—C12—C17—C16 −179.11 (13) C27—C28—C33—C32 −176.32 (9)
C13—C12—C17—C16 0.3 (2) O32—C32—C33—C28 −179.36 (10)
N3—C12—C17—N4 0.46 (15) C31—C32—C33—C28 2.02 (16)

Symmetry code: (i) −x+1/2, y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2ii 0.936 (16) 1.924 (17) 2.8204 (14) 159.7 (13)
N3—H3···O1 0.880 (16) 1.832 (16) 2.6433 (13) 152.4 (14)
N4—H4···O30iii 0.867 (16) 2.043 (16) 2.8509 (12) 154.6 (14)
N4—H4···O31iii 0.867 (16) 2.394 (16) 3.0199 (14) 129.5 (13)
N6—H6A···O1i 0.893 (15) 1.955 (16) 2.8018 (12) 157.9 (13)
O30—H30···N1iv 0.946 (18) 1.785 (18) 2.7238 (12) 171.3 (16)
O31—H31···O2ii 0.894 (18) 1.882 (18) 2.7314 (11) 157.8 (16)
O32—H32···N5 0.948 (19) 1.717 (19) 2.6515 (14) 167.9 (16)
C8—H8A···O32 0.97 2.52 3.4736 (17) 168
C10—H10B···N1 0.97 2.64 3.2566 (16) 122

Symmetry codes: (i) −x+1/2, y, −z+1; (ii) x+1/2, −y+1, z; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+1, y+1/2, −z+3/2.

Funding Statement

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (scholarship No. 737995 to JCPR).

References

  1. Albada, G. A. van, Smeets, W. J. J., Spek, A. L. & Reedijk, J. (1999). Inorg. Chim. Acta, 288, 220–225.
  2. Clifford, S. E., Runowski, M., Parthasarathy, N., Besnard, C., Melich, X. & Williams, A. F. (2012). New J. Chem. 36, 823–829.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Feng, G. & Jiang, L. (2010). Acta Cryst. E66, o2731. [DOI] [PMC free article] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Hernández Linares, M.-G., Carrasco-Carballo, A., Guerrero-Luna, G., Bernès, S. & Aguirre Hernández, G. (2016). IUCrData, 1, x160622.
  7. Hu, B., Deng, X.-T., Wang, C.-G. & Wang, X.-Y. (2006). Acta Cryst. E62, m3477–m3478.
  8. Kitaigorodskii, A. I. (1965). Acta Cryst. 18, 585–590.
  9. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  10. Matthews, C. J., Broughton, V., Bernardinelli, G., Melich, X., Brand, G., Willis, A. C. & Williams, A. F. (2003). New J. Chem. 27, 354–358.
  11. Pandiyan, T., Bernés, S. & Durán de Bazúa, C. (1997). Polyhedron, 16, 2819–2826.
  12. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.
  17. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  18. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  19. Sun, Y., Liu, X.-H., Zhang, X., Song, H.-B. & Liu, X.-L. (2004). Jiegou Huaxue (Chin. J. Struct. Chem.), 23, 803–807.
  20. Wang, Y. & An, L. L. (2016). Russ. J. Coord. Chem. 42, 502–508.
  21. Wen, Y.-H., Xu, G.-F., Yao, K., Dou, R.-T. & Guo, J.-X. (2014). Z. Anorg. Allg. Chem. 640, 2091–2096.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023004279/wm5683sup1.cif

e-79-00562-sup1.cif (7.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004279/wm5683Isup2.hkl

e-79-00562-Isup2.hkl (879.9KB, hkl)

CCDC reference: 2263401

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES