Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 May 19;79(Pt 6):552–556. doi: 10.1107/S2056989023004164

Syntheses, crystal structures and Hirshfeld surface analysis of 2-(benzyl­sulfan­yl)-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole and 2-[(2-chloro-6-fluoro­benz­yl)sulfan­yl]-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole

Rasul Ya Okmanov a,b,*, Abdukhakim A Ziyaev a, Azimboy Sh Abdukarimov b, Turdibek T Toshmurodov a, Tursunali S Kholikov b
Editor: D Choprac
PMCID: PMC10242748  PMID: 37288462

The title mol­ecules were synthesized by alkyl­ation of 5-[(4-di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole-2-thiol. In the crystals, C–H⋯π inter­actions are observed between neighboring mol­ecules. Hirshfeld surface analysis indicates that H⋯H and H⋯C/C⋯H inter­actions make the most important contributions to the crystal packing.

Keywords: synthesis; 1,3,4-oxa­diazole; crystal structure; Hirshfeld surface analysis

Abstract

The title compounds were synthesized by alkyl­ation of 5-[(4-di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole-2-thiol with benzyl chloride or 2-chloro-6-fluoro­benzyl chloride in the presence of potassium carbonate. The yields of 2-(benzyl­sulfan­yl)-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole, C17H17N3OS (I), and 2-[(2-chloro-6-fluoro­benz­yl)sulfan­yl]-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole, C17H15ClFN3OS (II), were 96 and 92%, respectively. In the crystal structures of (I) and (II), C–H⋯π inter­actions are observed between neighboring mol­ecules. Hirshfeld surface analysis indicates that H⋯H and H⋯C/C⋯H inter­actions make the most important contributions to the crystal packing.

1. Chemical context

For the synthesis of pharmacologically active heterocyclic compounds, a study of the relationship between structure and activity is of great inter­est. The various five-membered aromatic heterocyclic compounds have a diverse range of action. These include oxa­diazo­les, consisting of two carbon atoms, two nitro­gen atoms and one oxygen atom, which have four different isomeric structures: 1,2,3-oxa­diazole, 1,2,4-oxa­diazole, 1,2,5-oxa­diazole, 1,3,4-oxa­diazole.

There is much information in the literature indicating that 1,3,4-oxa­diazole compounds or substituted 1,3,4-oxa­diazo­les have a wide spectrum of biological activity (Şahin et al., 2002; Erensoy et al., 2020; Glomb & Świątek, 2021) with substituted 5-aryl-1,3,4-oxa­diazole-2(3H)thio­nes exhibiting anti-inflammatory, anti-cancer, analgesic and anti­convulsant activity (Chen et al., 2007; Zheng et al., 2010; Mamatha et al., 2019; Pathak et al., 2020). In this article, we report the synthesis and structure of two S-derivatives of 5-aryl-1,3,4-oxa­diazole-2-thiole derivatives. From the reaction of 5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole-2-thiole with benzyl chloride or 2-chloro-6-fluoro­benzyl chloride, the corresponding S-products, 2-(benzyl­sulfan­yl)-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole (I) and 2-[(2-chloro-6-fluoro­benz­yl)sulfan­yl]-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole (II) were obtained in high yield. 1.

2. Structural commentary

Compound (I) crystallizes in space group Ia. The crystal studied was refined as an inversion twin with matrix [ Inline graphic 0 0, 0 Inline graphic 0, 0 0 Inline graphic ] ; the resulting BASF value is 0.43 (2). Compound (II) crystallizes in P211/c.

In compounds (I) and (II), the oxa­diazole rings (centroid Cg1) are almost coplanar with the attached benzene (C1A–C6A, centroid Cg2) rings, forming dihedral angles of 3.36 (18) and 2.93 (14)°, respectively (Figs. 1 and 2). Such an arrangement of the benzene or phenyl fragment is also observed in many similar structures (Singh et al., 2007; Zareef et al., 2008; Zheng et al., 2010; Ji & Xu 2011; Zou et al., 2020). This arrangement indicates conjugation of π-electrons between the benzene and the 1,3,4-oxa­diazole rings.

Figure 1.

Figure 1

The asymmetric unit of (I) with atom labeling. Ellipsoids represent 30% probability levels.

Figure 2.

Figure 2

The asymmetric unit of (II) with atom labeling. Ellipsoids represent 30% probability levels.

The bond angle C2—S1—C7B is 99.79 (16)° in (I) and 100.11 (10)° in (II). The dihedral angle subtended by the benzene (C1B–C6B, centroid Cg3) and 1,3,4-oxa­diazole rings is 74.94 (10)° in (I) and 73.12 (7)°in (II).

3. Supra­molecular features

In crystal structures of the title compounds, weak inter­molecular contacts of the C—X⋯π type are observed. In (I), weak C7A—H7ACCg2 inter­actions link the mol­ecules, forming infinite chains along the b-axis direction (Fig. 3). Between these chains, other inter­actions of the C7B—H7BACg3 type are observed, which consolidate the crystal structure (Table 1). In the crystal structure of (II), the formation of an infinite chain is also observed as a result of the C2B—Cl1⋯Cg1 inter­action, which links mol­ecules along the c-axis direction (Fig. 4). Inter­molecular C8A—H8ABCg3 and C7B—H7BACg3 inter­actions between these chains consolidate the crystal structure (Table 2).

Figure 3.

Figure 3

Observed weak inter­molecular C7A—H7ACCg2 inter­actions in the crystal structure of (I) (the mol­ecules are linked along the b-axis direction).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7A—H7ACCg2i 0.96 2.80 3.626 (4) 145
C7B—H7BACg3ii 0.97 2.93 3.738 (4) 141

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 4.

Figure 4

Observed inter­molecular C2B—Cl1⋯Cg1 inter­actions in the crystal structure of (II) (the mol­ecules are linked along the c-axis direction).

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1 and Cg3 are the centroids of the O1/C2/N3/N4/C5 and C1B–C6B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—Cl1⋯Cg1i 1.74 (1) 3.30 (1) 4.939 (2) 156 (1)
C8A—H8ABCg3ii 0.96 2.94 3.857 (3) 161
C7B—H7BACg3iii 0.97 2.85 3.674 (2) 143

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

In order to visualize and qu­antify the inter­molecular inter­actions in (I) and (II), a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed with Crystal Explorer 21 (Spackman et al., 2021) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) generated. The Hirshfeld surfaces for the mol­ecules in (I) and (II) are shown in Figs. 5 and 6 in which the two-dimensional fingerprint plots of the most dominant contacts are also presented.

Figure 5.

Figure 5

Three-dimensional Hirshfeld surfaces of compound (I) plotted over d norm in the range 0.0145 to 1.3066 a.u. Hirshfeld fingerprint plots for all contacts and decomposed into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯S/S⋯H, C⋯C and H⋯O/O⋯H contacts. d i and d e denote the closest inter­nal and external distances (in Å) from a point on the surface.

Figure 6.

Figure 6

Three-dimensional Hirshfeld surfaces of the compound (II) plotted over d norm in the range −0.0964 to 1.2943 a.u. Hirshfeld fingerprint plots for all contacts and decomposed into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯F/F⋯H, H⋯S/S⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H and C⋯C contacts. d i and d e denote the closest inter­nal and external distances (in Å) from a point on the surface.

For structure (I), H⋯H contacts are responsible for the largest contribution (47.8%) to the Hirshfeld surface. Besides these contacts, H⋯C/C⋯H (20.5%), H⋯N/N⋯H (12.4%), H⋯S/S⋯H (7.2%), C⋯C (4.1%) and H⋯O/O⋯H (3.5%) inter­actions contribute significantly to the total Hirshfeld surface (Fig. 5). The contributions of other contacts are O⋯C/C⋯O (2.0%), O⋯S/S⋯O (1.3%), S⋯C/C⋯S (0.9%), N⋯C/C⋯N (0.4%) and N⋯N (0.1%).

In the structure of (II), the percentage contributions of the most significant contacts differ because of the presence of H⋯F/F⋯H and H⋯Cl/Cl⋯H inter­actions and amount to H⋯H (31.8%), H⋯C/C⋯H (20.0%), H⋯N/N⋯H (9.8%), H⋯F/F⋯H (7.5%), H⋯S/S⋯H (7.1%), H⋯Cl/Cl⋯H (5.7%), H⋯O/O⋯H (5.0%) and C⋯C (3.9%) (Fig. 6). The contributions of other contacts are Cl⋯C/C⋯Cl (2.8%), Cl⋯F/F⋯Cl (1.4%), N⋯S/S⋯N (1.0%), Cl⋯O/O⋯Cl (0.9%), O⋯C/C⋯O (0.4%), N⋯C/C⋯N (0.4%), S⋯Cl/Cl⋯S (0.3%), S⋯C/C⋯S (0.3%) and N⋯O/O⋯N (0.2%).

As seen from Figs. 5 and 6, the most significant contributions to the overall Hirshfeld surface in the crystal structures of (I) and (II) are from H⋯H and H⋯C/C⋯H contacts (together they amount to more than 50% for both cases).

4. Database survey

A search in the Cambridge Structural Database (CSD, version 2022.3.0; Groom et al., 2016) yielded 45 derivatives of 5-phenyl-1,3,4-oxa­diazole-2-thiole, nine of which are 2-(benz­yl­sulfan­yl)-5-phenyl-1,3,4-oxa­diazole derivatives, and no structure was found for a 5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole-2-thiole derivative. When searching for similar structures in the CSD, two matches were found: 2-(4-meth­oxy­phen­yl)-5-({[3-(tri­fluoro­meth­yl)phen­yl] meth­yl}sulfan­yl)-1,3,4-oxa­diazole (SOXGOE; Hamdani et al., 2020) and 2-benzyl­sulfanyl-5-(3,4,5-tri­meth­oxy­phen­yl)-1,3,4-oxa­diazole (GIDKEK; Chen et al., 2007), in which the benzene rings and 1,3,4-oxa­diazole fragments are arranged in a similar manner as the title compounds. However, in the structures of SOXGOE and GIGKEK, inter­molecular inter­actions are not observed, the mol­ecules being stabilized mainly by van der Waals forces.

5. Synthesis and crystallization

A mixture of 5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole-2-thiole (0.005 mol), benzyl chloride or 2-chloro-6-fluoro­benzyl chloride (0.005 mol) and K2CO3 (0.005 mol) was boiled in 20 ml of dry acetone for 6 h. The solvent was then removed, the residue washed with water and with 2% NaOH solution to remove unreacted oxa­diazo­lthione, and then washed with water until neutral. The resulting target products were dried in air and recrystallized from ethanol solution. Compound (I): yield 96%, m.p. 404–405 K. Compound (II): yield 92%, m.p. 406–407 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geom­etrically (with C—H distances of 0.97 Å for CH2, 0.96 Å for CH3 and 0.93 Å for Car) and included in the refinement in a riding-motion approximation with U iso(H) = 1.2U eq(C) [U iso = 1.5U eq(C) for methyl H atoms]. For (I), the crystal studied was refined as an inversion twin with matrix [ Inline graphic 0 0, 0 Inline graphic 0, 0 0 Inline graphic ] ; the resulting BASF value is 0.43 (2).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C17H17N3OS C17H15ClFN3OS
M r 311.39 363.83
Crystal system, space group Monoclinic, I a Monoclinic, P21/c
Temperature (K) 297 296
a, b, c (Å) 16.816 (3), 4.7848 (10), 20.123 (4) 16.308 (3), 7.9787 (16), 13.072 (3)
β (°) 105.96 (3) 103.33 (3)
V3) 1556.7 (6) 1655.1 (6)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 1.88 3.40
Crystal size (mm) 0.35 × 0.20 × 0.15 0.30 × 0.25 × 0.15
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000 XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.749, 1.000 0.704, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6572, 2732, 2583 8579, 3181, 2771
R int 0.026 0.021
(sin θ/λ)max−1) 0.615 0.615
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.089, 1.04 0.039, 0.106, 1.05
No. of reflections 2732 3181
No. of parameters 202 219
No. of restraints 2 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.21 0.18, −0.33
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.43 (2)

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXS97, SHELXTL (Sheldrick, 2015) and XP in SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989023004164/dx2051sup1.cif

e-79-00552-sup1.cif (532.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004164/dx2051Isup2.hkl

e-79-00552-Isup2.hkl (218.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023004164/dx2051IIsup3.hkl

e-79-00552-IIsup3.hkl (254.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004164/dx2051Isup4.cml

Supporting information file. DOI: 10.1107/S2056989023004164/dx2051IIsup5.cml

CCDC references: 2262491, 2262490

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are especially grateful to Professor B. Tashkhodzhaev for help in discussing the results.

supplementary crystallographic information

2-(Benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I). Crystal data

C17H17N3OS F(000) = 656
Mr = 311.39 Dx = 1.329 Mg m3
Monoclinic, Ia Cu Kα radiation, λ = 1.54184 Å
a = 16.816 (3) Å Cell parameters from 4218 reflections
b = 4.7848 (10) Å θ = 3.0–71.2°
c = 20.123 (4) Å µ = 1.88 mm1
β = 105.96 (3)° T = 297 K
V = 1556.7 (6) Å3 Prizmatic, colorless
Z = 4 0.35 × 0.20 × 0.15 mm

2-(Benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I). Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer 2732 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2583 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1 Rint = 0.026
ω scans θmax = 71.5°, θmin = 4.6°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −20→20
Tmin = 0.749, Tmax = 1.000 k = −5→5
6572 measured reflections l = −24→24

2-(Benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0541P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.15 e Å3
2732 reflections Δρmin = −0.21 e Å3
202 parameters Absolute structure: Refined as an inversion twin
2 restraints Absolute structure parameter: 0.43 (2)
Primary atom site location: dual

2-(Benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

2-(Benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.35188 (5) 0.65967 (15) 0.24394 (4) 0.0675 (2)
O1 0.38557 (12) 0.2829 (4) 0.15990 (10) 0.0546 (4)
N3 0.25142 (15) 0.3621 (5) 0.13720 (14) 0.0607 (6)
N4 0.26466 (15) 0.1612 (5) 0.09008 (14) 0.0595 (6)
N1A 0.51675 (14) −0.6015 (5) −0.02778 (13) 0.0614 (6)
C2 0.32356 (17) 0.4249 (6) 0.17577 (14) 0.0561 (6)
C5 0.34386 (17) 0.1194 (6) 0.10548 (14) 0.0518 (6)
C1A 0.38914 (15) −0.0700 (6) 0.07351 (13) 0.0497 (5)
C2A 0.34682 (16) −0.2469 (6) 0.02095 (15) 0.0541 (6)
H2AA 0.289305 −0.245654 0.007619 0.065*
C3A 0.38831 (17) −0.4238 (6) −0.01174 (14) 0.0543 (6)
H3AA 0.358087 −0.539335 −0.046814 0.065*
C4A 0.47522 (16) −0.4349 (6) 0.00637 (14) 0.0514 (6)
C5A 0.51775 (17) −0.2603 (6) 0.06167 (16) 0.0555 (6)
H5AA 0.575192 −0.266824 0.076730 0.067*
C6A 0.47585 (16) −0.0824 (6) 0.09332 (14) 0.0549 (6)
H6AA 0.505497 0.032849 0.128737 0.066*
C7A 0.4722 (2) −0.7707 (7) −0.08530 (18) 0.0681 (8)
H7AA 0.510695 −0.863023 −0.105354 0.102*
H7AB 0.436148 −0.653916 −0.119410 0.102*
H7AC 0.439939 −0.907932 −0.069428 0.102*
C8A 0.60506 (19) −0.6514 (7) 0.0000 (2) 0.0718 (9)
H8AA 0.622912 −0.784539 −0.028621 0.108*
H8AB 0.615965 −0.723417 0.046118 0.108*
H8AC 0.634547 −0.479131 0.000665 0.108*
C1B 0.20329 (17) 0.5859 (6) 0.27839 (14) 0.0536 (6)
C2B 0.23312 (18) 0.5105 (7) 0.34681 (15) 0.0605 (7)
H2BA 0.283977 0.579459 0.372557 0.073*
C3B 0.1890 (2) 0.3346 (7) 0.37792 (18) 0.0723 (9)
H3BA 0.209881 0.285927 0.424205 0.087*
C4B 0.1137 (3) 0.2317 (9) 0.3397 (2) 0.0826 (10)
H4BA 0.083364 0.114435 0.360365 0.099*
C5B 0.0837 (2) 0.3010 (10) 0.2720 (2) 0.0863 (11)
H5BA 0.033294 0.228498 0.246285 0.104*
C6B 0.1276 (2) 0.4787 (8) 0.24093 (17) 0.0710 (8)
H6BA 0.106285 0.526586 0.194651 0.085*
C7B 0.2500 (2) 0.7858 (6) 0.24513 (19) 0.0687 (8)
H7BA 0.256392 0.962089 0.269826 0.082*
H7BB 0.217555 0.820846 0.197995 0.082*

2-(Benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0666 (4) 0.0746 (4) 0.0645 (4) −0.0124 (4) 0.0234 (3) −0.0030 (4)
O1 0.0501 (10) 0.0581 (9) 0.0555 (10) −0.0021 (8) 0.0144 (8) 0.0069 (8)
N3 0.0516 (12) 0.0674 (14) 0.0641 (14) 0.0038 (10) 0.0177 (11) 0.0037 (11)
N4 0.0465 (12) 0.0681 (14) 0.0619 (14) 0.0035 (10) 0.0116 (10) 0.0036 (11)
N1A 0.0471 (12) 0.0666 (14) 0.0680 (15) −0.0002 (10) 0.0114 (11) −0.0029 (11)
C2 0.0564 (16) 0.0568 (14) 0.0578 (15) −0.0004 (11) 0.0201 (13) 0.0116 (12)
C5 0.0471 (13) 0.0552 (13) 0.0515 (14) −0.0025 (11) 0.0108 (11) 0.0121 (11)
C1A 0.0448 (12) 0.0528 (12) 0.0506 (13) 0.0000 (10) 0.0115 (11) 0.0127 (10)
C2A 0.0398 (13) 0.0597 (14) 0.0601 (15) −0.0042 (10) 0.0092 (11) 0.0115 (12)
C3A 0.0451 (13) 0.0565 (14) 0.0571 (15) −0.0047 (11) 0.0069 (11) 0.0061 (12)
C4A 0.0438 (12) 0.0521 (13) 0.0556 (15) −0.0040 (10) 0.0091 (11) 0.0119 (11)
C5A 0.0400 (12) 0.0612 (14) 0.0600 (15) −0.0034 (11) 0.0048 (12) 0.0073 (12)
C6A 0.0469 (13) 0.0576 (14) 0.0552 (14) −0.0041 (11) 0.0058 (11) 0.0041 (12)
C7A 0.0636 (18) 0.0708 (18) 0.0676 (19) −0.0046 (15) 0.0145 (15) −0.0064 (15)
C8A 0.0473 (15) 0.084 (2) 0.084 (2) 0.0032 (15) 0.0178 (15) −0.0042 (17)
C1B 0.0555 (14) 0.0531 (13) 0.0541 (14) 0.0088 (11) 0.0184 (12) −0.0046 (11)
C2B 0.0550 (15) 0.0725 (17) 0.0527 (15) −0.0006 (13) 0.0126 (12) −0.0028 (12)
C3B 0.071 (2) 0.089 (2) 0.0609 (18) 0.0056 (16) 0.0252 (16) 0.0073 (15)
C4B 0.074 (2) 0.101 (3) 0.084 (2) −0.0115 (19) 0.042 (2) −0.006 (2)
C5B 0.0556 (18) 0.119 (3) 0.087 (2) −0.0168 (18) 0.0245 (17) −0.027 (2)
C6B 0.0580 (16) 0.097 (2) 0.0563 (17) 0.0077 (16) 0.0121 (14) −0.0097 (16)
C7B 0.083 (2) 0.0529 (15) 0.0729 (19) 0.0070 (14) 0.0255 (16) 0.0060 (13)

2-(Benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I). Geometric parameters (Å, º)

S1—C2 1.735 (3) C7A—H7AA 0.9600
S1—C7B 1.823 (4) C7A—H7AB 0.9600
O1—C2 1.354 (3) C7A—H7AC 0.9600
O1—C5 1.371 (3) C8A—H8AA 0.9600
N3—C2 1.283 (4) C8A—H8AB 0.9600
N3—N4 1.410 (4) C8A—H8AC 0.9600
N4—C5 1.297 (4) C1B—C2B 1.378 (4)
N1A—C4A 1.364 (4) C1B—C6B 1.387 (5)
N1A—C7A 1.442 (4) C1B—C7B 1.506 (5)
N1A—C8A 1.455 (4) C2B—C3B 1.381 (5)
C5—C1A 1.444 (4) C2B—H2BA 0.9300
C1A—C2A 1.388 (4) C3B—C4B 1.379 (6)
C1A—C6A 1.403 (4) C3B—H3BA 0.9300
C2A—C3A 1.374 (4) C4B—C5B 1.358 (7)
C2A—H2AA 0.9300 C4B—H4BA 0.9300
C3A—C4A 1.407 (4) C5B—C6B 1.383 (6)
C3A—H3AA 0.9300 C5B—H5BA 0.9300
C4A—C5A 1.418 (4) C6B—H6BA 0.9300
C5A—C6A 1.369 (4) C7B—H7BA 0.9700
C5A—H5AA 0.9300 C7B—H7BB 0.9700
C6A—H6AA 0.9300
C2—S1—C7B 99.79 (16) N1A—C7A—H7AC 109.5
C2—O1—C5 102.5 (2) H7AA—C7A—H7AC 109.5
C2—N3—N4 105.6 (2) H7AB—C7A—H7AC 109.5
C5—N4—N3 106.6 (2) N1A—C8A—H8AA 109.5
C4A—N1A—C7A 120.5 (2) N1A—C8A—H8AB 109.5
C4A—N1A—C8A 120.8 (3) H8AA—C8A—H8AB 109.5
C7A—N1A—C8A 117.8 (3) N1A—C8A—H8AC 109.5
N3—C2—O1 113.6 (3) H8AA—C8A—H8AC 109.5
N3—C2—S1 129.6 (2) H8AB—C8A—H8AC 109.5
O1—C2—S1 116.7 (2) C2B—C1B—C6B 118.3 (3)
N4—C5—O1 111.6 (3) C2B—C1B—C7B 121.3 (3)
N4—C5—C1A 128.5 (3) C6B—C1B—C7B 120.4 (3)
O1—C5—C1A 119.8 (2) C1B—C2B—C3B 121.3 (3)
C2A—C1A—C6A 117.7 (3) C1B—C2B—H2BA 119.3
C2A—C1A—C5 120.0 (2) C3B—C2B—H2BA 119.3
C6A—C1A—C5 122.3 (2) C4B—C3B—C2B 119.3 (3)
C3A—C2A—C1A 121.3 (3) C4B—C3B—H3BA 120.3
C3A—C2A—H2AA 119.4 C2B—C3B—H3BA 120.3
C1A—C2A—H2AA 119.4 C5B—C4B—C3B 120.2 (4)
C2A—C3A—C4A 121.8 (3) C5B—C4B—H4BA 119.9
C2A—C3A—H3AA 119.1 C3B—C4B—H4BA 119.9
C4A—C3A—H3AA 119.1 C4B—C5B—C6B 120.4 (4)
N1A—C4A—C3A 122.1 (3) C4B—C5B—H5BA 119.8
N1A—C4A—C5A 121.5 (2) C6B—C5B—H5BA 119.8
C3A—C4A—C5A 116.4 (3) C5B—C6B—C1B 120.4 (3)
C6A—C5A—C4A 121.2 (3) C5B—C6B—H6BA 119.8
C6A—C5A—H5AA 119.4 C1B—C6B—H6BA 119.8
C4A—C5A—H5AA 119.4 C1B—C7B—S1 113.7 (2)
C5A—C6A—C1A 121.4 (3) C1B—C7B—H7BA 108.8
C5A—C6A—H6AA 119.3 S1—C7B—H7BA 108.8
C1A—C6A—H6AA 119.3 C1B—C7B—H7BB 108.8
N1A—C7A—H7AA 109.5 S1—C7B—H7BB 108.8
N1A—C7A—H7AB 109.5 H7BA—C7B—H7BB 107.7
H7AA—C7A—H7AB 109.5
C2—N3—N4—C5 0.8 (3) C7A—N1A—C4A—C5A −178.0 (3)
N4—N3—C2—O1 −0.6 (3) C8A—N1A—C4A—C5A 13.0 (4)
N4—N3—C2—S1 179.7 (2) C2A—C3A—C4A—N1A −177.2 (3)
C5—O1—C2—N3 0.2 (3) C2A—C3A—C4A—C5A 2.0 (4)
C5—O1—C2—S1 179.95 (18) N1A—C4A—C5A—C6A 176.4 (3)
C7B—S1—C2—N3 0.7 (3) C3A—C4A—C5A—C6A −2.8 (4)
C7B—S1—C2—O1 −179.1 (2) C4A—C5A—C6A—C1A 1.5 (4)
N3—N4—C5—O1 −0.8 (3) C2A—C1A—C6A—C5A 0.6 (4)
N3—N4—C5—C1A 178.9 (2) C5—C1A—C6A—C5A −179.0 (3)
C2—O1—C5—N4 0.4 (3) C6B—C1B—C2B—C3B −0.5 (4)
C2—O1—C5—C1A −179.3 (2) C7B—C1B—C2B—C3B 177.8 (3)
N4—C5—C1A—C2A −3.2 (4) C1B—C2B—C3B—C4B 0.2 (5)
O1—C5—C1A—C2A 176.4 (2) C2B—C3B—C4B—C5B 0.6 (6)
N4—C5—C1A—C6A 176.4 (3) C3B—C4B—C5B—C6B −1.0 (6)
O1—C5—C1A—C6A −4.0 (4) C4B—C5B—C6B—C1B 0.7 (6)
C6A—C1A—C2A—C3A −1.5 (4) C2B—C1B—C6B—C5B 0.1 (5)
C5—C1A—C2A—C3A 178.2 (2) C7B—C1B—C6B—C5B −178.3 (3)
C1A—C2A—C3A—C4A 0.1 (4) C2B—C1B—C7B—S1 61.9 (3)
C7A—N1A—C4A—C3A 1.1 (4) C6B—C1B—C7B—S1 −119.8 (3)
C8A—N1A—C4A—C3A −167.9 (3) C2—S1—C7B—C1B 77.7 (3)

2-(Benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I). Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

D—H···A D—H H···A D···A D—H···A
C7A—H7AC···Cg2i 0.96 2.80 3.626 (4) 145
C7B—H7BA···Cg3ii 0.97 2.93 3.738 (4) 141

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

2-[(2-Chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II). Crystal data

C17H15ClFN3OS F(000) = 752
Mr = 363.83 Dx = 1.460 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 16.308 (3) Å Cell parameters from 4884 reflections
b = 7.9787 (16) Å θ = 2.8–70.7°
c = 13.072 (3) Å µ = 3.40 mm1
β = 103.33 (3)° T = 296 K
V = 1655.1 (6) Å3 Prizmatic, colorless
Z = 4 0.30 × 0.25 × 0.15 mm

2-[(2-Chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II). Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer 3181 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2771 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1 Rint = 0.021
ω scans θmax = 71.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −19→19
Tmin = 0.704, Tmax = 1.000 k = −9→9
8579 measured reflections l = −14→15

2-[(2-Chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.3561P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3181 reflections Δρmax = 0.18 e Å3
219 parameters Δρmin = −0.33 e Å3
0 restraints

2-[(2-Chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-[(2-Chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.70024 (3) 0.25638 (6) 0.67262 (4) 0.05766 (17)
F1 0.53784 (8) 0.62390 (19) 0.74016 (9) 0.0710 (4)
Cl1 0.65329 (4) 0.42921 (8) 0.43372 (4) 0.07189 (19)
N3 0.70438 (10) 0.4438 (2) 0.85013 (13) 0.0575 (4)
N4 0.76430 (11) 0.4635 (2) 0.94693 (13) 0.0591 (4)
N4A 1.13318 (11) 0.2937 (3) 1.24513 (14) 0.0645 (5)
O1 0.81509 (8) 0.28552 (16) 0.84836 (9) 0.0484 (3)
C2 0.73729 (11) 0.3394 (2) 0.79712 (14) 0.0469 (4)
C5 0.82736 (11) 0.3695 (2) 0.94229 (13) 0.0459 (4)
C1A 0.90528 (11) 0.3437 (2) 1.02033 (13) 0.0458 (4)
C2A 0.91795 (13) 0.4247 (3) 1.11650 (15) 0.0569 (5)
H2AA 0.875254 0.491431 1.130992 0.068*
C3A 0.99218 (13) 0.4085 (3) 1.19079 (15) 0.0583 (5)
H3AA 0.998800 0.464500 1.254560 0.070*
C4A 1.05833 (11) 0.3090 (2) 1.17239 (14) 0.0490 (4)
C5A 1.04385 (13) 0.2249 (3) 1.07595 (16) 0.0583 (5)
H5AA 1.085423 0.154883 1.061691 0.070*
C6A 0.96948 (13) 0.2437 (3) 1.00180 (15) 0.0560 (5)
H6AA 0.962246 0.187883 0.937881 0.067*
C7A 1.14655 (15) 0.3781 (4) 1.34498 (18) 0.0783 (7)
H7AA 1.103965 0.344344 1.380639 0.118*
H7AB 1.143475 0.497119 1.333810 0.118*
H7AC 1.201117 0.349276 1.387036 0.118*
C8A 1.20022 (14) 0.1914 (3) 1.2238 (2) 0.0734 (6)
H8AA 1.180549 0.078396 1.209806 0.110*
H8AB 1.247110 0.192586 1.283686 0.110*
H8AC 1.217624 0.234985 1.163709 0.110*
C1B 0.59678 (10) 0.5336 (2) 0.60183 (12) 0.0413 (4)
C2B 0.62301 (10) 0.5823 (2) 0.51172 (13) 0.0447 (4)
C3B 0.62432 (12) 0.7473 (3) 0.48082 (16) 0.0555 (5)
H3BA 0.643266 0.775274 0.421154 0.067*
C4B 0.59745 (14) 0.8693 (3) 0.53885 (19) 0.0641 (6)
H4BA 0.598734 0.980957 0.518853 0.077*
C5B 0.56857 (13) 0.8285 (3) 0.62650 (18) 0.0618 (5)
H5BA 0.549420 0.911110 0.665483 0.074*
C6B 0.56865 (11) 0.6628 (3) 0.65515 (14) 0.0487 (4)
C7B 0.59662 (12) 0.3548 (2) 0.63726 (16) 0.0537 (5)
H7BA 0.561130 0.289986 0.581406 0.064*
H7BB 0.571488 0.350251 0.697611 0.064*

2-[(2-Chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0609 (3) 0.0489 (3) 0.0553 (3) 0.0077 (2) −0.0030 (2) −0.0039 (2)
F1 0.0611 (7) 0.1044 (10) 0.0511 (6) 0.0122 (7) 0.0199 (5) −0.0031 (6)
Cl1 0.0721 (4) 0.0899 (4) 0.0532 (3) 0.0172 (3) 0.0134 (2) −0.0173 (3)
N3 0.0510 (9) 0.0600 (10) 0.0562 (9) 0.0113 (8) 0.0010 (7) 0.0001 (8)
N4 0.0550 (9) 0.0651 (10) 0.0532 (9) 0.0145 (8) 0.0046 (7) −0.0054 (8)
N4A 0.0483 (9) 0.0850 (12) 0.0551 (9) 0.0034 (9) 0.0013 (7) 0.0009 (9)
O1 0.0478 (7) 0.0486 (7) 0.0460 (6) 0.0071 (5) 0.0050 (5) −0.0008 (5)
C2 0.0466 (9) 0.0408 (9) 0.0500 (9) 0.0025 (8) 0.0043 (8) 0.0053 (7)
C5 0.0481 (10) 0.0438 (9) 0.0455 (9) 0.0032 (8) 0.0102 (7) 0.0005 (7)
C1A 0.0454 (9) 0.0463 (9) 0.0447 (9) 0.0038 (8) 0.0088 (7) 0.0015 (7)
C2A 0.0552 (11) 0.0628 (12) 0.0518 (10) 0.0154 (9) 0.0107 (9) −0.0077 (9)
C3A 0.0636 (12) 0.0639 (12) 0.0449 (10) 0.0076 (10) 0.0072 (9) −0.0093 (9)
C4A 0.0459 (10) 0.0549 (10) 0.0454 (9) −0.0020 (8) 0.0093 (7) 0.0066 (8)
C5A 0.0504 (11) 0.0717 (13) 0.0524 (10) 0.0171 (10) 0.0110 (9) −0.0048 (9)
C6A 0.0560 (11) 0.0650 (12) 0.0455 (10) 0.0124 (9) 0.0087 (9) −0.0080 (9)
C7A 0.0620 (13) 0.109 (2) 0.0565 (12) −0.0168 (14) −0.0021 (10) −0.0042 (13)
C8A 0.0484 (11) 0.0855 (16) 0.0824 (15) 0.0075 (11) 0.0071 (10) 0.0184 (13)
C1B 0.0319 (8) 0.0469 (9) 0.0415 (8) −0.0017 (7) 0.0008 (6) −0.0021 (7)
C2B 0.0340 (8) 0.0545 (10) 0.0423 (8) 0.0003 (7) 0.0018 (7) −0.0044 (7)
C3B 0.0431 (10) 0.0641 (12) 0.0553 (11) −0.0049 (9) 0.0031 (8) 0.0125 (9)
C4B 0.0555 (12) 0.0470 (11) 0.0818 (15) −0.0011 (9) −0.0005 (10) 0.0053 (10)
C5B 0.0522 (11) 0.0545 (11) 0.0731 (13) 0.0080 (9) 0.0032 (10) −0.0161 (10)
C6B 0.0367 (8) 0.0633 (11) 0.0437 (9) 0.0029 (8) 0.0048 (7) −0.0064 (8)
C7B 0.0448 (10) 0.0522 (10) 0.0589 (11) −0.0064 (8) 0.0014 (8) 0.0019 (8)

2-[(2-Chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II). Geometric parameters (Å, º)

S1—C2 1.7317 (19) C5A—H5AA 0.9300
S1—C7B 1.824 (2) C6A—H6AA 0.9300
F1—C6B 1.357 (2) C7A—H7AA 0.9600
Cl1—C2B 1.7346 (18) C7A—H7AB 0.9600
N3—C2 1.278 (2) C7A—H7AC 0.9600
N3—N4 1.418 (2) C8A—H8AA 0.9600
N4—C5 1.286 (2) C8A—H8AB 0.9600
N4A—C4A 1.369 (2) C8A—H8AC 0.9600
N4A—C7A 1.440 (3) C1B—C6B 1.381 (2)
N4A—C8A 1.442 (3) C1B—C2B 1.398 (2)
O1—C2 1.361 (2) C1B—C7B 1.500 (2)
O1—C5 1.372 (2) C2B—C3B 1.378 (3)
C5—C1A 1.449 (2) C3B—C4B 1.367 (3)
C1A—C6A 1.382 (3) C3B—H3BA 0.9300
C1A—C2A 1.386 (3) C4B—C5B 1.375 (3)
C2A—C3A 1.372 (3) C4B—H4BA 0.9300
C2A—H2AA 0.9300 C5B—C6B 1.374 (3)
C3A—C4A 1.404 (3) C5B—H5BA 0.9300
C3A—H3AA 0.9300 C7B—H7BA 0.9700
C4A—C5A 1.399 (3) C7B—H7BB 0.9700
C5A—C6A 1.375 (3)
C2—S1—C7B 100.11 (10) N4A—C7A—H7AC 109.5
C2—N3—N4 105.48 (15) H7AA—C7A—H7AC 109.5
C5—N4—N3 106.70 (15) H7AB—C7A—H7AC 109.5
C4A—N4A—C7A 120.80 (19) N4A—C8A—H8AA 109.5
C4A—N4A—C8A 120.70 (19) N4A—C8A—H8AB 109.5
C7A—N4A—C8A 118.50 (19) H8AA—C8A—H8AB 109.5
C2—O1—C5 102.31 (14) N4A—C8A—H8AC 109.5
N3—C2—O1 113.54 (16) H8AA—C8A—H8AC 109.5
N3—C2—S1 131.27 (14) H8AB—C8A—H8AC 109.5
O1—C2—S1 115.19 (13) C6B—C1B—C2B 114.82 (16)
N4—C5—O1 111.96 (16) C6B—C1B—C7B 121.99 (17)
N4—C5—C1A 129.11 (17) C2B—C1B—C7B 123.18 (16)
O1—C5—C1A 118.93 (15) C3B—C2B—C1B 122.74 (17)
C6A—C1A—C2A 117.89 (17) C3B—C2B—Cl1 118.33 (15)
C6A—C1A—C5 122.38 (16) C1B—C2B—Cl1 118.91 (14)
C2A—C1A—C5 119.70 (17) C4B—C3B—C2B 119.26 (19)
C3A—C2A—C1A 121.37 (18) C4B—C3B—H3BA 120.4
C3A—C2A—H2AA 119.3 C2B—C3B—H3BA 120.4
C1A—C2A—H2AA 119.3 C3B—C4B—C5B 120.6 (2)
C2A—C3A—C4A 121.29 (18) C3B—C4B—H4BA 119.7
C2A—C3A—H3AA 119.4 C5B—C4B—H4BA 119.7
C4A—C3A—H3AA 119.4 C6B—C5B—C4B 118.43 (19)
N4A—C4A—C5A 121.42 (18) C6B—C5B—H5BA 120.8
N4A—C4A—C3A 121.92 (18) C4B—C5B—H5BA 120.8
C5A—C4A—C3A 116.66 (17) F1—C6B—C5B 117.80 (18)
C6A—C5A—C4A 121.41 (18) F1—C6B—C1B 118.12 (18)
C6A—C5A—H5AA 119.3 C5B—C6B—C1B 124.07 (18)
C4A—C5A—H5AA 119.3 C1B—C7B—S1 114.87 (13)
C5A—C6A—C1A 121.35 (18) C1B—C7B—H7BA 108.6
C5A—C6A—H6AA 119.3 S1—C7B—H7BA 108.6
C1A—C6A—H6AA 119.3 C1B—C7B—H7BB 108.6
N4A—C7A—H7AA 109.5 S1—C7B—H7BB 108.6
N4A—C7A—H7AB 109.5 H7BA—C7B—H7BB 107.5
H7AA—C7A—H7AB 109.5
C2—N3—N4—C5 0.2 (2) C2A—C3A—C4A—C5A −1.4 (3)
N4—N3—C2—O1 −0.4 (2) N4A—C4A—C5A—C6A −178.3 (2)
N4—N3—C2—S1 179.84 (15) C3A—C4A—C5A—C6A 2.1 (3)
C5—O1—C2—N3 0.4 (2) C4A—C5A—C6A—C1A −1.3 (3)
C5—O1—C2—S1 −179.82 (12) C2A—C1A—C6A—C5A −0.2 (3)
C7B—S1—C2—N3 −1.9 (2) C5—C1A—C6A—C5A 178.09 (19)
C7B—S1—C2—O1 178.28 (13) C6B—C1B—C2B—C3B 2.8 (2)
N3—N4—C5—O1 0.0 (2) C7B—C1B—C2B—C3B −178.83 (17)
N3—N4—C5—C1A 179.96 (18) C6B—C1B—C2B—Cl1 −175.93 (12)
C2—O1—C5—N4 −0.2 (2) C7B—C1B—C2B—Cl1 2.5 (2)
C2—O1—C5—C1A 179.82 (16) C1B—C2B—C3B—C4B −1.3 (3)
N4—C5—C1A—C6A −176.9 (2) Cl1—C2B—C3B—C4B 177.37 (15)
O1—C5—C1A—C6A 3.1 (3) C2B—C3B—C4B—C5B −0.7 (3)
N4—C5—C1A—C2A 1.4 (3) C3B—C4B—C5B—C6B 1.0 (3)
O1—C5—C1A—C2A −178.60 (17) C4B—C5B—C6B—F1 −178.26 (17)
C6A—C1A—C2A—C3A 0.9 (3) C4B—C5B—C6B—C1B 0.6 (3)
C5—C1A—C2A—C3A −177.46 (19) C2B—C1B—C6B—F1 176.46 (14)
C1A—C2A—C3A—C4A −0.1 (3) C7B—C1B—C6B—F1 −2.0 (2)
C7A—N4A—C4A—C5A −178.7 (2) C2B—C1B—C6B—C5B −2.4 (2)
C8A—N4A—C4A—C5A 0.8 (3) C7B—C1B—C6B—C5B 179.15 (17)
C7A—N4A—C4A—C3A 0.9 (3) C6B—C1B—C7B—S1 −118.50 (17)
C8A—N4A—C4A—C3A −179.6 (2) C2B—C1B—C7B—S1 63.2 (2)
C2A—C3A—C4A—N4A 179.0 (2) C2—S1—C7B—C1B 78.87 (15)

2-[(2-Chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II). Hydrogen-bond geometry (Å, º)

Cg1 and Cg3 are the centroids of the O1/C2/N3/N4/C5 and C1B–C6B rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2B—Cl1···Cg1i 1.74 (1) 3.30 (1) 4.939 (2) 156 (1)
C8A—H8AB···Cg3ii 0.96 2.94 3.857 (3) 161
C7B—H7BA···Cg3iii 0.97 2.85 3.674 (2) 143

Symmetry codes: (i) x, −y−1/2, z−3/2; (ii) −x+2, −y+1, −z+2; (iii) −x+1, −y+1, −z+1.

References

  1. Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981–3989. [DOI] [PubMed]
  2. Erensoy, G., Ding, K., Zhan, C. G., Elmezayen, A., Yelekçi, K., Duracik, M., Özakpinar, Ö. B. & Küçükgüzel, İ. (2020). J. Res. Pharm. 24, 436–451.
  3. Glomb, T. & Świątek, P. (2021). Int. J. Mol. Sci. 22, 6979–6979.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Hamdani, S. S., Khan, B. A., Ahmed, M. N., Hameed, S., Akhter, K., Ayub, K. & Mahmood, T. (2020). J. Mol. Struct. 1200, 127085–127085.
  6. Ji, H. & Xu, X.-D. (2011). Acta Cryst. E67, o3490. [DOI] [PMC free article] [PubMed]
  7. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  8. Mamatha, S. V., Bhat, M., Sagar, B. K. & Meenakshi, S. K. (2019). J. Mol. Struct. 1196, 186–193.
  9. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  10. Pathak, S., Sharma, S., Pathak, V. & Prasad, M. (2020). J. Appl. Pharm. Res. 8, 50–61.
  11. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  12. Şahin, G., Palaska, E., Ekizoğlu, M. & Özalp, M. (2002). Farmaco, 57, 539–542. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Singh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782–o784.
  16. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  17. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  18. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. Zareef, M., Iqbal, R., Arfan, M. & Parvez, M. (2008). Acta Cryst. E64, o736. [DOI] [PMC free article] [PubMed]
  21. Zheng, Q. Z., Zhang, X. M., Xu, Y., Cheng, K., Jiao, Q. C. & Zhu, H. L. (2010). Bioorg. Med. Chem. 18, 7836–7841. [DOI] [PubMed]
  22. Zou, J., Zhao, C. L., Zhang, Q. L., Pan, L. T. & He, K. (2020). Z. Kristallogr. New Cryst. Struct. 235, 745–746.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989023004164/dx2051sup1.cif

e-79-00552-sup1.cif (532.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004164/dx2051Isup2.hkl

e-79-00552-Isup2.hkl (218.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023004164/dx2051IIsup3.hkl

e-79-00552-IIsup3.hkl (254.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004164/dx2051Isup4.cml

Supporting information file. DOI: 10.1107/S2056989023004164/dx2051IIsup5.cml

CCDC references: 2262491, 2262490

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES