Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 May 16;79(Pt 6):545–548. doi: 10.1107/S2056989023004139

Synthesis, crystal structure and Hirshfeld surface analysis of (E)-benzo[d][1,3]dioxole-5-carbaldehyde oxime

Rengaraj Radhakrishnan a, Nour El Hoda Mustaphi b, Nada Kheira Sebbar c, Joel T Mague d, Aravazhi Amalan Thiruvalluvar e,*
Editor: W T A Harrisonf
PMCID: PMC10242747  PMID: 37288465

The asymmetric unit of the title compound consists of two independent mol­ecules differing slightly in conformation and in their inter­molecular inter­actions in the solid.

Keywords: synthesis, crystal structure, benzodioxolane, oxime, O—H⋯N, C—H⋯O, hydrogen bonds, π-stacking, Hirshfeld surface analysis.

Abstract

The asymmetric unit of the title mol­ecule, C8H7NO3, consists of two mol­ecules differing slightly in conformation and in their inter­molecular inter­actions in the solid. The dihedral angle between the benzene and dioxolane rings is 0.20 (7)° in one mol­ecule and 0.31 (7)° in the other. In the crystal, the two mol­ecules are linked into dimers through pairwise O—H⋯N hydrogen bonds, with these units being formed into stacks by two different sets of aromatic π-stacking inter­actions. The stacks are connected by C—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are H⋯O/O⋯H (36.7%), H⋯H (32.2%) and C⋯H/H⋯C (12.7%).

1. Chemical context

Oxime compounds containing an R 2C=N—OH functional group have been studied for many years because of their important role as acetyl­cholinesterase reactivators and their utility as therapeutic agents for various diseases (Musilek et al., 2011; Canario et al., 2018). Various oximes have been identified in plants as biosynthetic inter­mediates and can facilitate a range of processes associated with plant growth and development (Sørensen et al., 2018). Oximes also have a wide range of biological activities, such as human immunodeficiency virus (HIV) agents that can inhibit HIV protease (Komai et al., 1997) and can act as anti-inflammatories (Li et al., 2018; Kwon et al., 2014). The introduction of an oxime group into an appropriate chemical backbone is a reasonable approach for the preparation of cytotoxic agents and many oxime derivatives have been reported to have therapeutic activity for cancer (Canario et al., 2018; Shen et al., 2015) and neurodegenerative disorders (Avrahami et al., 2013; Yuskaitis et al., 2009). 1.

As part of our studies in this area, we now describe the synthesis, structure and Hirshfeld surface analysis of the title compound (I).

2. Structural commentary

The asymmetric unit (Fig. 1) consists of two independent mol­ecules differing slightly in the orientation of some hydrogen atoms. The benzodioxolane portion of the mol­ecule containing O1 is planar to within 0.0171 (12) Å (r.m.s. deviation of the fitted atoms = 0.0091 Å) with C7 deviating by 0.0171 (12) Å from one side of the mean plane and O1 by 0.0170 (10) Å from the other, indicating a slight twist in the dioxolane ring. The corresponding portion of the second mol­ecule containing O4 is planar to within 0.0041 (11) Å (r.m.s. deviation of the fitted atoms = 0.0030 Å), indicating a conformational difference, albeit small, between the two mol­ecules. The overlay fit of inverted mol­ecule 2 on mol­ecule 1 is shown in Fig. 2 with the weighted r.m.s. fit of the 12 non-H atoms being 0.036 Å and showing the major differences to be in the hydrogen-atom positions. The C6—C1—C8—N1 and C1—C8—N1—O3 torsion angles are, respectively, 3.9 (2) and −179.96 (11)°, indicating the side chain to be nearly coplanar with the benzodioxolane unit. The corresponding torsion angles in the second mol­ecule are virtually the same as above. The two mol­ecules are connected into dimers through O3—H3A⋯N2 and O6—H6A⋯N1 hydrogen bonds (Table 1 and Fig. 1), generating Inline graphic (6) loops.

Figure 1.

Figure 1

The asymmetric unit with 50% probability ellipsoids. The O—H⋯N hydrogen bonds are depicted by dashed lines.

Figure 2.

Figure 2

A least-squares overlay of the two independent mol­ecules [inverted O4 mol­ecule (red) on O1 mol­ecule (black)].

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2 0.87 1.93 2.7549 (16) 158
C7—H7B⋯O4i 0.99 2.58 3.239 (2) 124
C8—H8⋯O6ii 0.95 2.43 3.3754 (18) 173
O6—H6A⋯N1 0.87 1.97 2.7989 (17) 158
C15—H15A⋯O1iii 0.99 2.54 3.1775 (19) 122
C16—H16⋯O3iv 0.95 2.59 3.5173 (18) 167

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

3. Supra­molecular features

In the crystal, the dimers are connected into stacks extending along the [101] direction through slipped π-stacking inter­actions between the six-membered (Cg2: C1–C6 and Cg5: C9–C14) rings. For the C1–C6 rings, the centroid–centroid distance is 3.6024 (11) Å with a slippage of 1.185 Å between mol­ecules at x, y, z and −x, −y + 1, −z. These paired mol­ecules make weak, slipped π-stacking inter­actions with corresponding pairs at −x + 1, −y + 1, −z + 1 with a centroid–centroid distance of 3.8479 (11) Å and a slippage of 1.947 Å. The C9–C14 ring has slipped π-stacking inter­actions with its counterparts in mol­ecules at x −  Inline graphic , −y +  Inline graphic , z −  Inline graphic and at x +  Inline graphic , −y +  Inline graphic , z +  Inline graphic with centroid–centroid distances of 3.8380 (11) Å and dihedral angles of 2.41 (6)° for both. The slippages for these inter­actions (Fig. 3) are 1.572 and 1.662 Å, respectively. These differences in the π-stacking inter­actions also support the independence of the two mol­ecules in the asymmetric unit. The stacks are associated through C7—H7B⋯O4, C8—H8⋯O6, C15—H15A⋯O1 and C16—H16⋯O3 hydrogen bonds (Table 1 and Fig. 4).

Figure 3.

Figure 3

View of the packing seen along the a-axis direction with O—H⋯N and C—H⋯O hydrogen bonds and π-stacking inter­actions depicted, respectively, by light blue, black and orange dashed lines.

Figure 4.

Figure 4

View of the packing seen along the [101] direction. Inter­molecular inter­actions are depicted as in Fig. 3.

4. Database survey

A search using CCDC ConQuest of the Cambridge Structural Database (CSD, Version 5.44, updated to April 2023; Groom et al., 2016) using the title mol­ecule with all hydrogen atoms deleted gave 26 hits. Most of these contain the search fragment as part of a larger, often polycyclic mol­ecule, but three are considered similar to (I). These are N-[1-(2,2-dimethyl-2H-1,3-benzodioxol-5-yl)-2-(1H-imidazol-1-yl)ethyl­idene]hydroxyl­amine (CSD refcode: GAVWUZ; Ren et al., 2022), in which the benzo[d][1,3]dioxole unit is similar to that in (I), 1-(1,3-benzodioxol-5-yl)-N-hy­droxy-3-(1H-imidazol-1-yl)propan-1-imine iso­propanol solvate (QEKMAX; Al-Wabli et al., 2017), in which the benzo[d][1,3]dioxole-5-carbaldehyde­oxime takes a (Z) form and (Z)-3,4-methyl­ene­dioxy­benzaldehyde oximium 4-toluene­sulfonate (VADDIN; Jerslev et al., 1988), in which the benzo[d][1,3]dioxole unit is similar to that in (I).

5. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed with Crystal Explorer (Version 21.5; Spackman et al., 2021). Fig. 5 shows views of the d norm surfaces for the two mol­ecules in the asymmetric unit plotted over the limits from −0.63 to 1.18 a.u for mol­ecule 1 and −0.63 to 1.07 a.u for mol­ecule 2. The O—H⋯N hydrogen bonds, which generate the dimers are indicated by the bright-red spots in Fig. 5(a) and 5(b), respectively. Fig. 6 presents the two-dimensional fingerprint plots involving all inter­molecular inter­actions [Fig. 6(a)] and delineated into C⋯H/H⋯C [Fig. 6(c)], and H⋯O/O⋯H [Fig. 6(h)] inter­actions. For completeness, the H⋯H inter­actions constitute 32.2% of the surface [Fig. 6(b)]. The other inter­actions contribute small amounts, viz., C⋯N/N⋯C (1.0%), C⋯O/O⋯C (2.4%), C⋯C (9.5%), H⋯N/N⋯H (4.1%), N⋯O/O⋯N (1.1%), N⋯N (0.0%) and O⋯O (0.4%).

Figure 5.

Figure 5

The Hirshfeld surface plots for (I): (a) d norm for the O1-containing mol­ecule; (b) d norm for the O4-containing mol­ecule.

Figure 6.

Figure 6

Fingerprint plots for (I) (both mol­ecules): (a) all inter­actions; (b) H⋯H; (c) C⋯H/H⋯C and (h) H⋯O/O⋯H.

6. Synthesis and crystallization

A solution of 5.0 g of sodium hydroxide dissolved in 20 ml of water was mixed with 8.0 g of hydroxyl­amine hydro­chloride dissolved in 15 ml of water, then 8.0 g of benzo[d][1,3]dioxole-5-carbaldehyde dissolved in 50 ml of ethanol was added to the mixture. After 5 h of stirring at 273 K, the product was allowed to precipitate and then filtered with a yield of 90%. Single crystals were recrystallized from ethanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C8H7NO3
M r 165.15
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 6.8724 (14), 33.502 (7), 7.3449 (15)
β (°) 117.238 (3)
V3) 1503.6 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.36 × 0.17 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.82, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 28032, 3858, 2836
R int 0.048
(sin θ/λ)max−1) 0.675
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.127, 1.05
No. of reflections 3858
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.19

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023004139/hb8064sup1.cif

e-79-00545-sup1.cif (830.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004139/hb8064Isup2.hkl

e-79-00545-Isup2.hkl (307.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004139/hb8064Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989023004139/hb8064Isup4.cml

CCDC reference: 2262070

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

supplementary crystallographic information

Crystal data

C8H7NO3 F(000) = 688
Mr = 165.15 Dx = 1.459 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 6.8724 (14) Å Cell parameters from 6661 reflections
b = 33.502 (7) Å θ = 2.4–28.1°
c = 7.3449 (15) Å µ = 0.11 mm1
β = 117.238 (3)° T = 150 K
V = 1503.6 (5) Å3 Plate, colourless
Z = 8 0.36 × 0.17 × 0.10 mm

Data collection

Bruker SMART APEX CCD diffractometer 3858 independent reflections
Radiation source: fine-focus sealed tube 2836 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
Detector resolution: 8.3333 pixels mm-1 θmax = 28.7°, θmin = 2.4°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −45→43
Tmin = 0.82, Tmax = 0.99 l = −9→9
28032 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: mixed
wR(F2) = 0.127 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.2227P] where P = (Fo2 + 2Fc2)/3
3858 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.21075 (18) 0.58110 (3) 0.12890 (17) 0.0385 (3)
O2 0.50131 (18) 0.54433 (3) 0.13879 (17) 0.0377 (3)
O3 0.40957 (17) 0.36128 (3) 0.45505 (17) 0.0377 (3)
H3A 0.516808 0.349351 0.445154 0.057*
N1 0.43129 (18) 0.40031 (3) 0.39281 (18) 0.0287 (3)
C1 0.2551 (2) 0.46413 (4) 0.30915 (19) 0.0254 (3)
C2 0.0814 (2) 0.48668 (4) 0.3030 (2) 0.0290 (3)
H2 −0.020388 0.474321 0.339202 0.035*
C3 0.0524 (2) 0.52685 (4) 0.2452 (2) 0.0316 (3)
H3 −0.065828 0.542093 0.241589 0.038*
C4 0.2043 (2) 0.54306 (4) 0.1939 (2) 0.0280 (3)
C5 0.3775 (2) 0.52084 (4) 0.1994 (2) 0.0262 (3)
C6 0.4081 (2) 0.48172 (4) 0.25517 (19) 0.0252 (3)
H6 0.527136 0.466906 0.257669 0.030*
C7 0.4031 (3) 0.58311 (4) 0.0990 (3) 0.0379 (4)
H7A 0.363159 0.591287 −0.043339 0.045*
H7B 0.507199 0.602939 0.193416 0.045*
C8 0.2711 (2) 0.42252 (4) 0.3722 (2) 0.0285 (3)
H8 0.159251 0.411565 0.398925 0.034*
O4 0.79029 (19) 0.15551 (3) 0.4126 (2) 0.0489 (3)
O5 0.54405 (19) 0.19665 (3) 0.4559 (2) 0.0488 (3)
O6 0.84324 (18) 0.38394 (3) 0.42029 (17) 0.0392 (3)
H6A 0.725059 0.395443 0.409864 0.059*
N2 0.78297 (19) 0.34360 (4) 0.42083 (18) 0.0299 (3)
C9 0.8894 (2) 0.27623 (4) 0.4103 (2) 0.0266 (3)
C10 1.0360 (2) 0.25112 (4) 0.3838 (2) 0.0319 (3)
H10 1.152810 0.262583 0.366388 0.038*
C11 1.0166 (2) 0.20967 (5) 0.3820 (2) 0.0354 (3)
H11 1.116764 0.192674 0.363450 0.043*
C12 0.8452 (2) 0.19468 (4) 0.4082 (2) 0.0320 (3)
C13 0.6986 (2) 0.21941 (4) 0.4347 (2) 0.0302 (3)
C14 0.7148 (2) 0.25990 (4) 0.4373 (2) 0.0292 (3)
H14 0.613289 0.276437 0.456418 0.035*
C15 0.5989 (3) 0.15609 (4) 0.4420 (2) 0.0369 (3)
H15A 0.476274 0.142790 0.325521 0.044*
H15B 0.626735 0.141616 0.569104 0.044*
C16 0.9197 (2) 0.31931 (4) 0.4083 (2) 0.0299 (3)
H16 1.043047 0.329466 0.397484 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0392 (6) 0.0285 (6) 0.0509 (7) 0.0074 (4) 0.0234 (5) 0.0055 (5)
O2 0.0400 (6) 0.0297 (6) 0.0560 (7) 0.0021 (4) 0.0328 (5) 0.0076 (5)
O3 0.0355 (6) 0.0243 (5) 0.0599 (7) −0.0013 (4) 0.0277 (5) 0.0051 (5)
N1 0.0266 (6) 0.0231 (6) 0.0357 (6) −0.0034 (4) 0.0137 (5) −0.0002 (5)
C1 0.0204 (6) 0.0296 (7) 0.0245 (6) −0.0017 (5) 0.0088 (5) −0.0042 (5)
C2 0.0205 (7) 0.0358 (8) 0.0324 (7) −0.0030 (5) 0.0137 (6) −0.0045 (6)
C3 0.0223 (7) 0.0361 (8) 0.0373 (8) 0.0048 (6) 0.0144 (6) −0.0047 (6)
C4 0.0270 (7) 0.0264 (7) 0.0282 (7) 0.0034 (5) 0.0105 (6) −0.0011 (5)
C5 0.0240 (7) 0.0308 (7) 0.0257 (6) −0.0017 (5) 0.0131 (5) −0.0023 (5)
C6 0.0212 (6) 0.0281 (7) 0.0275 (7) 0.0020 (5) 0.0121 (5) −0.0020 (5)
C7 0.0463 (9) 0.0327 (8) 0.0414 (9) 0.0046 (7) 0.0259 (7) 0.0068 (6)
C8 0.0229 (7) 0.0298 (7) 0.0343 (7) −0.0043 (5) 0.0143 (6) −0.0035 (6)
O4 0.0423 (7) 0.0275 (6) 0.0825 (9) 0.0000 (5) 0.0335 (7) −0.0056 (5)
O5 0.0397 (6) 0.0279 (6) 0.0940 (10) −0.0066 (5) 0.0439 (7) −0.0038 (6)
O6 0.0347 (6) 0.0276 (6) 0.0612 (7) −0.0021 (4) 0.0269 (5) 0.0071 (5)
N2 0.0272 (6) 0.0265 (6) 0.0360 (6) −0.0026 (5) 0.0145 (5) 0.0037 (5)
C9 0.0208 (6) 0.0313 (7) 0.0277 (7) −0.0005 (5) 0.0110 (5) 0.0000 (5)
C10 0.0214 (7) 0.0408 (9) 0.0354 (8) 0.0005 (6) 0.0147 (6) −0.0002 (6)
C11 0.0240 (7) 0.0399 (9) 0.0435 (8) 0.0058 (6) 0.0165 (6) −0.0040 (6)
C12 0.0265 (7) 0.0287 (8) 0.0377 (8) 0.0025 (5) 0.0119 (6) −0.0026 (6)
C13 0.0211 (7) 0.0319 (8) 0.0380 (8) −0.0029 (5) 0.0139 (6) −0.0017 (6)
C14 0.0227 (7) 0.0296 (7) 0.0371 (8) 0.0011 (5) 0.0154 (6) −0.0017 (6)
C15 0.0358 (8) 0.0286 (8) 0.0441 (9) −0.0017 (6) 0.0164 (7) 0.0016 (6)
C16 0.0237 (7) 0.0357 (8) 0.0331 (7) −0.0029 (6) 0.0153 (6) 0.0023 (6)

Geometric parameters (Å, º)

O1—C4 1.3685 (17) O4—C12 1.3699 (18)
O1—C7 1.4377 (19) O4—C15 1.427 (2)
O2—C5 1.3742 (16) O5—C13 1.3730 (17)
O2—C7 1.4311 (17) O5—C15 1.4264 (18)
O3—N1 1.4154 (15) O6—N2 1.4140 (15)
O3—H3A 0.8702 O6—H6A 0.8701
N1—C8 1.2790 (18) N2—C16 1.2776 (18)
C1—C2 1.3957 (18) C9—C10 1.3931 (19)
C1—C6 1.4110 (18) C9—C14 1.4129 (18)
C1—C8 1.4570 (19) C9—C16 1.4595 (19)
C2—C3 1.398 (2) C10—C11 1.394 (2)
C2—H2 0.9500 C10—H10 0.9500
C3—C4 1.373 (2) C11—C12 1.373 (2)
C3—H3 0.9500 C11—H11 0.9500
C4—C5 1.3890 (19) C12—C13 1.3849 (19)
C5—C6 1.3603 (19) C13—C14 1.3606 (19)
C6—H6 0.9500 C14—H14 0.9500
C7—H7A 0.9900 C15—H15A 0.9900
C7—H7B 0.9900 C15—H15B 0.9900
C8—H8 0.9500 C16—H16 0.9500
C4—O1—C7 106.02 (11) C12—O4—C15 105.87 (11)
C5—O2—C7 106.39 (11) C13—O5—C15 106.11 (11)
N1—O3—H3A 100.3 N2—O6—H6A 99.2
C8—N1—O3 111.31 (11) C16—N2—O6 112.48 (11)
C2—C1—C6 120.04 (13) C10—C9—C14 120.06 (13)
C2—C1—C8 117.85 (12) C10—C9—C16 118.69 (12)
C6—C1—C8 122.10 (12) C14—C9—C16 121.24 (12)
C1—C2—C3 122.15 (13) C9—C10—C11 122.04 (13)
C1—C2—H2 118.9 C9—C10—H10 119.0
C3—C2—H2 118.9 C11—C10—H10 119.0
C4—C3—C2 116.33 (12) C12—C11—C10 116.57 (13)
C4—C3—H3 121.8 C12—C11—H11 121.7
C2—C3—H3 121.8 C10—C11—H11 121.7
O1—C4—C3 127.89 (13) O4—C12—C11 128.09 (13)
O1—C4—C5 110.19 (12) O4—C12—C13 110.11 (13)
C3—C4—C5 121.91 (13) C11—C12—C13 121.80 (14)
C6—C5—O2 128.03 (12) C14—C13—O5 127.91 (12)
C6—C5—C4 122.51 (12) C14—C13—C12 122.58 (13)
O2—C5—C4 109.45 (12) O5—C13—C12 109.51 (13)
C5—C6—C1 117.05 (12) C13—C14—C9 116.94 (12)
C5—C6—H6 121.5 C13—C14—H14 121.5
C1—C6—H6 121.5 C9—C14—H14 121.5
O2—C7—O1 107.86 (11) O5—C15—O4 108.40 (12)
O2—C7—H7A 110.1 O5—C15—H15A 110.0
O1—C7—H7A 110.1 O4—C15—H15A 110.0
O2—C7—H7B 110.1 O5—C15—H15B 110.0
O1—C7—H7B 110.1 O4—C15—H15B 110.0
H7A—C7—H7B 108.4 H15A—C15—H15B 108.4
N1—C8—C1 122.00 (12) N2—C16—C9 121.07 (12)
N1—C8—H8 119.0 N2—C16—H16 119.5
C1—C8—H8 119.0 C9—C16—H16 119.5
C6—C1—C2—C3 −0.3 (2) C14—C9—C10—C11 0.2 (2)
C8—C1—C2—C3 179.76 (13) C16—C9—C10—C11 −179.38 (13)
C1—C2—C3—C4 0.2 (2) C9—C10—C11—C12 −0.2 (2)
C7—O1—C4—C3 179.08 (14) C15—O4—C12—C11 −179.48 (15)
C7—O1—C4—C5 −2.05 (15) C15—O4—C12—C13 0.38 (16)
C2—C3—C4—O1 178.64 (13) C10—C11—C12—O4 −179.98 (14)
C2—C3—C4—C5 −0.1 (2) C10—C11—C12—C13 0.2 (2)
C7—O2—C5—C6 −179.40 (14) C15—O5—C13—C14 179.94 (14)
C7—O2—C5—C4 1.47 (15) C15—O5—C13—C12 0.07 (17)
O1—C4—C5—C6 −178.80 (12) O4—C12—C13—C14 179.83 (13)
C3—C4—C5—C6 0.1 (2) C11—C12—C13—C14 −0.3 (2)
O1—C4—C5—O2 0.38 (16) O4—C12—C13—O5 −0.29 (17)
C3—C4—C5—O2 179.33 (12) C11—C12—C13—O5 179.58 (14)
O2—C5—C6—C1 −179.25 (13) O5—C13—C14—C9 −179.49 (14)
C4—C5—C6—C1 −0.2 (2) C12—C13—C14—C9 0.4 (2)
C2—C1—C6—C5 0.29 (19) C10—C9—C14—C13 −0.3 (2)
C8—C1—C6—C5 −179.76 (12) C16—C9—C14—C13 179.28 (13)
C5—O2—C7—O1 −2.71 (15) C13—O5—C15—O4 0.16 (17)
C4—O1—C7—O2 2.92 (15) C12—O4—C15—O5 −0.33 (16)
O3—N1—C8—C1 −179.96 (11) O6—N2—C16—C9 178.85 (11)
C2—C1—C8—N1 −176.17 (13) C10—C9—C16—N2 176.16 (13)
C6—C1—C8—N1 3.9 (2) C14—C9—C16—N2 −3.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3A···N2 0.87 1.93 2.7549 (16) 158
C7—H7B···O4i 0.99 2.58 3.239 (2) 124
C8—H8···O6ii 0.95 2.43 3.3754 (18) 173
O6—H6A···N1 0.87 1.97 2.7989 (17) 158
C15—H15A···O1iii 0.99 2.54 3.1775 (19) 122
C16—H16···O3iv 0.95 2.59 3.5173 (18) 167

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x−1, y, z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x+1, y, z.

References

  1. Al-Wabli, R., Al-Ghamdi, A., Ghabbour, H., Al-Agamy, M., Monicka, J., Joe, I. & Attia, M. (2017). Molecules, 22, 373. https://doi.org/10.3390/molecules22030373 [DOI] [PMC free article] [PubMed]
  2. Avrahami, L., Farfara, D., Shaham-Kol, M., Vassar, R., Frenkel, D. & Eldar-Finkelman, H. (2013). J. Biol. Chem. 288, 1295–1306. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Canario, C., Silvestre, S., Falcao, A. & Alves, G. (2018). Curr. Med. Chem. 25, 660–686. [DOI] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Jerslev, B., Larsen, S. & Hansen, F. (1988). Acta Chem. Scand. 42b, 646–649.
  8. Komai, T., Yagi, R., Suzuki-Sunagawa, H., Ishikawa, Y., Kasuya, A., Miyamoto, S., Handa, H. & Nishigaki, T. (1997). Biochem. Biophys. Res. Commun. 230, 557–561. [DOI] [PubMed]
  9. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  10. Kwon, Y. J., Yoon, C. H., Lee, S. W., Park, Y. B., Lee, S. K. & Park, M. C. (2014). Joint Bone Spine, 81, 240–246. [DOI] [PubMed]
  11. Li, Q., Zhang, J., Chen, L. Z., Wang, J. Q., Zhou, H. P., Tang, W. J., Xue, W. & Liu, X. H. (2018). J. Enzyme Inhib. Med. Chem. 33, 130–138. [DOI] [PMC free article] [PubMed]
  12. Musilek, K., Dolezal, M., Gunn-Moore, F. & Kuca, K. (2011). Med. Res. Rev. 31, 548–575. [DOI] [PubMed]
  13. Ren, B., Guo, C., Liu, R., Bian, Z., Liu, R., Huang, L. & Tang, J. (2022). Eur. J. Med. Chem. 228, 114031. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Shen, S., Xu, N., Klamer, G., Ko, K. H., Khoo, M., Ma, D., Moore, J., O’Brien, T. A. & Dolnikov, A. (2015). Stem Cells Dev. 24, 724–736. [DOI] [PubMed]
  17. Sørensen, M., Neilson, E. H. J. & Møller, B. L. (2018). Mol. Plant. 11, 95–117. [DOI] [PubMed]
  18. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  19. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Yuskaitis, C. J. & Jope, R. S. (2009). Cell. Signal. 21, 264–273. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023004139/hb8064sup1.cif

e-79-00545-sup1.cif (830.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004139/hb8064Isup2.hkl

e-79-00545-Isup2.hkl (307.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004139/hb8064Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989023004139/hb8064Isup4.cml

CCDC reference: 2262070

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES