Abstract
OBJECTIVE--To assess whether and to what extent myocardial oxygen consumption is modified by hypertrophy and alterations in contractility in patients with aortic valve disease and to evaluate the influence of regression of left ventricular hypertrophy and improvement of contractility on myocardial oxygen consumption after successful aortic valve replacement. DESIGN--A cohort analytical study to investigate the influence of the "explanatory" variables of myocardial oxygen consumption by multiple regression analysis. A comparison of myocardial oxygen consumption in preoperative patients with that after operation in a group with comparable severity of aortic valve disease before operation (analysis of covariance). PATIENTS--In six controls and in 43 patients with aortic valve disease and normal coronary arteries standard haemodynamic variables were measured, left ventricular biplane cineangiography performed, and coronary sinus blood flow measured by thermodilution. The patients were divided into three groups: 19 preoperative patients with normal ejection fraction (greater than or equal to 57%) (group 1); nine preoperative patients with reduced ejection fraction (less than 57%) (group 2); 16 postoperative patients (one with preoperative and postoperative measurements (group 3). Postoperative evaluation was performed 12-51 months after surgery. MAIN OUTCOME MEASUREMENTS--Myocardial oxygen consumption/100 g left ventricular muscle mass and its suspected "explanatory" variables--that is, peak systolic left ventricular circumferential wall stress, heart rate, contractility (assessed by left ventricular ejection fraction), and left ventricular muscle mass index. RESULTS--Multiple regression analysis showed that the product of peak systolic stress and heart rate (p less than 0.0001) and ejection fraction (p less than 0.03) were positively correlated with myocardial oxygen consumption/100 g and that left ventricular muscle mass index (p less than 0.002) was negatively correlated with myocardial oxygen consumption/100 g (r = 0.72; n = 50 measurements). Myocardial oxygen consumption per 100 g at a given stress-rate product was higher in the controls than in group 1 (hypertrophied ventricles with normal ejection fraction) and was also higher in group 1 than in group 2 (hypertrophied ventricles with reduced ejection fraction). In a subgroup of the postoperative patients with complete regression of hypertrophy and normalisation of contractility, myocardial oxygen consumption per 100 g at a given stress-rate product was indistinguishable from that in controls. CONCLUSIONS--When the actual stress-rate product was used as an index of overall left ventricular performance the results suggested that mechanical efficiency was increased in hypertrophied ventricles especially when contractility was decreased. These changes in mechanical efficiency seemed to be reversible during the postoperative course when muscle mass and contractility returned to normal.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baxley W. A., Dodge H. T., Rackley C. E., Sandler H., Pugh D. Left ventricular mechanical efficiency in man with heart disease. Circulation. 1977 Apr;55(4):564–568. doi: 10.1161/01.cir.55.4.564. [DOI] [PubMed] [Google Scholar]
- Bortone A. S., Hess O. M., Eberli F. R., Nonogi H., Marolf A. P., Grimm J., Krayenbuehl H. P. Abnormal coronary vasomotion during exercise in patients with normal coronary arteries and reduced coronary flow reserve. Circulation. 1989 Mar;79(3):516–527. doi: 10.1161/01.cir.79.3.516. [DOI] [PubMed] [Google Scholar]
- Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol. 1971 Apr;27(4):416–432. doi: 10.1016/0002-9149(71)90439-5. [DOI] [PubMed] [Google Scholar]
- Breisch E. A., Houser S. R., Carey R. A., Spann J. F., Bove A. A. Myocardial blood flow and capillary density in chronic pressure overload of the feline left ventricle. Cardiovasc Res. 1980 Aug;14(8):469–475. doi: 10.1093/cvr/14.8.469. [DOI] [PubMed] [Google Scholar]
- DODGE H. T., SANDLER H., BALLEW D. W., LORD J. D., Jr The use of biplane angiocardigraphy for the measurement of left ventricular volume in man. Am Heart J. 1960 Nov;60:762–776. doi: 10.1016/0002-8703(60)90359-8. [DOI] [PubMed] [Google Scholar]
- Downey J. M. Myocardial contractile force as a function of coronary blood flow. Am J Physiol. 1976 Jan;230(1):1–6. doi: 10.1152/ajplegacy.1976.230.1.1. [DOI] [PubMed] [Google Scholar]
- Eichhorn P., Grimm J., Koch R., Hess O., Carroll J., Krayenbuehl H. P. Left ventricular relaxation in patients with left ventricular hypertrophy secondary to aortic valve disease. Circulation. 1982 Jun;65(7):1395–1404. doi: 10.1161/01.cir.65.7.1395. [DOI] [PubMed] [Google Scholar]
- Ferrans V. J. Human cardiac hypertrophy: structural aspects. Eur Heart J. 1982 Apr;3 (Suppl A):15–27. doi: 10.1093/eurheartj/3.suppl_a.15. [DOI] [PubMed] [Google Scholar]
- Foult J. M., Nitenberg A. Dipyridamole versus intracoronary injection of contrast medium for the evaluation of coronary reserve in man: a comparative study. Cathet Cardiovasc Diagn. 1986;12(5):304–310. doi: 10.1002/ccd.1810120506. [DOI] [PubMed] [Google Scholar]
- Gaasch W. H., Battle W. E., Oboler A. A., Banas J. S., Jr, Levine H. J. Left ventricular stress and compliance in man. With special reference to normalized ventricular function curves. Circulation. 1972 Apr;45(4):746–762. doi: 10.1161/01.cir.45.4.746. [DOI] [PubMed] [Google Scholar]
- Gaasch W. H., Zile M. R., Hoshino P. K., Apstein C. S., Blaustein A. S. Stress-shortening relations and myocardial blood flow in compensated and failing canine hearts with pressure-overload hypertrophy. Circulation. 1989 Apr;79(4):872–883. doi: 10.1161/01.cir.79.4.872. [DOI] [PubMed] [Google Scholar]
- Ganz W., Tamura K., Marcus H. S., Donoso R., Yoshida S., Swan H. J. Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation. 1971 Aug;44(2):181–195. doi: 10.1161/01.cir.44.2.181. [DOI] [PubMed] [Google Scholar]
- Graham T. P., Jr, Covell J. W., Sonnenblick E. H., Ross J., Jr, Braunwald E. Control of myocardial oxygen consumption: relative influence of contractile state and tension development. J Clin Invest. 1968 Feb;47(2):375–385. doi: 10.1172/JCI105734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henry P. D., Eckberg D., Gault J. H., Ross J., Jr Depressed inotropic state and reduced myocardial oxygen consumption in the human heart. Am J Cardiol. 1973 Mar;31(3):300–306. doi: 10.1016/0002-9149(73)90259-2. [DOI] [PubMed] [Google Scholar]
- Huber D., Grimm J., Koch R., Krayenbuehl H. P. Determinants of ejection performance in aortic stenosis. Circulation. 1981 Jul;64(1):126–134. doi: 10.1161/01.cir.64.1.126. [DOI] [PubMed] [Google Scholar]
- Johnson L. L., Sciacca R. R., Ellis K., Weiss M. B., Cannon P. J. Reduced left ventricular myocardial blood flow per unit mass in aortic stenosis. Circulation. 1978 Mar;57(3):582–590. doi: 10.1161/01.cir.57.3.582. [DOI] [PubMed] [Google Scholar]
- Kawachi K., Kawashima Y., Kitamura S., Mori T., Hirose H., Nakano S., Oyama C. Coronary sinus blood flow and myocardial oxygen consumption after valve replacement for aortic insufficiency. Ann Thorac Surg. 1986 Jul;42(1):86–89. doi: 10.1016/s0003-4975(10)61843-7. [DOI] [PubMed] [Google Scholar]
- Kjeldsen K., Bjerregaard P., Richter E. A., Thomsen P. E., Nørgaard A. Na+,K+-ATPase concentration in rodent and human heart and skeletal muscle: apparent relation to muscle performance. Cardiovasc Res. 1988 Feb;22(2):95–100. doi: 10.1093/cvr/22.2.95. [DOI] [PubMed] [Google Scholar]
- Kozlovskis P. L., Fieber L. A., Pruitt D. K., Bailey B. K., Smets M. J., Bassett A. L., Kimura S., Myerburg R. J. Myocardial changes during the progression of left ventricular pressure-overload by renal hypertension or aortic constriction: myosin, myosin ATPase and collagen. J Mol Cell Cardiol. 1987 Jan;19(1):105–114. doi: 10.1016/s0022-2828(87)80549-7. [DOI] [PubMed] [Google Scholar]
- Krayenbuehl H. P., Hess O. M., Monrad E. S., Schneider J., Mall G., Turina M. Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation. 1989 Apr;79(4):744–755. doi: 10.1161/01.cir.79.4.744. [DOI] [PubMed] [Google Scholar]
- Krayenbuehl H. P., Hess O. M., Ritter M., Monrad E. S., Hoppeler H. Left ventricular systolic function in aortic stenosis. Eur Heart J. 1988 Apr;9 (Suppl E):19–23. doi: 10.1093/eurheartj/9.suppl_e.19. [DOI] [PubMed] [Google Scholar]
- Krayenbuehl H. P., Hess O., Hirzel H. Pathophysiology of the hypertrophied heart in man. Eur Heart J. 1982 Apr;3 (Suppl A):125–131. doi: 10.1093/eurheartj/3.suppl_a.125. [DOI] [PubMed] [Google Scholar]
- Malik A. B., Abe T., O'kane H., Geha A. S. Cardiac function, coronary flow, and oxygen consumption in stable left ventricular hypertrophy. Am J Physiol. 1973 Jul;225(1):186–191. doi: 10.1152/ajplegacy.1973.225.1.186. [DOI] [PubMed] [Google Scholar]
- Marcus M. L., Wilson R. F., White C. W. Methods of measurement of myocardial blood flow in patients: a critical review. Circulation. 1987 Aug;76(2):245–253. doi: 10.1161/01.cir.76.2.245. [DOI] [PubMed] [Google Scholar]
- Mathey D. G., Chatterjee K., Tyberg J. V., Lekven J., Brundage B., Parmley W. W. Coronary sinus reflux. A source of error in the measurement of thermodilution coronary sinus flow. Circulation. 1978 Apr;57(4):778–786. doi: 10.1161/01.cir.57.4.778. [DOI] [PubMed] [Google Scholar]
- McDonald R. H., Jr, Taylor R. R., Cingolani H. E. Measurement of myocardial developed tension and its relation to oxygen consumption. Am J Physiol. 1966 Sep;211(3):667–673. doi: 10.1152/ajplegacy.1966.211.3.667. [DOI] [PubMed] [Google Scholar]
- Peters T. J., Wells G., Oakley C. M., Brooksby I. A., Jenkins B. S., Webb-Peploe M. M., Coltart D. J. Enzymic analysis of endomyocardial biopsy specimens from patients with cardiomyopathies. Br Heart J. 1977 Dec;39(12):1333–1339. doi: 10.1136/hrt.39.12.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RACKLEY C. E., DODGE H. T., COBLE Y. D., Jr, HAY R. E. A METHOD FOR DETERMINING LEFT VENTRICULAR MASS IN MAN. Circulation. 1964 May;29:666–671. doi: 10.1161/01.cir.29.5.666. [DOI] [PubMed] [Google Scholar]
- SANDLER H., DODGE H. T. LEFT VENTRICULAR TENSION AND STRESS IN MAN. Circ Res. 1963 Aug;13:91–104. doi: 10.1161/01.res.13.2.91. [DOI] [PubMed] [Google Scholar]
- SARNOFF S. J., BRAUNWALD E., WELCH G. H., Jr, CASE R. B., STAINSBY W. N., MACRUZ R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol. 1958 Jan;192(1):148–156. doi: 10.1152/ajplegacy.1957.192.1.148. [DOI] [PubMed] [Google Scholar]
- Strauer B. E. Myocardial oxygen consumption in chronic heart disease: role of wall stress, hypertrophy and coronary reserve. Am J Cardiol. 1979 Oct;44(4):730–740. doi: 10.1016/0002-9149(79)90295-9. [DOI] [PubMed] [Google Scholar]
- Swynghedauw B. Remodelling of the heart in response to chronic mechanical overload. Eur Heart J. 1989 Oct;10(10):935–943. doi: 10.1093/oxfordjournals.eurheartj.a059405. [DOI] [PubMed] [Google Scholar]
- Thomas D. P., Phillips S. J., Bove A. A. Myocardial morphology and blood flow distribution in chronic volume-overload hypertrophy in dogs. Basic Res Cardiol. 1984 Jul-Aug;79(4):379–388. doi: 10.1007/BF01908137. [DOI] [PubMed] [Google Scholar]
- Trenouth R. S., Phelps N. C., Neill W. A. Determinants of left ventricular hypertrophy and oxygen supply in chronic aortic valve disease. Circulation. 1976 Apr;53(4):644–650. doi: 10.1161/01.cir.53.4.644. [DOI] [PubMed] [Google Scholar]
- Weiss M. B., Ellis K., Sciacca R. R., Johnson L. L., Schmidt D. H., Cannon P. J. Myocardial blood flow in congestive and hypertrophic cardiomyopathy: relationship to peak wall stress and mean velocity of circumferential fiber shortening. Circulation. 1976 Sep;54(3):484–494. doi: 10.1161/01.cir.54.3.484. [DOI] [PubMed] [Google Scholar]