Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 May 24:2023.05.22.541829. [Version 1] doi: 10.1101/2023.05.22.541829

Mesenchymal stem cells ameliorate inflammation in an experimental model of Crohn’s disease via the mesentery

Maneesh Dave, Atul Dev, Rodrigo A Somoza, Nan Zhao, Satish Viswanath, Pooja Rani Mina, Prathyush Chirra, Verena Carola Obmann, Ganapati H Mahabeleshwar, Paola Menghini, Blythe Durbin Johnson, Jan Nolta, Christopher Soto, Abdullah Osme, Lam T Khuat, William Murphy, Arnold I Caplan, Fabio Cominelli
PMCID: PMC10245893  PMID: 37292753

ABSTRACT

Objective

Mesenchymal stem cells (MSCs) are novel therapeutics for treatment of Crohn’s disease. However, their mechanism of action is unclear, especially in disease-relevant chronic models of inflammation. Thus, we used SAMP-1/YitFc, a chronic and spontaneous murine model of small intestinal inflammation, to study the therapeutic effect and mechanism of human bone marrow-derived MSCs (hMSC).

Design

hMSC immunosuppressive potential was evaluated through in vitro mixed lymphocyte reaction, ELISA, macrophage co-culture, and RT-qPCR. Therapeutic efficacy and mechanism in SAMP were studied by stereomicroscopy, histopathology, MRI radiomics, flow cytometry, RT-qPCR, small animal imaging, and single-cell RNA sequencing (Sc-RNAseq).

Results

hMSC dose-dependently inhibited naïve T lymphocyte proliferation in MLR via PGE 2 secretion and reprogrammed macrophages to an anti-inflammatory phenotype. hMSC promoted mucosal healing and immunologic response early after administration in SAMP model of chronic small intestinal inflammation when live hMSCs are present (until day 9) and resulted in complete response characterized by mucosal, histological, immunologic, and radiological healing by day 28 when no live hMSCs are present. hMSC mediate their effect via modulation of T cells and macrophages in the mesentery and mesenteric lymph nodes (mLN). Sc-RNAseq confirmed the anti-inflammatory phenotype of macrophages and identified macrophage efferocytosis of apoptotic hMSCs as a mechanism of action that explains their long-term efficacy.

Conclusion

hMSCs result in healing and tissue regeneration in a chronic model of small intestinal inflammation. Despite being short-lived, exert long-term effects via macrophage reprogramming to an anti-inflammatory phenotype.

Data Transparency Statement

Single-cell RNA transcriptome datasets are deposited in an online open access repository ‘Figshare’ (DOI: https://doi.org/10.6084/m9.figshare.21453936.v1 )

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES