Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 May 18:2023.05.18.541302. [Version 1] doi: 10.1101/2023.05.18.541302

Myeloid Cell Derived IL1β Contributes to Pulmonary Vascular Remodeling in Heart Failure with Preserved Ejection Fraction

Vineet Agrawal, Jonathan A Kropski, Jason J Gokey, Elizabeth Kobeck, Matthew Murphy, Katherine T Murray, Niki L Fortune, Christy S Moore, David F Meoli, Ken Monahan, Yan Ru Su, Thomas Blackwell, Deepak K Gupta, Megha H Talati, Santhi Gladson, Erica J Carrier, James D West, Anna R Hemnes
PMCID: PMC10245772  PMID: 37292652

ABSTRACT

Background

Pulmonary hypertension (PH) in heart failure with preserved ejection fraction (HFpEF) is a common and highly morbid syndrome, but mechanisms driving PH-HFpEF are not well understood. We sought to determine whether a well-accepted murine model of HFpEF also displays features of PH in HFpEF, and we sought to identify pathways that might drive early remodeling of the pulmonary vasculature in HFpEF.

Methods

Eight week old male and female C57/BL6J mice were given either L-NAME and high fat diet (HFD) or control water/diet for 2,5, and 12 weeks. Bulk RNA sequencing and single cell RNA sequencing was performed to identify early and cell-specific pathways that might regulate pulmonary vascular remodeling in PH-HFpEF. Finally, clodronate liposome and IL1β antibody treatments were utilized to deplete macrophages or IL1β, respectively, to assess their impact on pulmonary vascular remodeling in HFpEF.

Results

Mice given L-NAME/HFD developed PH, small vessel muscularization, and right heart dysfunction after 2 weeks of treatment. Inflammation-related gene ontologies were over-represented in bulk RNA sequencing analysis of whole lungs, with an increase in CD68+ cells in both murine and human PH-HFpEF lungs. Cytokine profiling of mouse lung and plasma showed an increase in IL1β, which was confirmed in plasma from patients with HFpEF. Single cell sequencing of mouse lungs also showed an increase in M1-like, pro-inflammatory populations of Ccr2+ monocytes and macrophages, and transcript expression of IL1β was primarily restricted to myeloid-type cells. Finally, clodronate liposome treatment prevented the development of PH in L-NAME/HFD treated mice, and IL1β antibody treatment also attenuated PH in L-NAME/HFD treated mice.

Conclusions

Our study demonstrated that a well-accepted model of HFpEF recapitulates features of pulmonary vascular remodeling commonly seen in patients with HFpEF, and we identified myeloid cell derived IL1β as an important contributor to PH in HFpEF.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES