Abstract
OBJECTIVE--It has been hypothesised that compromised endothelial function can contribute to the toxic manifestations associated with cyclosporin therapy. In vitro animal studies have implicated inhibition of release of the endothelium derived relaxing factor, nitric oxide; however, this has not been investigated in human tissue. The present study investigated the effect of cyclosporin A on nitric oxide release in human coronary arteries. DESIGN--Study of in vitro organ bath preparations and in vivo angiographic measurements in the coronary circulation. PATIENTS--For the in vitro experiments coronary arteries were harvested from the excised hearts of 10 patients requiring transplantation for reasons other than ischaemic heart disease. Three of these patients were being re-transplanted for obliterative bronchiolitis and had been receiving cyclosporin for a mean of 22 months. The in vivo study was performed on a group of 12 cardiac transplant recipients who were clinically well 1-5 years postoperatively and were not undergoing allograft rejection at the time of assessment. RESULTS--Isolated vessel segments in vitro relaxed in a dose dependent manner in response to substance P (10(-11)-10(-7) mol/l). The maximum response was 76.6 (7.4)% of the response to 1 microgram/ml glyceryl trinitrate. Incubation with 1000 and 2000 ng/ml cyclosporin reduced the response to 63.0 (11.5)% and 62.2 (11.1)% respectively; this was not statistically significant. In segments taken from the explanted hearts of three patients requiring re-transplantation, the mean maximum response was 78.0 (11.0)% and there was no correlation between maximum response in segments from each patient and the duration of cyclosporin therapy. The effect of intracoronary substance P in 12 cardiac transplant recipients was also examined (mean cyclosporin blood concentration 228.9 (42.8) ng/ml). The mean maximum dilatations measured as the percentage diameter change induced by substance P and isosorbide dinitrate were 22.1 (3.2)% and 26.0 (2.5)% respectively. There was no correlation between the degree of endothelium mediated vasodilatation in response to substance P and cyclosporin concentration. CONCLUSIONS--The nitric oxide response was preserved in the coronary arteries of patients exposed to cyclosporin. The mechanisms that initiate cyclosporin associated toxicity remain to be elucidated.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bassenge E., Busse R. Endothelial modulation of coronary tone. Prog Cardiovasc Dis. 1988 Mar-Apr;30(5):349–380. doi: 10.1016/0033-0620(88)90003-5. [DOI] [PubMed] [Google Scholar]
- Bennett W. M., Porter G. A. Cyclosporine-associated hypertension. Am J Med. 1988 Aug;85(2):131–133. doi: 10.1016/s0002-9343(88)80330-9. [DOI] [PubMed] [Google Scholar]
- Bennett W. M., Pulliam J. P. Cyclosporine nephrotoxicity. Ann Intern Med. 1983 Dec;99(6):851–854. doi: 10.7326/0003-4819-99-6-851. [DOI] [PubMed] [Google Scholar]
- Bossaller C., Förstermann U., Hertel R., Olbricht C., Reschke V., Fleck E. Ciclosporin A inhibits endothelium-dependent vasodilatation and vascular prostacyclin production. Eur J Pharmacol. 1989 Jun 8;165(1):165–169. doi: 10.1016/0014-2999(89)90785-1. [DOI] [PubMed] [Google Scholar]
- Bossaller C., Habib G. B., Yamamoto H., Williams C., Wells S., Henry P. D. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5'-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest. 1987 Jan;79(1):170–174. doi: 10.1172/JCI112779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown Z., Neild G. H. Cyclosporine inhibits prostacyclin production by cultured human endothelial cells. Transplant Proc. 1987 Feb;19(1 Pt 2):1178–1180. [PubMed] [Google Scholar]
- Brown Z., Neild G. H., Willoughby J. J., Somia N. V., Cameron S. J. Increased factor VIII as an index of vascular injury in cyclosporine nephrotoxicity. Transplantation. 1986 Aug;42(2):150–153. doi: 10.1097/00007890-198608000-00009. [DOI] [PubMed] [Google Scholar]
- Cairns H. S., Rogerson M., Fairbanks L. D., Westwick J., Neild G. H. Endothelin and cyclosporin nephrotoxicity. Lancet. 1988 Dec 24;2(8626-8627):1496–1497. doi: 10.1016/s0140-6736(88)90978-6. [DOI] [PubMed] [Google Scholar]
- Chester A. H., O'Neil G. S., Moncada S., Tadjkarimi S., Yacoub M. H. Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet. 1990 Oct 13;336(8720):897–900. doi: 10.1016/0140-6736(90)92269-n. [DOI] [PubMed] [Google Scholar]
- Cohen D. J., Loertscher R., Rubin M. F., Tilney N. L., Carpenter C. B., Strom T. B. Cyclosporine: a new immunosuppressive agent for organ transplantation. Ann Intern Med. 1984 Nov;101(5):667–682. doi: 10.7326/0003-4819-101-5-667. [DOI] [PubMed] [Google Scholar]
- Crossman D. C., Larkin S. W., Fuller R. W., Davies G. J., Maseri A. Substance P dilates epicardial coronary arteries and increases coronary blood flow in humans. Circulation. 1989 Sep;80(3):475–484. doi: 10.1161/01.cir.80.3.475. [DOI] [PubMed] [Google Scholar]
- Dinh Xuan A. T., Fan T. P., Higenbottam T. W., Wallwork J. Cyclosporine in vitro reduces endothelium-dependent relaxation to acetylcholine but does not affect relaxation to nitrovasodilators. Transplant Proc. 1990 Aug;22(4):1723–1725. [PubMed] [Google Scholar]
- Golub M. S., Lustig S., Berger M. E., Lee D. B. Altered vascular responses in cyclosporine-treated rats. Transplantation. 1989 Jul;48(1):116–118. doi: 10.1097/00007890-198907000-00027. [DOI] [PubMed] [Google Scholar]
- Kawaguchi A., Goldman M. H., Shapiro R., Foegh M. L., Ramwell P. W., Lower R. R. Increase in urinary thromboxane B2 in rats caused by cyclosporine. Transplantation. 1985 Aug;40(2):214–216. doi: 10.1097/00007890-198508000-00022. [DOI] [PubMed] [Google Scholar]
- Lüscher T. F., Diederich D., Siebenmann R., Lehmann K., Stulz P., von Segesser L., Yang Z. H., Turina M., Grädel E., Weber E. Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts. N Engl J Med. 1988 Aug 25;319(8):462–467. doi: 10.1056/NEJM198808253190802. [DOI] [PubMed] [Google Scholar]
- Meyer-Lehnert H., Schrier R. W. Cyclosporine A enhances vasopressin-induced Ca2+ mobilization and contraction in mesangial cells. Kidney Int. 1988 Jul;34(1):89–97. doi: 10.1038/ki.1988.149. [DOI] [PubMed] [Google Scholar]
- Myers B. D., Sibley R., Newton L., Tomlanovich S. J., Boshkos C., Stinson E., Luetscher J. A., Whitney D. J., Krasny D., Coplon N. S. The long-term course of cyclosporine-associated chronic nephropathy. Kidney Int. 1988 Feb;33(2):590–600. doi: 10.1038/ki.1988.38. [DOI] [PubMed] [Google Scholar]
- Neild G. H. Cyclosporin nephrotoxicity. Semin Thorac Cardiovasc Surg. 1990 Apr;2(2):198–203. [PubMed] [Google Scholar]
- Neild G. H., Reuben R., Hartley R. B., Cameron J. S. Glomerular thrombi in renal allografts associated with cyclosporin treatment. J Clin Pathol. 1985 Mar;38(3):253–258. doi: 10.1136/jcp.38.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nellessen U., Lee T. C., Fischell T. A., Ginsburg R., Masuyama T., Alderman E. L., Schroeder J. S. Effects of acetylcholine on epicardial coronary arteries after cardiac transplantation without angiographic evidence of fixed graft narrowing. Am J Cardiol. 1988 Nov 15;62(16):1093–1097. doi: 10.1016/0002-9149(88)90555-3. [DOI] [PubMed] [Google Scholar]
- Olivari M. T., Antolick A., Ring W. S. Arterial hypertension in heart transplant recipients treated with triple-drug immunosuppressive therapy. J Heart Transplant. 1989 Jan-Feb;8(1):34–39. [PubMed] [Google Scholar]
- Perico N., Benigni A., Zoja C., Delaini F., Remuzzi G. Functional significance of exaggerated renal thromboxane A2 synthesis induced by cyclosporin A. Am J Physiol. 1986 Oct;251(4 Pt 2):F581–F587. doi: 10.1152/ajprenal.1986.251.4.F581. [DOI] [PubMed] [Google Scholar]
- Petric R., Freeman D., Wallace C., McDonald J., Stiller C., Keown P. Modulation of experimental cyclosporine nephrotoxicity by inhibition of thromboxane synthesis. Transplantation. 1990 Oct;50(4):558–563. doi: 10.1097/00007890-199010000-00005. [DOI] [PubMed] [Google Scholar]
- Pfeilschifter J., Rüegg U. T. Cyclosporin A augments angiotensin II-stimulated rise in intracellular free calcium in vascular smooth muscle cells. Biochem J. 1987 Dec 15;248(3):883–887. doi: 10.1042/bj2480883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radomski M. W., Palmer R. M., Moncada S. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol. 1987 Nov;92(3):639–646. doi: 10.1111/j.1476-5381.1987.tb11367.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rego A., Vargas R., Foegh M. L., Ramwell P. W. Effect of cyclosporine A treatment on vascular reactivity of the rat thoracic aorta. Transplant Proc. 1988 Jun;20(3 Suppl 3):572–577. [PubMed] [Google Scholar]
- Rego A., Vargas R., Suarez K. R., Foegh M. L., Ramwell P. W. Mechanism of cyclosporin potentiation of vasoconstriction of the isolated rat mesenteric arterial bed: role of extracellular calcium. J Pharmacol Exp Ther. 1990 Sep;254(3):799–808. [PubMed] [Google Scholar]
- Rego A., Vargas R., Wroblewska B., Foegh M. L., Ramwell P. W. Attenuation of vascular relaxation and cyclic GMP responses by cyclosporin A. J Pharmacol Exp Ther. 1990 Jan;252(1):165–170. [PubMed] [Google Scholar]
- Scherrer U., Vissing S. F., Morgan B. J., Rollins J. A., Tindall R. S., Ring S., Hanson P., Mohanty P. K., Victor R. G. Cyclosporine-induced sympathetic activation and hypertension after heart transplantation. N Engl J Med. 1990 Sep 13;323(11):693–699. doi: 10.1056/NEJM199009133231101. [DOI] [PubMed] [Google Scholar]
- Xue H., Bukoski R. D., McCarron D. A., Bennett W. M. Induction of contraction in isolated rat aorta by cyclosporine. Transplantation. 1987 May;43(5):715–718. doi: 10.1097/00007890-198705000-00022. [DOI] [PubMed] [Google Scholar]
