Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 May 18:2023.05.16.540962. [Version 2] doi: 10.1101/2023.05.16.540962

Distinct Local and Global Functions of Aβ Low-Threshold Mechanoreceptors in Mechanical Pain Transmission

Mayank Gautam, Akihiro Yamada, Ayaka I Yamada, Qinxue Wu, Kim Kridsada, Jennifer Ling, Huasheng Yu, Peter Dong, Minghong Ma, Jianguo Gu, Wenqin Luo
PMCID: PMC10245756  PMID: 37293085

Summary

The roles of Aβ low-threshold mechanoreceptors (LTMRs) in transmitting mechanical hyperalgesia and in alleviating chronic pain have been of great interest but remain contentious. Here we utilized intersectional genetic tools, optogenetics, and high-speed imaging to specifically examine functions of Split Cre labeled Aβ-LTMRs in this regard. Genetic ablation of Split Cre -Aβ-LTMRs increased mechanical pain but not thermosensation in both acute and chronic inflammatory pain conditions, indicating their modality-specific role in gating mechanical pain transmission. Local optogenetic activation of Split Cre -Aβ-LTMRs triggered nociception after tissue inflammation, whereas their broad activation at the dorsal column still alleviated mechanical hypersensitivity of chronic inflammation. Taking all data into consideration, we propose a new model, in which Aβ-LTMRs play distinctive local and global roles in transmitting and alleviating mechanical hyperalgesia of chronic pain, respectively. Our model suggests a new strategy of global activation plus local inhibition of Aβ-LTMRs for treating mechanical hyperalgesia.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES