Skip to main content
Springer logoLink to Springer
. 2023 Jun 7;44(7):110. doi: 10.1007/s10765-023-03216-z

Assessment of a Parachor Model for the Surface Tension of Binary Mixtures

Alexandra Metallinou Log 1,, Vladimir Diky 2, Marcia L Huber 2
PMCID: PMC10247860  PMID: 37305811

Abstract

We compiled an experimental database for the surface tension of binary mixtures containing a wide variety of fluids, from the chemical classes (water, alcohols, amines, ketones, linear and branched alkanes, naphthenes, aromatics, refrigerants, and cryogens). The resulting data set includes 65 pure fluids and 154 binary pairs with a total of 8205 points. We used this database to test the performance of a parachor model for the surface tension of binary mixtures. The model uses published correlations to determine the parachors of the pure fluids. The model has a single, constant binary interaction parameter for each pair that was found by fitting experimental mixture data. It can be also used in a predictive mode when the interaction parameters are set to zero. We present detailed comparisons on the performance of the model for both cases. In general, the parachor model in a predictive mode without fitted interaction parameters can predict the surface tension of binary mixtures of non-polar mixtures such as linear and branched alkanes, linear and branched alkanes with naphthenes, aromatics with aromatics, aromatics with naphthenes, and mixtures of linear alkanes of similar sizes with an average absolute percentage deviation of about 3 % or less. Polar mixtures of halocarbons with other halocarbons and also polar/nonpolar mixtures of alkanes with halocarbons could be modeled with an average absolute deviation of less than 0.35 mN·m−1 with the use of a binary interaction parameter. The parachor model even with a fitted binary interaction parameter performs poorly for mixtures of water and organic compounds and is not recommended.

Supplementary Information

The online version contains supplementary material available at 10.1007/s10765-023-03216-z.

Keywords: Binary mixtures, Parachor, Surface tension

Introduction

Surface tension is an important physical property that has long had significance in the oil and gas industry, and is also of interest in applications as varied as pharmaceuticals [1, 2], heat transfer in low-global warming potential (GWP) refrigerants [3], ink-jet printing [4, 5] and diesel engine design [6]. Specific examples in the pharmaceutical industry include [2] the importance of controlling the surface tension of coating solutions of tablets to improve product appearance and control the rate of drug release, the effect of surface tension on the size of droplets in a nebulizer, and control of the size of eye drops. In addition, fluorocarbon based fluids with low surface tension are being investigated as blood substitutes for oxygen delivery [1]. In the refrigeration industry, new low-GWP refrigerant blends are being proposed. In order to evaluate the performance of heat exchangers, accurate knowledge of the surface tension is needed to model the bubble behavior in pool boiling [3]. In ink-jet printing, From [5] analyzed the fluid flow behavior of impulsively driven laminar jet flow in terms of dimensionless parameters involving the surface tension, density, viscosity, and a characteristic dimension, and made recommendations for when the fluid has stable drop formation. In order to optimize engine performance to reduce soot emissions, there is a need for surface tension data at high pressures and high temperatures [6]. Accurate property values for surface tension are necessary for successful analysis of all these processes.

In 1923, Macleod proposed a simple empirical relationship between surface tension σ and the density of the liquid and vapor phases ρL and ρV

P=σ1/4ρL-ρV, 1

where P is a temperature-independent parameter called the parachor by Sugden [7]. Other practical engineering methods for predicting surface tension can be found in handbooks such as Ref. [8]. In addition, there are numerous theoretically based approaches to predicting the surface tension such as density gradient theory [9, 10], density functional theory [11], hard-sphere fluid scaled particle theory [12], perturbation theory [13] and friction theory [14].

The parachor approach can also be applied to mixtures, as was demonstrated by Weinaug and Katz [15] and Hugill et al. [16]. Although the parachor method has been used for many years in the petrochemical industry, is in active use now [17], is the recommended approach in the API Technical Databook [18], and is discussed in reference books for engineers [8] there has not been a comprehensive evaluation of the performance of this type of model with respect to mixtures using a large database of binary data in the open literature. It is the goal of this work to provide an evaluation of the parachor model to a wide variety of binary mixtures, including not only common hydrocarbons involved in the petrochemical industry, but also recent low-GWP fluids of interest to the refrigeration industry and to indicate expected performance and limitations of this model for a wide variety of mixtures.

The Parachor Model

The parachor model that we will apply to mixtures was originally presented by Weinaug and Katz [15] and later modified by Hugill et al. [16] to allow for the use of binary interaction parameters. For a mixture,

σmix=PLρL-PVρVm 2

with mixing and combining rules

PL=i=1nj=1nxixjPijandPV=i=1nj=1nyiyjPij 3
Pij=(1-δij)Pi+Pj2, 4

where δij is an optional binary interaction parameter, and xi and yi are the molar compositions of the liquid and gas phases, respectively. Historically [15, 16, 19] the exponent m has been set to 4, but here we use m = 3.87 based on theoretical considerations as presented by Garrabos et al. [20]. In addition, it also is common to use a fixed value of the parachor obtained from compilations such as that of Quayle [21]. Zhelezny et al. [22] has studied the temperature dependence of the parachor. Mulero and coworkers [2331] developed an extensive body of work on correlations for the surface tension of many important industrial fluids that can be used to compute the pure fluid parachors Pi as a function of temperature. These correlations are very accurate and can represent the data to within experimental uncertainty. We primarily use these correlations as implemented in the computer program REFPROP v10 [32] for pure fluid surface tension σi. The parachors are evaluated at the temperature of interest for the binary mixture, however for temperatures greater than or equal to 0.9Tc,i, where Tc,i is the pure fluid critical temperature, the parachor is calculated at 0.9Tc,i. It also is necessary to have the saturation densities and compositions xi and yi of the liquid and vapor phases. If the compositions and densities from the VLE calculations are inaccurate this will increase the uncertainty in the surface tension calculations, so care should be used in the selection of the VLE model. We obtain these compositions and densities from the default equations of state and models implemented in REFPROP v10 [32]; a description of these can be found in [33]. A few changes were made in the models of REFPROP v10 that enabled calculation for some mixtures not permitted in the original version, as well as some changes in mixture parameters that are summarized in the Supplementary Information in Appendix A.

Experimental Data

We extracted experimental data for the surface tension of binary mixtures for liquid–gas interfaces from the NIST TDE database [34] for which the pure fluid components are available, the composition of the liquid is explicitly specified, and also for which there are reliable models for the vapor–liquid equilibrium and thermodynamic properties in the REFPROP database [32]. We excluded HCl/water and benzene/water due to the lack of a good mixture model for thermodynamic properties in REFPROP. The resulting data set includes 65 pure fluids and 154 binary pairs with a total of 8205 points. Table 1 provides a list of the pure components along with information for compound identification, along with a reference for the pure fluid surface tension correlation implemented in REFPROP v10 [32] used to evaluate pure fluid surface tension in this work. A summary of the binary mixture data is given in Table 2 including a reference code (starting with the publication year), the experimental method, an uncertainty estimate, the fluids in the binary mixture, the number of data points, temperature range, and composition in terms of the mole fraction of the first component. The full data set is available in the supplementary information in the file InputData.txt. A discussion of experimental methods for obtaining surface tension can be found in Ref. [35]. The estimated uncertainties (at a k = 2 level) are those as assessed by the NIST TDE database and may not be the same as those stated by the original authors. As part of the data capture process, software [36] is used that assesses the uncertainty of the data taking into account factors such as the experimental method, the sample purity, property precision, precision of independent variables. However, the reader should consult the original data reference for complete details of the measurement technique and uncertainty analysis for assessment of the quality of an individual data set.

Table 1.

List of fluids

Name Full name Formula Family CAS no. Standard InChI key References
Acetone Propanone C3H6O Ketone 67-64-1 CSCPPACGZOOCGX-UHFFFAOYSA-N [26]
Argon Argon Ar Cryogen 7440-37-1 XKRFYHLGVUSROY-UHFFFAOYSA-N [26]
Benzene Benzene C6H6 Aromatic 71-43-2 UHOVQNZJYSORNB-UHFFFAOYSA-N [26]
Butane n-Butane C4H10 n-Alkane 106-97-8 IJDNQMDRQITEOD-UHFFFAOYSA-N [26]
Carbon dioxide Carbon dioxide CO2 Other 124-38-9 CURLTUGMZLYLDI-UHFFFAOYSA-N [26]
Carbon monoxide Carbon monoxide CO Cryogen 630-08-0 UGFAIRIUMAVXCW-UHFFFAOYSA-N [26]
Chlorobenzene Chlorobenzene C6H5Cl Halocb 108-90-7 MVPPADPHJFYWMZ-UHFFFAOYSA-N [37]
Cyclohexane Cyclohexane C6H12 Naphthene 110-82-7 XDTMQSROBMDMFD-UHFFFAOYSA-N [26]
Cyclopentane Cyclopentane C5H10 Naphthene 287-92-3 RGSFGYAAUTVSQA-UHFFFAOYSA-N [24]
D4 Octamethylcyclotetrasiloxane C8H24O4Si4 Siloxane 556-67-2 HMMGMWAXVFQUOA-UHFFFAOYSA-N [24]
D5 Decamethylcyclopentasiloxane C10H30O5Si5 Siloxane 541-02-6 XMSXQFUHVRWGNA-UHFFFAOYSA-N [24]
DEA Diethanolamine C4H11NO2 Amine 111-42-2 ZBCBWPMODOFKDW-UHFFFAOYSA-N [37]
Decane n-Decane C10H22 n-Alkane 124-18-5 DIOQZVSQGTUSAI-UHFFFAOYSA-N [26]
Deuterium Deuterium D2 Cryogen 7782-39-0 UFHFLCQGNIYNRP-VVKOMZTBSA-N [26]
Dichloroethane 1,2-Dichloroethane C2H4Cl2 Halocb 107-06-2 WSLDOOZREJYCGB-UHFFFAOYSA-N [37]
Diethyl ether Diethyl ether C4H10O Ether 60-29-7 RTZKZFJDLAIYFH-UHFFFAOYSA-N [24]
Dimethyl carbonate (DMC) Dimethyl ester carbonic acid C3H6O3 Other 616-38-6 IEJIGPNLZYLLBP-UHFFFAOYSA-N [24]
Dimethyl ether Methoxymethane C2H6O Ether 115-10-6 LCGLNKUTAGEVQW-UHFFFAOYSA-N [26]
Docosane n-Docosane C22H46 n-Alkane 629-97-0 HOWGUJZVBDQJKV-UHFFFAOYSA-N [37]
Dodecane n-Dodecane C12H26 n-Alkane 112-40-3 SNRUBQQJIBEYMU-UHFFFAOYSA-N [26]
Ethane Ethane C2H6 n-Alkane 74-84-0 OTMSDBZUPAUEDD-UHFFFAOYSA-N [26]
Ethanol Ethyl alcohol C2H6O Alcohol 64-17-5 LFQSCWFLJHTTHZ-UHFFFAOYSA-N [27]
Ethylene glycol 1,2-Ethandiol C2H6O2 Glycol 107-21-1 LYCAIKOWRPUZTN-UHFFFAOYSA-N [37]
Ethylbenzene Phenylethane C8H10 Aromatic 100-41-4 YNQLUTRBYVCPMQ-UHFFFAOYSA-N [24]
Heavy water Deuterium oxide D2O Water 7789-20-0 XLYOFNOQVPJJNP-ZSJDYOACSA-N [38]
Helium Helium-4 He Cryogen 7440-59-7 SWQJXJOGLNCZEY-UHFFFAOYSA-N [26]
Heptane n-Heptane C7H16 n-Alkane 142-82-5 IMNFDUFMRHMDMM-UHFFFAOYSA-N [26]
Hexadecane n-Hexadecane C16H34 n-Alkane 544-76-3 DCAYPVUWAIABOU-UHFFFAOYSA-N [37]
Hexane n-Hexane C6H14 n-Alkane 110-54-3 VLKZOEOYAKHREP-UHFFFAOYSA-N [26]
Hydrogen (normal) Hydrogen (normal) H2 Cryogen 1333-74-0 UFHFLCQGNIYNRP-UHFFFAOYSA-N [26]
Isooctane 2,2,4-Trimethylpentane C8H18 br-Alkane 540-84-1 NHTMVDHEPJAVLT-UHFFFAOYSA-N [24]
Krypton Krypton Kr Cryogen 7439-90-9 DNNSSWSSYDEUBZ-UHFFFAOYSA-N [26]
MD2M Decamethyltetrasiloxane C10H30Si4O3 Siloxane 141-62-8 YFCGDEUVHLPRCZ-UHFFFAOYSA-N [24]
MD3M Dodecamethylpentasiloxane C12H36Si5O4 Siloxane 141-63-9 FBZANXDWQAVSTQ-UHFFFAOYSA-N [24]
MD4M Tetradecamethylhexasiloxane C14H42O5Si6 Siloxane 107-52-8 ADANNTOYRVPQLJ-UHFFFAOYSA-N [24]
Monoethanolamine (MEA) Ethanolamine C2H7NO Amine 141-43-5 HZAXFHJVJLSVMW-UHFFFAOYSA-N [37]
Methane Methane CH4 n-Alkane 74-82-8 VNWKTOKETHGBQD-UHFFFAOYSA-N [26]
Methanol Methanol CH4O Alcohol 67-56-1 OKKJLVBELUTLKV-UHFFFAOYSA-N [26]
Methyl palmitate Methyl hexadecanoate C17H34O2 FAME 112-39-0 FLIACVVOZYBSBS-UHFFFAOYSA-N [24]
Methylcyclohexane Methylcyclohexane C7H14 Naphthene 108-87-2 UAEPNZWRGJTJPN-UHFFFAOYSA-N [24]
m-Xylene 1,3-Dimethylbenzene C8H10 Aromatic 108-38-3 IVSZLXZYQVIEFR-UHFFFAOYSA-N [24]
Neon Neon Ne Cryogen 7440-01-9 GKAOGPIIYCISHV-UHFFFAOYSA-N [26]
Nitrogen Nitrogen N2 Cryogen 7727-37-9 IJGRMHOSHXDMSA-UHFFFAOYSA-N [26]
Nonane n-Nonane C9H20 n-Alkane 111-84-2 BKIMMITUMNQMOS-UHFFFAOYSA-N [26]
Octane n-Octane C8H18 n-Alkane 111-65-9 TVMXDCGIABBOFY-UHFFFAOYSA-N [26]
Oxygen Oxygen O2 Cryogen 7782-44-7 MYMOFIZGZYHOMD-UHFFFAOYSA-N [26]
o-Xylene 1,2-Dimethylbenzene C8H10 Aromatic 95-47-6 CTQNGGLPUBDAKN-UHFFFAOYSA-N [24]
Pentane n-Pentane C5H12 n-Alkane 109-66-0 OFBQJSOFQDEBGM-UHFFFAOYSA-N [26]
Propane Propane C3H8 n-Alkane 74-98-6 ATUOYWHBWRKTHZ-UHFFFAOYSA-N [26]
Propylene Propene C3H6 n-Alkene 115-07-1 QQONPFPTGQHPMA-UHFFFAOYSA-N [26]
p-Xylene 1,4-Dimethylbenzene C8H10 Aromatic 106-42-3 URLKBWYHVLBVBO-UHFFFAOYSA-N [24]
R1123 Trifluoroethylene C2HF3 Halocb 359-11-5 MIZLGWKEZAPEFJ-UHFFFAOYSA-N [37]
R115 Chloropentafluoroethane C2ClF5 Halocb 76-15-3 RFCAUADVODFSLZ-UHFFFAOYSA-N [26]
R1234yf 2,3,3,3-Tetrafluoroprop-1-ene C3F4H2 Halocb 754-12-1 FXRLMCRCYDHQFW-UHFFFAOYSA-N [26]
R1234ze(E) trans-1,3,3,3-Tetrafluoropropene C3F4H2 Halocb 29,118-24-9 CDOOAUSHHFGWSA-OWOJBTEDSA-N [24]
R125 Pentafluoroethane C2HF5 Halocb 354-33-6 GTLACDSXYULKMZ-UHFFFAOYSA-N [26]
R134a 1,1,1,2-Tetrafluoroethane C2H2F4 Halocb 811-97-2 LVGUZGTVOIAKKC-UHFFFAOYSA-N [26]
R143a 1,1,1-Trifluoroethane C2H3F3 Halocb 420-46-2 UJPMYEOUBPIPHQ-UHFFFAOYSA-N [24]
R152a 1,1-Difluoroethane C2H4F2 Halocb 75-37-6 NPNPZTNLOVBDOC-UHFFFAOYSA-N [26]
R22 Chlorodifluoromethane CHClF2 Halocb 75-45-6 VOPWNXZWBYDODV-UHFFFAOYSA-N [26]
R227ea 1,1,1,2,3,3,3-Heptafluoropropane C3HF7 Halocb 431-89-0 YFMFNYKEUDLDTL-UHFFFAOYSA-N [26]
R32 Difluoromethane CH2F2 Halocb 75-10-5 RWRIWBAIICGTTQ-UHFFFAOYSA-N [26]
RC318 Octafluorocyclobutane C4F8 Halocb 115-25-3 BCCOBQSFUDVTJQ-UHFFFAOYSA-N [26]
Toluene Methylbenzene C7H8 Aromatic 108-88-3 YXFVVABEGXRONW-UHFFFAOYSA-N [26]
Water Water H2O Water 7732-18-5 XLYOFNOQVPJJNP-UHFFFAOYSA-N [39]

Table 2.

Summary of surface tension binary mixture data

Reference code Method Unc. (mN·m−1) Fluid 1 Fluid 2 Npts T range (K) x1 range
1974 jai sin 0 [40] DROPW 0.6–0.7 Ethylbenzene Cyclohexane 28 298–308 0.0–1.0
2014 pra cow 0 [41] DROPSH 0.4 Ethylbenzene Hexadecane 9 294 0.0–1.0
1978 dhi mah 0 [42] CAPRISE 0.7–0.8 p-Xylene Chlorobenzene 18 293–303 0.1–0.9
1972 mah cho 0 [43] CAPRISE 0.1–0.2 p-Xylene Pentane 7 288 0.14–0.82
2010 dom ril 0 [44] DROPV 0.1–0.2 p-Xylene Hexane 16 298 0.12–0.95
1974 jai sin 0 [40] DROPW 0.6–0.7 p-Xylene Cyclohexane 28 298–308 0.0–1.0
2013 gay cas 0 [45] DROPV 0.2–0.3 p-Xylene Octane 12 308 0.05–0.95
2009 mos cas 0 [46] DROPV 0.3 p-Xylene Decane 11 298 0.10–0.95
2013 gay cas 0 [45] DROPV 0.3 p-Xylene Decane 11 308 0.10–0.95
2004 ouy lu 3 [47] DROPSH 0.3 p-Xylene Ethanol 11 298 0.0–1.0
1992 wan nar 1 [48] CAPRISE 0.6–0.7 p-Xylene Methanol 44 293–318 0.0–1.0
2004 ouy yan 0 [49] DROPSH 0.3 p-Xylene Acetone 9 298 0.10–0.90
2013 gay cas 0 [45] DROPV 0.3 p-Xylene DMC 10 308 0.06–0.95
1978 cal mcl 0 [50] CAPRISE 0.1 Butane RC318 24 234–254 0.0–1.0
1985 hsu nag 0 [51] DROPSH 0.1–0.2 Butane Carbon dioxide 42 319–378 0.15–0.91
2005 goz dan 0 [52] OTHER 0.02 Butane methane 1 311 0.49
1914 wor & 1 [53] UNKN 0.5–0.6 Dichloroethane Benzene 13 286–343 0.0–1.0
1978 dhi mah 0 [42] CAPRISE 0.7–0.8 m-Xylene Chlorobenzene 18 293–303 0.1–0.9
1972 mah cho 0 [43] CAPRISE 0.1–0.2 m-Xylene Pentane 9 288 0.12–0.89
2017 tah & 0 [54] DROPSH 0.3–0.4 m-Xylene Pentane 11 293 0.0–1.0
2006 dom seg 0 [55] DROPV 0.1–0.2 m-Xylene Hexane 18 298 0.04–0.95
2017 tah & 0 [54] DROPSH 0.3–0.4 m-Xylene Hexane 11 293 0.0–1.0
1974 jai sin 0 [40] DROPW 0.6–0.7 m-Xylene Cyclohexane 28 298–308 0.0–1.0
2017 tah & 0 [54] DROPSH 0.3–0.4 m-Xylene Octane 11 293 0.0–1.0
2017 tah & 0 [54] DROPSH 0.3–0.4 m-Xylene Heptane 11 293 0.0–1.0
2004 ouy lu 3 [47] DROPSH 0.3 m-Xylene Ethanol 11 298 0.0–1.0
2004 ouy yan 0 [49] DROPSH 0.3 M-Xylene Acetone 9 298 0.10–0.90
1929 ham and 0 [56] CAPRISE 0.2 m-Xylene Benzene 5 298 0.40–1.0
1917 mor gri 0 [57] DROPW 0.2 Toluene Chlorobenzene 6 283–313 0.26–0.81
1972 mah cho 0 [43] CAPRISE 0.1 Toluene Pentane 8 288 0.18–0.79
1970 lam ben 0 [58] BUBBLEP 0.7 Toluene Cyclohexane 11 298 0.11–0.90
1958 lin van 1 [59] OTHER 8–10 Toluene Octane 17 303–398 0.0–1.0
2021 vak alw 0 [60] RINGTE 0.5 Toluene Nonane 44 298–313 0.0–1.0
2003 kah wad 0 [61] DROPSH 0.2–0.3 Toluene Heptane 34 288–328 0.0–1.0
1970 lam ben 0 [58] BUBBLEP 0.6–0.7 Toluene Cyclopentane 10 298 0.10–0.89
2014 pra cow 0 [41] DROPSH 0.4 Toluene Hexadecane 8 294 0.0–1.0
2021 vak alw 0 [60] RINGTE 0.5 Toluene Hexadecane 44 298–313 0.0–1.0
1974 mye cle 0 [62] BUBBLEP 0.3 Toluene Ethanol 10 303 0.0–1.0
1993 sha muk 0 [63] DROPW 0.8–1.1 Toluene Ethanol 5 298 0.1–0.9
1982 sin lar 0 [64] CAPRISE 0.1 Toluene Methanol 11 308 0.0–1.0
1992 wan nar 1 [48] CAPRISE 0.5–0.7 Toluene Methanol 44 293–318 0.0–1.0
2003 kah wad 1 [65] DROPSH 0.2–0.3 Toluene Acetone 55 288–328 0.0–1.0
2007 end kah 0 [66] DROPSH 0.5–0.6 Toluene Acetone 55 288–328 0.0–1.0
1917 mor gri 0 [57] DROPW 0.3–0.6 Toluene Benzene 6 284–313 0.22–0.72
1970 kon lya 1 [67] BUBBLEP 0.3–0.4 Toluene Benzene 21 293–333 0.0–1.0
1972 mah cho 0 [43] CAPRISE 0.1–0.2 Chlorobenzene Pentane 7 288 0.18–0.84
1978 dhi mah 0 [42] CAPRISE 0.6–0.8 Chlorobenzene Cyclohexane 18 293–303 0.1–0.9
1917 mor gri 0 [57] DROPW 0.2 Chlorobenzene Acetone 1 288 0.34
1917 mor gri 0 [57] DROPW 0.4–0.6 Chlorobenzene Benzene 6 283–313 0.21–0.62
1978 dhi mah 0 [42] CAPRISE 0.7–0.8 Chlorobenzene Benzene 17 293–303 0.1–0.9
1978 dhi mah 0 [42] CAPRISE 0.7–0.8 Chlorobenzene o-Xylene 18 293–303 0.1–0.9
1972 mah cho 0 [43] CAPRISE 0.1–0.2 Pentane Cyclohexane 7 288 0.15–0.81
1992 abd ada 0 [68] CAPRISE 0.1–1.2 Pentane Heptane 61 303–538 0.0–1.0
2010 moh ras 0 [69] BUBBLEP 0.2 Pentane Heptane 38 293–323 0.17–0.97
2011 moh & 0 [70] CAPRISE 0.1–0.2 Pentane Hexadecane 35 293–323 0.2–0.9
1972 mah cho 0 [43] CAPRISE 0.1–0.2 Pentane Benzene 7 288 0.09–0.81
2018 sat coo 0 [71] DROPSH 0.1–0.2 Pentane Methane 7 313 0.50–0.95
1963 cle cha 0 [72] BUBBLEP 0.2–0.3 Hexane Cyclohexane 19 298–308 0.0–1.0
1967 rid but 0 [73] RINGTE 0.6–0.7 Hexane Cyclohexane 8 293 0.0–1.0
1968 sch cle 1 [74] BUBBLEP 0.5–0.7 Hexane Dodecane 21 298–313 0.0–1.0
2019 kol yan 0 [75] SLS 0.1–0.2 Hexane Carbon dioxide 5 303 0.25–1.0
1994 pap pan 1 [76] CAPRISE 0.1 Hexane Ethanol 20 298 0.0–1.0
2000 jim cas 0 [77] DROPV 0.1 Hexane Ethanol 17 298 0.04–0.93
2007 gin vil 1 [78] DROPV 0.3 Hexane Ethanol 77 283–313 0.07–0.91
1935 tri & 0 [79] UNKN 0.1 Hexane Methanol 4 295 0.0–1.0
1970 ram pat 0 [80] UNKN 0.5–0.7 Hexane Methanol 22 303–318 0.0–1.0
1966 sch ran 0 [81] BUBBLEP 0.5–0.6 Hexane Benzene 23 298–313 0.0–1.0
1967 rid but 0 [73] RINGTE 0.6–0.8 Hexane Benzene 8 293 0.0–1.0
2002 gom mej 0 [82] DROPW 0.6 Cyclohexane Decane 6 298 0.0–1.0
2003 kah wad 1 [65] DROPSH 0.2–0.3 Cyclohexane Heptane 55 288–328 0.0–1.0
2001 gom mej 0 [83] RINGTE 0.4–0.5 Cyclohexane Isooctane 126 298–323 0.0–1.0
1935 tri & 0 [79] UNKN 0.1 Cyclohexane Ethanol 6 295 0.0–1.0
1974 mye cle 0 [62] BUBBLEP 0.3 Cyclohexane Ethanol 11 303 0.0–1.0
2003 kah wad 1 [65] DROPSH 0.2–0.3 Cyclohexane Acetone 44 288–318 0.0–1.0
2008 mej seg 1 [84] BUBBLEP 0.3 Cyclohexane Acetone 10 303 0.06–0.95
1929 ham and 0 [56] CAPRISE 0.2 Cyclohexane Benzene 5 298 0.30–0.62
1967 rid but 0 [73] RINGTE 0.7–0.8 Cyclohexane Benzene 9 293 0.0–1.0
1968 sur ram 0 [85] CAPRISE 0.1 Cyclohexane Benzene 15 293–303 0.09–0.87
1970 kon lya 1 [67] BUBBLEP 0.3–0.4 Cyclohexane Benzene 39 293–333 0.0–1.0
1970 lam ben 0 [58] BUBBLEP 0.6–0.8 Cyclohexane Benzene 28 293–303 0.10–0.89
1974 jai sin 0 [40] DROPW 0.6–0.8 Cyclohexane o-Xylene 28 298–308 0.0–1.0
2019 abr bag 0 [86] RINGTE 0.5–0.7 DEA Ethanol 13 313 0.0–1.0
2019 abr bag 0 [86] RINGTE 0.5–0.7 DEA Methanol 14 313 0.0–1.0
1994 rin oel 0 [87] RINGTE 1.5–1.7 DEA Water 12 293–353 0.02–0.07
1996 vaz alv 0 [88] OTHER 0.3–0.5 DEA Water 66 298–323 0.0–1.0
1998 alv ren 0 [89] DROPW 0.8 DEA Water 6 298–323 0.15
2001 agu tre 0 [90] DROPSH 1.3–1.5 DEA Water 21 293–363 0.02–0.07
2003 alv can 0 [91] DROPSH 0.5 DEA Water 6 298–323 0.15
2014 fu du 0 [92] OTHER 2.0 DEA Water 12 293–323 0.04–0.07
2018 dey das 0 [93] DROPSH 0.8 DEA Water 9 313–333 0.02–0.07
2018 fu xie 0 [94] OTHER 0.6 DEA Water 15 303–323 0.0–1.0
2018 sho & 0 [95] RINGTE 0.6–0.9 DEA Water 65 298–348 0.0–1.0
2015 lop igl 0 [96] DROPV 0.1 Octane Isooctane 55 293–313 0.0–1.0
2003 seg del 0 [97] DROPV 0.2 Octane Ethanol 17 298 0.07–0.92
2011 mej car 0 [98] BUBBLEP 0.3 Octane Ethanol 31 298–318 0.04–0.90
2016 and mar 0 [99] DROPSH 0.3 Octane o-Xylene 11 298 0.05–0.95
2013 gay cas 0 [45] DROPV 0.2–0.3 Octane DMC 12 308 0.05–0.95
2021 vak alw 0 [60] RINGTE 0.4–0.5 Nonane Benzene 44 298–313 0.0–1.0
2016 and mar 0 [99] DROPSH 0.3–0.4 Nonane o-Xylene 11 298 0.05–0.95
2020 ond sar 0 [100] DROPV 0.3 Methyl palmitate Ethanol 1 298 0.04
1964 eva cle 0 [101] BUBBLEP 0.2–0.3 Dodecane Isooctane 9 303 0.0–1.0
2022 yan wu 0 [102] DROPSH 0.2–0.4 Dodecane Hexadecane 36 298–573 0.31–0.80
2011 mej car 0 [98] BUBBLEP 0.3 Dodecane Ethanol 22 298–303 0.05–0.95
1966 sch ran 0 [81] BUBBLEP 0.5–0.6 Dodecane Benzene 23 298–313 0.0–1.0
2018 pra mun 0 [103] DROPSH 0.3 Dodecane Methylcyclohexane 9 293 0.1–0.9
2010 bi li 0 [104] CAPRISE 0.4 Dimethyl ether Propane 114 243–333 0.29–0.69
1986 nag rob 0 [105] DROPW 0.1–0.7 Decane Carbon dioxide 41 344–378 0.10–0.51
2001 sha rob 0 [106] DROPSH 0.1–0.7 Decane Carbon dioxide 23 344 0.10–0.89
2002 rol cac 0 [107] RINGTE 0.3–0.4 Decane Heptane 25 293–333 0.0–1.0
2002 gom mej 0 [82] DROPW 0.6 Decane Isooctane 6 298 0.0–1.0
2002 rol cac 0 [107] RINGTE 0.4 Decane Hexadecane 25 293–333 0.0–1.0
2005 que cac 0 [108] OTHER 0.3–0.4 Decane Docosane 19 313–343 0.2–0.8
2011 mej car 0 [98] BUBBLEP 0.3 Decane Ethanol 32 303–318 0.02–0.97
2016 and mar 0 [99] DROPSH 0.4 Decane o-Xylene 11 298 0.05–0.95
2013 gay cas 0 [45] DROPV 0.3 Decane DMC 11 308 0.05–0.95
1964 gri rud 0 [109] CAPRISE 0.1 Hydrogen Deuterium 67 16–20 0.30–0.96
1967 bla kro 0 [110] CAPRISE 0.1 Hydrogen Argon 21 87–140 0.0–0.05
2019 abr bag 0 [86] RINGTE 0.5–0.7 MEA Ethanol 14 313 0.0–1.0
2020 abr bag 0 [111] RINGTE 0.5–0.7 MEA Ethanol 12 303 0.27–0.98
2019 abr bag 0 [86] RINGTE 0.5–0.7 MEA Methanol 12 313 0.0–1.0
2020 abr bag 0 [111] RINGTE 0.5–0.7 MEA Methanol 10 303 0.28–0.99
1981 ano & 5 [112] CAPRISE 0.9–1.1 MEA Water 20 303–393 0.03–0.05
1997 vaz alv 0 [113] OTHER 0.4–0.6 MEA Water 83 298–323 0.0–1.0
1998 alv ren 0 [89] DROPW 1.5–1.6 MEA Water 5 298–323 0.23
2012 han jin 0 [114] DROPSH 0.6–0.8 MEA Water 44 303–333 0.0–1.0
2013 jay jay 0 [115] DROPV 1.8 MEA Water 4 313–343 0.54
2013 jay wee 0 [116] DROPV 2.5–2.9 MEA Water 24 303–333 0.07–0.41
2014 fu du 0 [92] OTHER 2.0 MEA Water 12 293–323 0.07–0.11
2018 fu xie 0 [94] OTHER 0.6 MEA Water 15 303–323 0.0–1.0
2018 sho & 0 [95] RINGTE 0.6–0.9 MEA Water 66 298–348 0.0–1.0
2014 lun cow 0 [117] DROPSH 0.3–0.4 Heptane Isooctane 4 294 0.0–1.0
2015 lop igl 0 [96] DROPV 0.1 Heptane Isooctane 55 293–313 0.0–1.0
1958 koe vil 0 [118] CAPRISE 0.1–0.7 Heptane Hexadecane 6 293–303 0.0–1.0
2002 rol cac 0 [107] RINGTE 0.3–0.4 Heptane Hexadecane 25 293–333 0.0–1.0
2011 moh & 0 [70] CAPRISE 0.2 Heptane Hexadecane 35 293–323 0.2–0.9
2003 que sil 0 [119] RINGTE 0.6–0.8 Heptane Docosane 12 313–343 0.25–0.75
1994 pap pan 1 [76] CAPRISE 0.1 Heptane Ethanol 22 298 0.0–1.0
2016 yue liu 0 [120] OTHER 0.2 Heptane Ethanol 66 293–318 0.0–1.0
1970 kon lya 1 [67] BUBBLEP 0.3–0.4 Heptane Benzene 27 293–333 0.0–1.0
1993 zho zhu 0 [121] BUBBLEP 0.5–0.7 Heptane Benzene 20 293–303 0.08–0.90
1970 lam ben 0 [58] BUBBLEP 0.6–0.7 Cyclopentane Benzene 9 298 0.11–0.90
1996 hei sch 0 [122] CAPRISE 0.-0.2 R125 R143a 21 223–333 0.28–0.79
1999 oka shi 0 [123] CAPRISE 0.2 R125 R143a 7 273–303 0.41
2001 fro wil 1 [124] OTHER 0.2 R125 R143a 10 243–333 0.41
1996 hei sch 0 [122] CAPRISE 0–0.2 R125 R32 8 223–333 0.27–0.77
1999 oka shi 0 [123] CAPRISE 0.2 R125 R32 18 273–313 0.31–0.35
2003 dua lin 0 [125] CAPRISE 0.2 R125 R32 236 253–333 0.18–0.58
1996 hei sch 0 [122] CAPRISE 0.1–0.2 R125 R152a 21 223–333 0.16–0.69
2009 bi zha 1 [126] CAPRISE 0.4 R125 R152a 54 243–328 0.06–0.19
1996 hei sch 0 [122] CAPRISE 0–0.2 R125 R134a 21 223–333 0.24–0.75
1996 hei sch 0 [122] CAPRISE 0.1–0.2 R143a R134a 21 223–333 0.23–0.72
2004 lin dua 0 [127] CAPRISE 0.2 R143a R134a 105 257–329 0.29–0.79
2003 lin dua 2 [128] CAPRISE 0.1 R143a R227ea 241 253–333 0.39–0.85
2016 yue liu 0 [120] OTHER 0.2 Isooctane Ethanol 44 288–318 0.0–1.0
1964 eva cle 0 [101] BUBBLEP 0.2–0.3 Isooctane Benzene 9 303 0.0–1.0
2015 zha li 3 [129] DROPV 0.2 Isooctane Methylcyclohexane 44 293–308 0.0–1.0
2021 vak alw 0 [60] RINGTE 0.5 Hexadecane Benzene 44 298–313 0.0–1.0
2018 pra mun 0 [103] DROPSH 0.3 Hexadecane Methylcyclohexane 9 293 0.1–0.90
1969 mye cle 0 [130] BUBBLEP 0.2–0.3 Hexadecane D4 9 303 0.0–1.0
1929 ham and 0 [56] CAPRISE 0.1–0.2 Diethyl ether Benzene 4 298 0.24–1.0
1965 spr pra 1 [131] CAPRISE 0.2 Carbon monoxide Nitrogen 10 84 0.0–1.0
1970 kon lya 1 [67] BUBBLEP 0.3 Ethanol Methanol 39 293–333 0.0–1.0
1929 ham and 0 [56] CAPRISE 0.1 Ethanol Acetone 5 298 0.0–1.0
1902 ram ast 0 [132] CAPRISE 0.2–0.8 Ethanol Benzene 39 283–351 0.0–1.0
1907 rit & 0 [133] UNKN 0.1 Ethanol Benzene 5 298 0.0–1.0
1917 mor sca 0 [134] UNKN 0.1–0.2 Ethanol Benzene 13 298–318 0.0–1.0
1929 ham and 0 [56] CAPRISE 0.1–0.2 Ethanol Benzene 4 298 0.42–1.0
1935 tri & 0 [79] UNKN 0.1 Ethanol Benzene 8 295 0.0–1.0
1974 mye cle 0 [62] BUBBLEP 0.3 Ethanol Benzene 7 303 0.0–1.0
1885 tra & 0 [135] UNKN 0.1 Ethanol Water 7 288 0.01–1.0
1903 des & 0 [136] UNKN 0.2–0.7 Ethanol Water 11 288 0.0–1.0
1913 mor nei 0 [137] DROPW 0.1–0.5 Ethanol Water 36 273–303 0.0–1.0
1922 bir & 0 [138] DROPW 0.3–0.6 Ethanol Water 15 298 0.0–1.0
1936 ern wat 0 [139] CAPRISE 0.1–0.2 Ethanol Water 9 298 0.04–0.78
1937 val hoh 0 [140] UNKN 0.1–0.5 Ethanol Water 44 293–323 0.0–0.88
1940 bon bym [141] CAPRISE 0.2–0.5 Ethanol Water 42 293–362 0.01–0.83
1950 sta guy 0 [142] RINGTE 1 Ethanol Water 11 298 0.0–0.85
1951 tei gor 0 [143] BUBBLEP 0.2–0.8 Ethanol Water 200 263–333 0.0–1.0
1968 efr & 1 [144] BUBBLEP 0.5–1.4 Ethanol Water 54 283–333 0.02–1.0
1986 wan jey 0 [145] RINGTE 0.5–1.2 Ethanol Water 5 303 0.0–1.0
1988 kal bid 0 [146] BUBBLEP 0.2–0.4 Ethanol Water 12 351–369 0.01–0.90
1995 vaz alv 0 [147] RINGTE 0.3–0.9 Ethanol Water 98 293–323 0.0–1.0
2005 bel her 0 [148] DROPW 0.2–0.3 Ethanol Water 11 298 0.0–1.0
2009 max & 0 [149] DROPV 0.2–0.3 Ethanol Water 13 298 0.0–1.0
2016 lud kus 0 [150] BUBBLEP 0.3 Ethanol Water 1 293 0.04
2018 gon pal 0 [151] RINGTE 2 Ethanol Water 6 298 0.27–0.60
2019 raz hal 0 [152] RINGTE 0.5–0.9 Ethanol Water 10 298–313 0.0–0.09
2020 gon pan 0 [153] OTHER 0.4 Ethanol Water 4 298 0.28–0.61
2020 kho rah 0 [154] DROPSH 0.8 Ethanol Water 10 298 0.0–0.002
2021 gom nav [155] OTHER 0.3 Ethanol Water 16 293–323 0.04–0.16
2012 bag ami 0 [156] RINGTE 0.5–1.0 Ethanol Heavy water 84 288–318 0.001–0.86
2004 ouy lu 3 [47] DROPSH 0.3 Ethanol o-Xylene 11 298 0.0–1.0
1974 mye cle 0 [62] BUBBLEP 0.3 Ethanol Methylcyclohexane 10 303 0.0–1.0
2003 azi hem 0 [157] RINGTE 0.3–0.7 Ethanol Ethylene glycol 56 293–323 0.0–1.0
1973 cam kar 0 [158] UNKN 0.7 Methanol Acetone 12 298 0.0–1.0
1982 sin lar 0 [64] CAPRISE 0.1 Methanol Acetone 8 308 0.0–1.0
1917 mor sca 0 [134] UNKN 0.2 Methanol Benzene 14 273–303 0.0–1.0
1933 sha muk 0 [63] DROPW 0.9–1.1 Methanol Benzene 5 298 0.1–0.9
1885 tra & 0 [135] UNKN 0.1 Methanol Water 6 288 0.01–1.0
1913 mor nei 0 [137] DROPW 0.5–0.6 Methanol Water 26 273–303 0.0–1.0
1937 val hoh 0 [140] UNKN 0.1–0.4 Methanol Water 31 291–323 0.05–1.0
1951 tei gor 0 [143] BUBBLEP 0.2–0.7 Methanol Water 110 263–323 0.0–1.0
1958 uch mat 0 [159] OTHER 0.5–1.8 Methanol Water 76 303–363 0.0–1.0
1968 efr & 1 [144] CAPRISE 0.5–1.0 Methanol Water 30 283–333 0.17–1.0
1988 kal bid 0 [146] BUBBLEP 0.3–0.5 Methanol Water 11 339–356 0.17–0.95
1995 vaz alv 0 [147] RINGTE 0.3–0.9 Methanol Water 98 293–323 0.0–1.0
2009 max & 0 [149] DROPV 0.2–0.3 Methanol Water 13 298 0.0–1.0
2012 bag ami 0 [156] RINGTE 0.5–0.9 Methanol Heavy water 64 288–318 0.00–0.82
1929 ham and 0 [56] CAPRISE 0.1–0.2 Acetone Benzene 5 298 0.30–1.0
1970 shi & 1 [160] CAPRISE 4.7–5.7 Acetone Benzene 10 298 0.0–1.0
1988 ron lu 0 [161] BUBBLEP 0.6–0.7 Acetone Benzene 18 303 0.0–1.0
1917 mor sca 0 [134] UNKN 0.2–0.3 Acetone Water 78 273–318 0.0–1.0
1932 ern lit 0 [162] CAPRISE 0.2 Acetone Water 9 298 0.03–0.74
1951 tei gan 0 [163] BUBBLEP 0.2–0.6 Acetone Water 81 273–313 0.0–1.0
1957 how mca [164] CAPRISE 0.1–0.4 Acetone Water 81 288–343 0.0–1.0
1970 kon lya 1 [67] BUBBLEP 0.3–0.9 Acetone Water 17 293 0.0–1.0
1976 tor pog 0 [165] BUBBLEP 0.2–0.5 Acetone Water 48 298–343 0.0–1.0
1988 ron lu 0 [161] BUBBLEP 0.6–1.9 Acetone Water 19 303 0.0–1.0
2007 end kah 0 [66] DROPSH 0.3–0.7 Acetone Water 70 288–328 0.0–1.0
2004 ouy yan 0 [49] DROPSH 0.3 Acetone o-Xylene 8 298 0.10–0.80
1970 lam ben 0 [58] BUBBLEP 0.8 Benzene o-Xylene 8 298 0.10–0.79
2013 bai kav 0 [166] CAPRISE 0.1–1.7 Methane Ethane 70 93–283 0.0–1.0
2017 sen hug 0 [167] CAPRISE 0.7 Methane Propane 27 272–303 0.0–0.55
1960 bla & 0 [168] CAPRISE 0.3–0.5 Methane Nitrogen 33 76–90 0.29–0.91
1965 spr pra 1 [131] CAPRISE 0.2–0.5 Methane Nitrogen 12 91 0.0–1.0
1966 fuk bel 0 [169] CAPRISE 0.1–0.6 Methane Krypton 35 110–118 0.18–0.67
1960 bla & 0 [168] CAPRISE 0.4–0.6 Methane Argon 28 84–111 0.29–1.0
2009 tan hig 2 [170] CAPRISE 0.4 Propane R32 99 280–300 0.00–1.00
2010 zha bi 0 [171] CAPRISE 0.2 Propane R152a 51 248–328 0.27–0.59
1996 hei sch 0 [122] CAPRISE 0.1–0.2 R32 R134a 17 223–333 0.23–0.72
2003 yua hon 0 [172] CAPRISE 0.2 R32 R134a 300 254–334 0.35–0.86
2021 liu kon 0 [173] CAPRISE 0.2–0.3 R32 R1123 37 266–307 0.48–0.87
2005 lin dua 0 [174] CAPRISE 0.3 R32 R227ea 412 252–334 0.54–0.90
2016 cui bi 0 [175] SLS 0.1 R32 R1234yf 24 293–348 0.52–1.0
2021 liu kon 0 [173] CAPRISE 0.1–0.2 R32 R1234yf 36 267–333 0.27–0.89
2013 tan hig 0 [176] CAPRISE 0.6 R32 R1234ze(E) 26 273–323 0.69
2016 cui bi 0 [175] SLS 0.1 R32 R1234ze(E) 26 293–348 0.30–1.0
1996 hei sch 0 [122] CAPRISE 0.1–0.2 R152a R134a 21 223–333 0.24–0.71
1969 ano & 2 [177] OTHER 1.0 R22 R115 1 298 0.63
1959 bla rud 0 [178] CAPRISE 0.3–0.6 Nitrogen Oxygen 34 61–88 0.1–0.9
1994 ost ost 1 [179] CAPRISE 0.3–0.5 Nitrogen Oxygen 88 55–78 0.0–1.0
2008 bai kav 0 [180] CAPRISE 0.1–0.2 Nitrogen Oxygen 61 80–132 0.0–1.0
2006 kav and 0 [181] CAPRISE 0.05–1.3 Helium Argon 33 108–140 0.0–0.01
2006 kav and 0 [181] CAPRISE 0.05–0.2 Neon Argon 27 111–140 0.0–0.04
2004 bai kav 0 [182] CAPRISE 0.1–0.3 Nitrogen Helium 38 90–118 0.97–1.0
1960 bla & 0 [168] CAPRISE 0.3–0.4 Nitrogen Argon 21 69–86 0.02–0.7
1965 spr pra 1 [131] CAPRISE 0.2–0.3 Nitrogen Argon 19 84 0.0–1.0
1946 cle & 0 [183] RINGTE 1 Water Ethylene glycol 2 298 0.0–1.0
1971 nak mat 0 [184] CAPRISE 0.3 Water Ethylene glycol 18 303 0.0–1.0
1981 won chu [185] RINGTE 1–1.2 Water Ethylene glycol 4 298 0.8–1.0
1991 hok che 0 [186] BUBBLEP 0.4–0.6 Water Ethylene glycol 174 295–471 0.0–0.95
1996 hor fuk 0 [187] CAPRISE 0.5–0.8 Water Ethylene glycol 44 253–298 0.0–1.0
1998 tsi mol 0 [188] RINGTE 1.6–2.4 Water Ethylene glycol 64 283–323 0.0–1.0
2004 hab hov 0 [189] RINGTE 1.4–2.0 Water Ethylene glycol 15 298 0.80–0.99
2008 zha zha 2 [190] DROPV 1.1–1.4 Water Ethylene glycol 48 308–323 0.0–1.0
2011 raf bag 0 [191] RINGTE 0.6–0.9 Water Ethylene glycol 54 283–308 0.10–0.99
2014 tiw son 0 [192] OTHER 0.4 Water Ethylene glycol 4 298 0.88–1.0
1959 bla rud 0 [178] BUBBLEP 0.4–1.0 Oxygen Argon 28 69–88 0.19–0.9
1965 saj oku 0 [193] RINGTE 0.3 Oxygen Argon 36 79–88 0.0–1.0
2016 bi cui 0 [194] SLS 0.1 R134a R1234yf 23 293–363 0.32–0.81
2016 bi cui 0 [194] SLS 0.1 R134a R1234ze(E) 9 293–369 0.44
1958 wat van 0 [195] RINGTE 0.5 D4 MD4M 2 293 0.39–0.78
1958 wat van 0 [195] RINGTE 0.5 D4 MD2M 3 293 0.3–0.7
1987 nad & 0 [196] UNKN 0–0.4 Krypton Argon 60 120–200 0.0–1.0
1994 sul bai 0 [197] CAPRISE 0.1–0.8 Krypton Argon 40 120–193 0.0–1.0
1958 wat van 0 [195] RINGTE 0.5 MD4M D5 3 293 0.26–0.66
1958 wat van 0 [195] RINGTE 0.5 MD3M D5 1 293 0.5
2021 liu kon 0 [173] CAPRISE 0.2 R1123 R1234yf 39 234–312 0.11–0.73

BUBBLEP maximum bubble pressure; CAPRISE capillary rise; DROPSH pendant drop shape; DROPV drop volume; DROPW drop weight; OTHER other; RINGTE ring tensiometer; SLS surface light scattering; UNKN unknown

Results

Evaluations were first made with the interaction parameter in Eq. 4 set to zero (δij = 0) for all the mixtures. All properties such as the pure fluid surface tensions and the mixture densities and compositions required in Eqs. 14 were obtained using the REFPROP v10 [32] computer program, with additional changes that are detailed in the supplementary information, Appendix A. A second set of evaluations was made after fitting the binary interaction parameter δij to the experimental data with a trust-region reflective least squares algorithm in Python, scipy.optimize.curve_fit [198].1 A single binary interaction parameter was fit for each fluid mixture pair, including all data sets for any given pair. For discussion of the results, we define AAPD as the average absolute percentage deviation, where PCTDEV = 100(σcalc − σexp)/σexp, and AAPD = (∑│PCTDEV│)/n, and the summation is over all n points. AAD is the average absolute deviation, AAD = (∑│σcalc − σexp │)/n, expressed in mN·m−1, and AADMAX is the maximum value of the AAD. We do not include in the statistics any points where the REFPROP program had convergence errors. Since the surface tension is zero at the critical point, some points near the critical region may have unusually large percentage deviations and it is more informative to examine the absolute deviation instead. Detailed results for each data set listed in Table 2 are presented in the supplemental information in Appendix B, Table B1. The data are also provided in the supplemental information. Here we will discuss the results in terms of chemical families.

Mixtures with n-Alkanes

Table 3 summarizes the results for mixtures with n-alkanes, presenting results both for binary interaction parameters set to zero and for fitted binary interaction parameters. Figure 1 displays these results graphically. The mixtures considered in this section contain n-alkanes mixed only with nonpolar fluids (branched alkanes, naphthenes, cryogens, and CO2) except for four mixtures with polar aprotic fluids dimethyl ether, acetone, dimethyl carbonate, and octamethylcyclotetrasiloxane (D4). Excluded from these results are mixtures of n-alkanes with hydrogen bonding fluids, aromatics, or halocarbons; these mixtures are treated separately in later sections. The results in Table 3 are arranged by mixture classes.

Table 3.

Summary of results for alkane mixtures

Mixture class Fluids Npts δij = 0 Fitted results
AAPD (%) AAD (mN·m−1) max AD (mN·m−1) AAPD (%) AAD (mN·m−1) max AD (mN·m−1) δij
n-Alkane/br-alkane Decane/isooctane 6 3.68 0.79 0.96 1.37 0.29 0.65 − 0.026
n-Alkane/br-alkane Dodecane/isooctane 9 1.22 0.26 0.47 0.16 0.03 0.08 − 0.010
n-Alkane/br-alkane Heptane/isooctane 59 1.32 0.24 0.41 0.53 0.10 0.33 − 0.010
n-Alkane/br-alkane Octane/isooctane 55 1.41 0.27 0.38 0.46 0.09 0.33 − 0.010
n-Alkane/cryogen Methane/argon 28 2.72 0.42 1.22 2.34 0.36 0.85 0.017
n-Alkane/cryogen Methane/krypton 35 1.30 0.19 0.31 0.35 0.05 0.18 0.008
n-Alkane/cryogen Methane/nitrogen 45 9.71 1.08 2.24 3.68 0.42 0.88 0.067
n-Alkane/ether Propane/dimethyl ether 114 1.37 0.11 0.36 1.38 0.11 0.37 0.001
n-Alkane/n-alkane Butane/methane 1 18.18 0.15 0.15 0.00 0.00 0.00 − 0.089
n-Alkane/n-alkane Decane/docosane 19 6.23 1.51 2.00 0.68 0.17 0.46 0.036
n-Alkane/n-alkane Decane/heptane 25 1.86 0.39 0.61 0.90 0.19 0.61 − 0.012
n-Alkane/n-alkane Decane/hexadecane 25 1.10 0.27 0.61 0.86 0.21 0.61 0.005
n-Alkane/n-alkane Dodecane/hexadecane 36 3.04 0.40 0.92 2.86 0.28 0.74 0.011
n-Alkane/n-alkane Heptane/docosane 12 5.72 1.27 2.13 2.03 0.49 1.70 0.030
n-Alkane/n-alkane Heptane/hexadecane 66 2.22 0.50 0.91 0.98 0.22 0.91 0.015
n-Alkane/n-alkane Hexane/dodecane 21 0.82 0.18 0.42 0.56 0.12 0.28 0.006
n-Alkane/n-alkane Methane/ethane 70 8.05 0.56 2.47 3.29 0.19 1.70 0.074
n-Alkane/n-alkane Methane/propane 27 5.69 0.12 0.24 5.67 0.12 0.24 − 0.001
n-Alkane/n-alkane Pentane/heptane 99a 8.80 0.11 0.67 8.80 0.11 0.67 0.000
n-Alkane/n-alkane Pentane/hexadecane 35 8.07 1.58 2.45 1.67 0.31 1.05 0.045
n-Alkane/n-alkane Pentane/methane 7 54.34 1.35 1.70 10.43 0.16 0.36 0.227
n-Alkane/naphthene Decane/cyclohexane 6 2.68 0.66 0.70 1.14 0.28 0.68 − 0.017
n-Alkane/naphthene Dodecane/methylcyclohexane 9 2.52 0.62 0.88 0.46 0.11 0.37 − 0.018
n-Alkane/naphthene Heptane/cyclohexane 55 1.44 0.30 0.64 0.56 0.12 0.35 0.011
n-Alkane/naphthene Hexadecane/methylcyclohexane 9 0.67 0.18 0.57 0.72 0.19 0.54 0.002
n-Alkane/naphthene Hexane/cyclohexane 27 0.96 0.20 0.54 0.75 0.16 0.54 0.007
n-Alkane/naphthene Pentane/cyclohexane 7 2.02 0.42 0.62 0.45 0.09 0.16 0.013
n-Alkane/other Butane/carbon dioxide 42b 28.99 0.38 1.18 20.98 0.17 0.67 − 0.178
n-Alkane/other Hexane/carbon dioxide 5 28.23 2.62 5.28 1.37 0.15 0.33 0.186
n-Alkane/other Decane/carbon dioxide 64 468.69 0.82 1.97 358.68 0.49 1.08 0.081
n-Alkane/other Decane/DMC 11 3.40 0.78 1.62 2.04 0.47 0.91 0.023
n-Alkane/other Octane/DMC 12 5.22 1.11 2.22 2.41 0.52 1.23 0.036
n-Alkane/siloxane Hexadecane/D4 9 5.39 1.13 2.12 1.90 0.39 0.72 0.045
Naphthene/br-alkane Cyclohexane/isooctane 126 1.38 0.27 0.68 0.60 0.12 0.68 0.010
Naphthene/br-alkane Methylcyclohexane/isooctane 44 0.56 0.12 0.25 0.53 0.11 0.25 0.001
Naphthene/ketone Cyclohexane/acetone 54 0.94 0.21 0.48 0.83 0.19 0.51 0.002

aSix points omitted from statistics due to REFPROP calculation problems

bThree points omitted from statistics due to REFPROP calculation problems

Fig. 1.

Fig. 1

Summary of results for mixtures with alkanes

Overall, Fig. 1 and Table 3 show that without the use of binary interaction parameters, non-polar mixtures such as linear and branched alkanes, and linear and branched alkanes with naphthenes have average absolute percentage deviations of about 3 % or less. The propane/dimethyl ether mixture and the cyclohexane/acetone mixture also are represented very well without an interaction parameter. Mixtures of linear alkanes show increasing deviations as the mixtures become more asymmetric with respect to size, as has been discussed previously [199]. Figure 2 shows that the deviations of the parachor model for a series of mixtures of components of varying chain lengths (pentane, heptane, decane, and dodecane). Note that the full citations for the reference codes used in the figures are given in Table 2. The pentane/hexadecane mixture has the largest size difference, and the largest deviation, reaching 2.5 mN·m−1, and this deviation can be reduced with the use of a fitted binary interaction parameter to 1 mN·m−1 indicating that even mixtures of linear alkanes that only have size differences can benefit from the use of a binary interaction parameter. The temperatures of the data covered 293 K to 598 K, the details for each data set are given in Table 2. Although we used a simple constant binary interaction parameter, Hugill and Van Welsenes [16] and Gasem et al. [200] pointed out that the binary interaction parameters are temperature dependent, and introducing temperature dependence in the interaction parameters could further reduce the deviations.

Fig. 2.

Fig. 2

Deviations between the model and experimental data for mixtures of a series of n-alkanes with hexadecane

Mixtures of n-alkanes with dimethyl carbonate and hexadecane with a siloxane have larger deviations with the maximum absolute deviation of approximately 2 mN·m−1, and although the use of an interaction parameter can reduce the deviations, the parachor model does not perform quite as well for these systems (with a max AD of ~ 1 mN·m−1) as it does for the n-alkane/n-alkane systems that often have max AD of 0.7 mN·m−1 or less with an interaction parameter. There are three mixtures of methane with cryogens; methane/argon and methane/krypton were represented to within 3 % without an interaction parameter, but methane/nitrogen required a binary interaction parameter to achieve an AAPD of less than 4 %.

Finally, the parachor model without interaction parameters does not adequately capture the mixture composition behavior of n-alkanes with carbon dioxide, and an interaction parameter is needed. This is illustrated in Fig. 3. The temperatures of the data covered 303 K to 378 K, the details for each data set are given in Table 2. Similar to what is indicated in Fig. 2, Fig. 3 shows the largest deviations occur for systems with the largest size differences, with decane/CO2 showing larger deviations than hexane/CO2 and butane/CO2. For the hexane/CO2 mixture without interaction parameters, the AAPD is near 30 % but can be reduced to less than 2 % (0.3 mN·m−1) with a binary interaction parameter. Note that the percentage deviations for decane/CO2 and butane/CO2 are still large even with a binary interaction parameter, but this is because the data sets contain points approaching the critical region where the values of the surface tensions are small and the resulting percentage deviations are very large.

Fig. 3.

Fig. 3

Deviations between the model and experimental data for mixtures of a series of n-alkanes with carbon dioxide

Mixtures with Alcohols

Table 4 summarizes the results for mixtures with alcohols, and Fig. 4 displays these results graphically. We include only mixtures with methanol and ethanol; larger alcohols are not presently available in REFPROP. This group of mixtures includes alcohols with a variety of fluid types [alcohols, n-alkanes, branched alkanes, amines, aromatics, glycols, ketones, naphthenes, and a fatty acid methyl ester (FAME)]. Mixtures with water are excluded and treated in Sect. 4.3. For the binary mixture of methanol and ethanol, the parachor method represents the surface tension to essentially within experimental uncertainty, and an interaction parameter is unnecessary. Similarly, mixtures of methanol and ethanol with acetone are represented very well without an interaction parameter. Mixtures of alcohols with aromatics and alcohols with linear alkanes have AAPD’s without binary interaction parameters ranging from roughly 1 % to 5 %, which can be reduced to less than 3 % with binary interaction parameters. In Fig. 4, for mixtures without binary interaction parameters, mixtures of alcohols with the amines MEA and DEA, and with ethylene glycol show large deviations. Of the components in mixtures with methanol and ethanol, pure MEA, DEA, and ethylene glycol have the largest values of surface tension (approximately 45 mN·m−1 at 313 K) compared to less than about 27 mN·m−1 for the other fluids in Table 4, and approximately 21 mN·m−1 for pure methanol and ethanol. Maximum deviations can be as large as 7 mN·m−1 for the mixtures with these three fluids and the parachor model is not recommended without a binary interaction parameter. With a binary interaction parameter, the maximum deviations can be reduced to 1–2 mN·m−1.

Table 4.

Summary of results for alcohol mixtures

Mixture class Fluids Npts δij = 0 Fitted results
AAPD (%) AAD (mN·m−1) max AD (mN·m−1) AAPD (%) AAD (mN·m−1) max AD (mN·m−1) δij
Alcohol/alcohol Ethanol/methanol 39 0.37 0.08 0.18 0.21 0.04 0.18 − 0.002
Alcohol/amine Ethanol/DEA 13 4.78 1.47 3.67 1.83 0.64 1.44 0.046
Alcohol/amine Ethanol/MEA 26 10.65 3.55 5.45 1.47 0.52 1.17 0.089
Alcohol/amine Methanol/DEA 14 1.97 0.66 2.68 1.80 0.63 2.00 0.013
Alcohol/amine Methanol/MEA 22 7.43 2.62 4.84 1.23 0.47 1.06 0.063
Alcohol/aromatic Ethanol/benzene 76 2.71 0.64 1.59 1.53 0.36 1.16 0.020
Alcohol/aromatic Ethanol/m-xylene 11 1.07 0.27 0.52 0.79 0.20 0.32 0.006
Alcohol/aromatic Ethanol/o-xylene 11 0.83 0.21 0.45 0.56 0.15 0.21 0.005
Alcohol/aromatic Ethanol/p-xylene 11 0.99 0.24 0.55 0.79 0.20 0.33 0.006
Alcohol/aromatic Ethanol/toluene 15 2.60 0.60 2.25 2.95 0.69 1.90 0.015
Alcohol/aromatic Methanol/benzene 19a 5.00 1.25 2.04 1.42 0.35 0.92 0.033
Alcohol/aromatic Methanol/p-xylene 44 5.42 1.30 2.58 1.42 0.35 1.39 0.040
Alcohol/aromatic Methanol/toluene 55 2.32 0.55 1.17 2.06 0.50 1.38 0.007
Alcohol/br-alkane Ethanol/isooctane 44 0.86 0.16 0.45 0.66 0.13 0.32 − 0.005
Alcohol/FAME Ethanol/methyl palmitate 1 8.08 1.80 1.80 0.00 0.00 0.00 0.089
Alcohol/glycol Ethanol/ethylene glycol 56 11.44 3.26 7.09 1.67 0.47 1.40 0.100
Alcohol/ketone Ethanol/acetone 5 1.08 0.25 0.56 0.82 0.19 0.36 − 0.008
Alcohol/ketone Methanol/acetone 20 0.52 0.12 0.32 0.44 0.10 0.32 0.001
Alcohol/n-alkane Ethanol/decane 32 0.88 0.19 0.53 0.76 0.16 0.40 0.004
Alcohol/n-alkane Ethanol/dodecane 22 1.43 0.33 0.85 0.92 0.21 0.42 0.010
Alcohol/n-alkane Ethanol/heptane 88 5.81 1.14 2.15 1.82 0.36 0.66 0.045
Alcohol/n-alkane Ethanol/hexane 114 1.80 0.34 0.79 0.99 0.19 0.41 0.013
Alcohol/n-alkane Ethanol/octane 48 1.14 0.23 0.77 0.78 0.16 0.61 0.008
Alcohol/n-alkane Methanol/hexane 26 8.21 1.47 3.89 3.16 0.56 1.51 0.073
Alcohol/naphthene Ethanol/cyclohexane 17 1.98 0.44 0.83 0.82 0.18 0.43 0.015
Alcohol/naphthene Ethanol/methylcyclohexane 10 1.82 0.39 0.83 1.07 0.23 0.41 0.015

aOne point omitted from statistics due to REFPROP calculation problems

Fig. 4.

Fig. 4

Summary of results for mixtures with alcohols

Mixtures with Water

Table 5 summarizes the results for mixtures with water, and Fig. 5 displays these results graphically. The mixtures of water and heavy water with methanol and ethanol, and those with water and acetone show extremely large deviations, with a maximum AAD reaching 15–41 mN·m−1. The parachor model completely fails to represent the surface tension of these mixtures. The use of a single, constant binary interaction parameter somewhat reduces the magnitude of the deviations, but the model is still not very good with maximum deviations on the order of 5–13 mN·m−1. Without interaction parameters, all organic/aqueous mixtures investigated here show a common deviation pattern, where the deviations have an asymmetric shape with respect to composition, with a very rapid change as one nears the pure water end [8]. Water also has a very high surface tension (~ 70 mM·m−1 at 313 K) compared to other fluids. Figure 6, showing the percentage deviations of the acetone/water mixture as a function of composition, illustrates this pattern. The temperatures of the data covered 273 K to 343 K, the details for each data set are given in Table 2. One can see that although the use of an interaction parameter can somewhat reduce the size of the deviations, it cannot properly reproduce the composition behavior. A small amount of the organic can greatly change the surface tension, and the parachor model does not have the ability to model this composition behavior. It is possible that a more complex, composition and temperature dependent interaction parameter could capture this behavior, but it is beyond the scope of this work.

Table 5.

Summary of results for aqueous mixtures

Mixture class Fluids Npts δij = 0 Fitted results
AAPD (%) AAD (mN·m−1) max AD (mN·m−1) AAPD (%) AAD (mN·m−1) max AD (mN·m−1) δij
Water/alcohol Heavy water/ethanol 84 40.53 13.18 27.65 15.06 5.14 12.25 0.353
Water/alcohol Heavy water/methanol 64 23.30 9.19 14.99 7.22 2.85 5.58 0.184
Water/alcohol Water/ethanol 615 32.34 11.24 25.27 15.23 5.07 12.90 0.304
Water/alcohol Water/methanol 401 18.62 7.14 16.73 5.48 2.04 5.42 0.164
Water/amine Water/DEA 212 4.93 2.67 6.74 1.84 1.03 5.79 0.037
Water/amine Water/MEA 273 5.41 3.05 7.10 2.30 1.32 4.13 0.041
Water/glycol Water/ethylene glycol 427 4.91 2.77 7.18 2.03 1.11 4.40 0.041
Water/ketone Water/acetone 403 55.44 18.90 40.51 14.90 5.33 12.96 0.433

Fig. 5.

Fig. 5

Summary of results for aqueous mixtures

Fig. 6.

Fig. 6

Relative deviations as a function of composition of water for acetone/water mixture

Mixtures with Aromatics

Table 6 summarizes the results for mixtures with aromatics, and Fig. 7 displays these results graphically. With a fitted binary interaction parameter all mixtures show an AAPD below 5 % except for the mixture toluene/octane that has an AAPD of 5 %. Without interaction parameters some of the points exceed 10 % deviation. However, these points occur at relatively high temperatures (380 K to 400 K) where the magnitude of the deviation is not excessively large (AAD of less than 0.82 mN·m−1) but the percentage deviations are larger due to the smaller value of the surface tension at higher temperatures. Other systems with deviations of approximately 10 % without interaction parameters are o-xylene/acetone, and some points in benzene/dodecane, toluene/pentane, and m-xylene/benzene. With interactions parameters the AADP in these systems, except m-xylene/benzene, can be reduced to 1 %. The m-xylene/benzene point with near 10 % deviation (for both fitted and non-fitted cases) is due to a pure fluid point for m-xylene (that we believe is flawed) from the 1929 data set of Hammick and Andrew [56]. In summary, when a fitted binary interaction parameter is used, the aromatic/alkane and aromatic/napthene mixtures have an AAPD of no greater than 1 %, however the deviations are a function of composition. With the use of a binary interaction parameter these mixtures can generally be represented to within 3 % over the entire composition range.

Table 6.

Summary of results for aromatic mixtures

Mixture class Fluids Npts δij = 0 Fitted results
AAPD (%) AAD (mN·m−1) max AD (mN·m−1) AAPD (%) AAD (mN·m−1) max AD (mN·m−1) δij
Aromatic/aromatic Benzene/o-xylene 8 1.33 0.38 0.52 0.32 0.09 0.15 0.008
Aromatic/aromatic m-Xylene/benzene 5 2.80 0.82 2.33 1.80 0.54 2.33 0.010
Aromatic/aromatic Toluene/benzene 27 1.05 0.28 0.99 1.30 0.34 0.76 0.005
Aromatic/br-alkane Benzene/isooctane 9 5.39 1.13 1.81 0.48 0.10 0.35 0.041
Aromatic/ether Benzene/diethyl ether 4 2.48 0.52 0.90 0.42 0.09 0.15 0.020
Aromatic/halocb Benzene/chlorobenzene 23 1.22 0.36 1.04 1.06 0.31 0.73 0.008
Aromatic/halocb Benzene/dichloroethane 13 3.85 1.05 1.74 2.09 0.57 1.74 0.021
Aromatic/halocb m-Xylene/chlorobenzene 18 0.62 0.18 0.61 0.62 0.18 0.63 0.001
Aromatic/halocb o-Xylene/chlorobenzene 18 0.73 0.22 0.42 0.23 0.07 0.15 0.005
Aromatic/halocb p-Xylene/chlorobenzene 18 0.80 0.24 0.67 0.87 0.26 0.53 0.004
Aromatic/halocb Toluene/chlorobenzene 6 3.35 0.97 1.16 0.59 0.17 0.28 0.021
Aromatic/ketone Benzene/acetone 33 0.94 0.24 0.77 0.85 0.21 0.77 0.003
Aromatic/ketone m-Xylene/acetone 9 2.14 0.56 1.02 0.76 0.20 0.74 − 0.013
Aromatic/ketone o-Xylene/acetone 8 8.78 2.39 3.16 1.06 0.29 0.62 − 0.062
Aromatic/ketone p-Xylene/acetone 9 1.36 0.35 0.91 0.85 0.22 0.75 − 0.008
Aromatic/ketone Toluene/acetone 110 1.10 0.27 0.83 0.84 0.20 0.71 0.007
Aromatic/n-alkane Benzene/dodecane 23 6.71 1.65 3.15 0.95 0.24 0.64 0.060
Aromatic/n-alkane Benzene/heptane 47 1.57 0.35 1.16 1.02 0.22 0.87 0.012
Aromatic/n-alkane Benzene/hexadecane 44 1.08 0.28 0.69 1.01 0.26 0.55 0.005
Aromatic/n-alkane Benzene/hexane 31 1.86 0.41 1.08 1.20 0.26 0.73 0.015
Aromatic/n-alkane Benzene/nonane 44 1.52 0.35 0.77 0.57 0.14 0.34 0.012
Aromatic/n-alkane Benzene/pentane 7 7.62 1.61 2.33 2.04 0.44 0.81 0.051
Aromatic/n-alkane Ethylbenzene/hexadecane 9 3.63 1.01 1.58 0.45 0.12 0.27 0.026
Aromatic/n-alkane m-Xylene/heptane 11 2.31 0.54 0.89 0.13 0.03 0.11 0.019
Aromatic/n-alkane m-Xylene/hexane 29 3.00 0.68 1.30 0.87 0.19 0.35 0.024
Aromatic/n-alkane m-Xylene/octane 11 2.33 0.57 0.98 0.16 0.04 0.07 0.020
Aromatic/n-alkane m-Xylene/pentane 20 1.46 0.32 0.84 0.91 0.20 0.36 0.012
Aromatic/n-alkane o-Xylene/decane 11 5.26 1.33 1.86 0.81 0.21 0.58 0.039
Aromatic/n-alkane o-Xylene/nonane 11 4.59 1.14 1.68 0.92 0.23 0.52 0.034
Aromatic/n-alkane o-Xylene/octane 11 4.83 1.17 1.73 1.09 0.27 0.84 0.037
Aromatic/n-alkane p-Xylene/decane 22 4.68 1.12 1.51 0.67 0.17 0.49 0.031
Aromatic/n-alkane p-Xylene/hexane 16 3.42 0.76 1.13 0.51 0.11 0.21 0.024
Aromatic/n-alkane p-Xylene/octane 12 3.90 0.88 1.19 0.83 0.19 0.53 0.027
Aromatic/n-alkane p-Xylene/pentane 7 3.30 0.68 0.89 0.97 0.20 0.51 0.019
Aromatic/n-alkane Toluene/heptane 34 2.88 0.62 1.28 0.55 0.12 0.32 0.024
Aromatic/n-alkane Toluene/hexadecane 52 1.80 0.47 1.06 0.84 0.22 0.82 0.013
Aromatic/n-alkane Toluene/nonane 44 2.37 0.55 0.99 0.34 0.08 0.29 0.019
Aromatic/n-alkane Toluene/octane 17 6.06 0.82 1.73 5.03 0.77 1.15 0.027
Aromatic/n-alkane Toluene/pentane 8 8.31 1.72 2.24 0.91 0.18 0.30 0.050
Aromatic/naphthene Benzene/cyclohexane 96 0.53 0.13 0.37 0.50 0.13 0.41 0.001
Aromatic/naphthene Benzene/cyclopentane 9 1.63 0.40 0.54 0.22 0.06 0.14 0.011
Aromatic/naphthene Ethylbenzene/cyclohexane 28 1.56 0.40 0.82 0.50 0.13 0.24 0.013
Aromatic/naphthene m-Xylene/cyclohexane 28 1.38 0.35 0.70 0.36 0.09 0.31 0.011
Aromatic/naphthene o-Xylene/cyclohexane 28 1.31 0.34 0.76 0.45 0.11 0.26 0.010
Aromatic/naphthene p-Xylene/cyclohexane 28 1.13 0.29 0.56 0.31 0.08 0.23 0.009
Aromatic/naphthene Toluene/cyclohexane 11 4.40 1.12 1.55 0.11 0.03 0.07 0.031
Aromatic/naphthene Toluene/cyclopentane 10 0.20 0.05 0.07 0.07 0.02 0.03 − 0.001
Aromatic/other p-Xylene/dimethyl carbonate 10 2.39 0.62 1.09 0.72 0.19 0.42 − 0.019

Fig. 7.

Fig. 7

Summary of results for mixtures with aromatics

Mixtures with Halocarbons

Table 7 summarizes the results for mixtures with halocarbons, and Fig. 8 displays these results graphically. Included are mixtures containing some of the new low-GWP fluids such as R1234yf and R1234ze(E) in addition to HFC’s such as R32, R134a, R143a, R152a, and R125, and mixtures of polar halocarbons with nonpolar alkanes such as propane and butane. Without using an interaction parameter, almost all results are within 10 %, the AAPD’s are generally less than 5 %. Exceptions are visible in Fig. 8; the single point for R22/R115 has very large deviations; it is unclear why this mixture should deviate from the others. The mixture of R152a/propane also has deviations slightly greater than 10 % without an interaction parameter. It is unclear why R152a/propane should show this magnitude of deviation (AAPD 10.6 %), as a similar polar/nonpolar mixture of R32/propane displays smaller deviations (AAPD 2.6 %) without the use of an interaction parameter. The mixtures of halocarbons with other halocarbons without an interaction parameter have AAD of about 0.3 mN·m−1, while the mixtures of polar halocarbons with nonpolar alkanes have a higher AAD of up to 0.9 mN·m−1. The use of an interaction parameter improves the results, providing an AAD less than 0.35 mN·m−1 for both types of mixtures.

Table 7.

Summary of results for halocarbon mixtures

Mixture class Fluids Npts δij = 0 Fitted results
AAPD (%) AAD (mN·m−1) max AD (mN·m−1) AAPD (%) AAD (mN·m−1) max AD (mN·m−1) δij
Halocb/halocb R1123/R1234yf 39 4.37 0.32 1.11 4.43 0.31 1.09 0.002
Halocb/halocb R125/R134a 21 1.13 0.07 0.25 0.99 0.06 0.18 0.004
Halocb/halocb R125/R143a 38 2.07 0.09 0.28 1.65 0.05 0.16 0.008
Halocb/halocb R125/R152a 75 3.24 0.25 0.68 1.66 0.11 0.31 0.020
Halocb/halocb R125/R32 262 1.87 0.07 0.38 1.81 0.05 0.50 0.004
Halocb/halocb R134a/R1234yf 23 8.05 0.19 0.37 4.88 0.09 0.22 − 0.025
Halocb/halocb R134a/R1234ze(E) 9 2.71 0.10 0.25 2.43 0.04 0.06 0.012
Halocb/halocb R143a/R134a 126 1.73 0.11 0.69 1.96 0.12 0.61 0.002
Halocb/halocb R143a/R227ea 241 3.57 0.17 0.31 1.89 0.08 0.21 − 0.013
Halocb/halocb R152a/R134a 21 1.50 0.15 0.38 1.06 0.12 0.33 − 0.006
Halocb/halocb R22/R115 1 29.91 2.39 2.39 0.00 0.00 0.00 − 0.196
Halocb/halocb R32/R1123 37 4.24 0.27 0.56 2.29 0.14 0.41 − 0.021
Halocb/halocb R32/R1234yf 60 7.65 0.23 0.47 6.24 0.18 0.43 − 0.017
Halocb/halocb R32/R1234ze(E) 52 4.14 0.28 0.97 3.07 0.15 0.41 0.026
Halocb/halocb R32/R134a 317 1.08 0.07 0.47 1.11 0.07 0.47 0.001
Halocb/halocb R32/R227ea 412 3.90 0.19 0.43 2.58 0.12 0.36 − 0.012
Halocb/ketone Chlorobenzene/acetone 1 6.36 1.69 1.69 0.00 0.00 0.00 − 0.036
Halocb/n-alkane Chlorobenzene/pentane 7 3.04 0.63 0.91 1.20 0.27 0.42 0.017
Halocb/n-alkane R152a/propane 51 10.61 0.87 1.09 3.54 0.25 0.60 − 0.050
Halocb/n-alkane R32/propane 99 2.60 0.16 0.51 2.53 0.15 0.45 − 0.010
Halocb/n-alkane RC318/butane 24 5.89 0.88 1.68 2.27 0.34 0.79 0.044
Halocb/naphthene Chlorobenzene/cyclohexane 18 0.89 0.24 0.64 0.49 0.13 0.54 − 0.005

Fig. 8.

Fig. 8

Summary of results for halocarbon mixtures

Mixtures with Miscellaneous Compounds

Table 8 summarizes the results for mixtures with miscellaneous compounds, and Fig. 9 displays these results graphically. The mixtures are either of cryogens with other cryogens, or siloxanes with siloxanes. All mixtures without interaction parameters except helium/argon show an AAPD of less than 10 %. As shown in Table 2, the helium/argon mixture data were obtained only for extremely dilute solutions of helium less than about a helium mole fraction of 0.01. Without more data over a larger composition range, it is difficult to assess the performance of the parachor model for the helium/argon system. In addition, there were convergence failures in REFPROP for the systems helium/argon, krypton/argon, and nitrogen/helium; points without convergence were not included in the statistics and binary interaction parameters were not determined for these systems. There also was an extremely limited composition range for neon/argon, hydrogen/argon, and nitrogen/helium so we cannot fully assess these systems either. The data for siloxane mixtures are very limited in the number of points, so it also is premature to assess these systems. For the cryogen/cryogen mixtures where there are a wide range of data, the parachor model appears to represent the data to within 10 % without interaction parameters, with AAPD’s of less than 5 %.

Table 8.

Summary of results for miscellaneous mixtures

Mixture class Fluids Npts δij = 0 Fitted results
AAPD (%) AAD (mN·m−1) max AD (mN·m−1) AAPD (%) AAD (mN·m−1) max AD (mN·m−1) δij
Cryogen/cryogen Carbon monoxide/nitrogen 10 1.28 0.10 0.18 0.21 0.02 0.04 0.012
Cryogen/cryogen Helium/argon 33a 13.08 0.25 0.69 13.08 0.25 0.69 0.000
Cryogen/cryogen Hydrogen/argon 21 6.42 0.44 0.96 2.92 0.15 0.54 − 0.678
Cryogen/cryogen Hydrogen/deuterium 67 4.98 0.13 0.30 2.65 0.07 0.19 − 0.033
Cryogen/cryogen Krypton/argon 100b 4.92 0.24 1.35 4.92 0.24 1.35 0.000
Cryogen/cryogen Neon/argon 27 7.82 0.22 1.47 8.13 0.23 1.46 0.048
Cryogen/cryogen Nitrogen/argon 40 1.96 0.21 0.50 1.15 0.13 0.41 0.012
Cryogen/cryogen Nitrogen/helium 38c 4.94 0.16 1.67 4.94 0.16 1.67 0.000
Cryogen/cryogen Nitrogen/oxygen 183 5.41 0.68 2.41 3.31 0.33 1.26 0.055
Cryogen/cryogen Oxygen/argon 64 0.48 0.07 0.19 0.48 0.07 0.19 0.001
Siloxane/siloxane D4/MD2M 3 3.26 0.60 0.66 0.43 0.08 0.12 − 0.019
Siloxane/siloxane D4/MD4M 2 7.35 1.40 1.43 0.28 0.05 0.06 − 0.047
Siloxane/siloxane MD3M/D5 1 4.56 0.86 0.86 0.00 0.00 0.00 − 0.024
Siloxane/siloxane MD4M/D5 3 6.55 1.25 1.39 0.02 0.00 0.01 − 0.039

a14 points omitted from statistics due to REFPROP calculation problems

b3 points omitted from statistics due to REFPROP calculation problems

c15 points omitted from statistics due to REFPROP calculation problems

Fig. 9.

Fig. 9

Summary of results for mixtures with miscellaneous compounds

Conclusions

We compiled a database for the surface tension of binary mixtures by extracting data from the NIST TDE database [34]. It contains a wide variety of fluids, covering the chemical classes water, alcohols, amines, ketones, linear and branched alkanes, naphthenes, aromatics, refrigerants, and cryogens. The data set includes 65 pure fluids and 154 binary pairs with a total of 8205 points. We used this database to test the performance of a parachor model for mixtures, in both a predictive mode (no mixture data used) and with a single, constant binary interaction parameter found by fitting the mixture data. The parachor model is not new and variants of it have been used for many years, but a comprehensive summary of its performance on a wide variety of mixtures has not been available until now. The data are available in the supporting information to enable model comparisons for future research on binary mixtures with new models. In general, the parachor model in a predictive mode without fitted interaction parameters can predict the surface tension of binary mixtures of non-polar fluids such as linear and branched alkanes, linear and branched alkanes with naphthenes, aromatics with aromatics, aromatics with naphthenes, and mixtures of linear alkanes of similar sizes with an AAPD of about 3 % or less. For mixtures of linear alkanes of differing sizes, as the size difference increases it is necessary to use a fitted binary interaction parameter to reduce deviations. Similarly, in a predictive mode the model has large deviations for mixtures of n-alkanes with CO2, and an interaction parameter should be used. Mixtures of methanol and ethanol did not require an interaction parameter. Polar mixtures of halocarbons with other halocarbons and also polar/nonpolar mixtures of alkanes with halocarbons could be modeled with an AAD of less than 0.35 mN·m−1 with the use of a binary interaction parameter for each pair of fluids. Future work on developing a predictive scheme for binary interaction parameters for classes of mixtures would make the parachor model more useful. Finally, the parachor model even with a fitted binary interaction parameter is not suitable for mixtures of water with organic compounds.

Supplementary Information

Below is the link to the electronic supplementary material.

Acknowledgements

We thank Dr. Allan Harvey for helpful discussions.

Author contributions

All authors participated in the writing and review of the manuscript. AML developed the python code used to perform the analysis and generate figures. VD provided the data.

Funding

Open access funding provided by NTNU Norwegian University of Science and Technology (incl St. Olavs Hospital - Trondheim University Hospital). This work was partially funded by the National Institute of Standards and Technology. Additional support was provided by the NCCS Centre, performed under the Norwegian research programme Centres for Environment-friendly Energy Research (FME), funded by industry partners and the Research Council of Norway (257579).

Declarations

Conflict of interest

The authors have no conflicts to declare.

Footnotes

1

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this paper to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement of any product or service by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Krafft MP. Adv. Drug Deliv. Rev. 2001;47:209. doi: 10.1016/S0169-409X(01)00107-7. [DOI] [PubMed] [Google Scholar]
  • 2.Fathi Azarbayjani A, Jouyban A, Chan SY. J. Pharm. Pharm. Sci. 2009;12:218. doi: 10.18433/j32p40. [DOI] [PubMed] [Google Scholar]
  • 3.Nagata R, Kondou C, Koyama S. Int. J. Refrig. 2016;63:157. doi: 10.1016/j.ijrefrig.2015.11.002. [DOI] [Google Scholar]
  • 4.Jang D, Kim D, Moon J. Langmuir. 2009;25:2629. doi: 10.1021/la900059m. [DOI] [PubMed] [Google Scholar]
  • 5.Fromm JE. IBM J. Res. Dev. 1984;28:322. doi: 10.1147/rd.283.0322. [DOI] [Google Scholar]
  • 6.Mallepally RR, Bamgbade BA, Rowane AJ, Rokni HB, Newkirk MS, McHugh MA. J. Supercrit. Fluids. 2018;134:33. doi: 10.1016/j.supflu.2017.12.003. [DOI] [Google Scholar]
  • 7.Sugden S. J. Chem. Soc. 1924;125:1177. doi: 10.1039/ct9242501177. [DOI] [Google Scholar]
  • 8.Poling BE, Prausnitz JM, O’Connell JP. The Properties of Gases and Liquids. 5. New York: McGraw-HIll; 2001. [Google Scholar]
  • 9.Cahn JW, Hilliard JE. J. Chem. Phys. 1958;28:258. doi: 10.1063/1.1744102. [DOI] [Google Scholar]
  • 10.Liang XD, Michelsen ML, Kontogeorgis GM. Fluid Phase Equilib. 2016;428:153. doi: 10.1016/j.fluid.2016.06.017. [DOI] [Google Scholar]
  • 11.Wu JZ. AlChE J. 2006;52:1169. doi: 10.1002/aic.10713. [DOI] [Google Scholar]
  • 12.Li JL, Ma J, Peng CJ, Liu HL, Hu Y, Jiang J. Ind. Eng. Chem. Res. 2007;46:7267. doi: 10.1021/ie070341m. [DOI] [Google Scholar]
  • 13.Toxvaerd S. J. Chem. Phys. 1971;55:3116. doi: 10.1063/1.1676556. [DOI] [Google Scholar]
  • 14.Quinones-Cisneros SE, Deiters UK, Rozas RE, Kraska T. J. Phys. Chem. B. 2009;113:3504. doi: 10.1021/jp8073255. [DOI] [PubMed] [Google Scholar]
  • 15.Weinaug CF, Katz DL. Ind. Eng. Chem. 1943;35:239. doi: 10.1021/ie50398a028. [DOI] [Google Scholar]
  • 16.Hugill JA, Van Welsenes AJ. Fluid Phase Equilib. 1986;29:383. doi: 10.1016/0378-3812(86)85038-5. [DOI] [Google Scholar]
  • 17.Fechter T, Villablanca R, Leontijevic V, Martin A, Jaeger P, Cocero MJ. J. Supercrit. Fluids. 2023;196:105899. doi: 10.1016/j.supflu.2023.105899. [DOI] [Google Scholar]
  • 18.Daubert TE. API Technical Databook. Washington, DC: American Petroleum Institute; 1997. [Google Scholar]
  • 19.Macleod DB. Trans. Faraday Soc. 1923;19:38. doi: 10.1039/TF9231900038. [DOI] [Google Scholar]
  • 20.Garrabos Y, Palencia F, Lecioutre C, Broseta D, Le Neindre B. Phys. Rev. E. 2007;76:061109. doi: 10.1103/PhysRevE.76.061109. [DOI] [PubMed] [Google Scholar]
  • 21.Quayle OR. Chem. Rev. 1953;53:439. doi: 10.1021/cr60166a003. [DOI] [Google Scholar]
  • 22.Zhelezny VP, Semenyuk YV, Ancherbak SN, Emel'yanenko NV. Russ. J. Phys. Chem. A. 2009;83:182. doi: 10.1134/s0036024409020071. [DOI] [Google Scholar]
  • 23.Cachadiña I, Mulero A, Tian J. J. Phys. Chem. Ref. Data. 2015;44:023104. doi: 10.1063/1.4921749. [DOI] [Google Scholar]
  • 24.Mulero A, Cachadiña I. J. Phys. Chem. Ref. Data. 2014;43:023104. doi: 10.1063/1.4878755. [DOI] [Google Scholar]
  • 25.Mulero A, Cachadiña I, Bautista D. J. Phys. Chem. Ref. Data. 2021;50:023104. doi: 10.1063/5.0048675. [DOI] [Google Scholar]
  • 26.Mulero A, Cachadiña I, Parra MI. J. Phys. Chem. Ref. Data. 2012;41:043105. doi: 10.1063/1.4768782. [DOI] [Google Scholar]
  • 27.Mulero A, Cachadiña I, Sanjuán EL. J. Phys. Chem. Ref. Data. 2015;44:033104. doi: 10.1063/1.4927858. [DOI] [Google Scholar]
  • 28.Mulero A, Cachadiña I, Sanjuán EL. J. Phys. Chem. Ref. Data. 2016;45:033105. doi: 10.1063/1.4959989. [DOI] [Google Scholar]
  • 29.Mulero A, Cachadiña I, Vegas A. J. Phys. Chem. Ref. Data. 2021;50:033106. doi: 10.1063/5.0061617. [DOI] [Google Scholar]
  • 30.Mulero A, Cachadiña I, Vegas A. J. Phys. Chem. Ref. Data. 2022;51:023102. doi: 10.1063/5.0092546. [DOI] [Google Scholar]
  • 31.Mulero A, Cachadiña I, Becerra A. J. Phys. Chem. Ref. Data. 2023;52:013103. doi: 10.1063/5.0139446. [DOI] [Google Scholar]
  • 32.E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, REFPROP, NIST Standard Reference Database 23,Version 10.0 (NIST, Standard Reference Data Program, Gaithersburg, 2018). 10.18434/T4/1502528
  • 33.Huber ML, Lemmon EW, Bell IH, McLinden MO. Ind. Eng. Chem. Res. 2022;61:15449. doi: 10.1021/acs.iecr.2c01427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.V. Diky, R.D. Chirico, M. Frenkel, A. Bazyleva, J.W. Magee, E. Paulechka, A. Kazakov, E.W. Lemmon, C.D. Muzny, A.Y. Smolyanitsky, S. Townsend, K. Kroenlein, NIST ThermoData Engine, NIST Standard Reference Database 103a/103b, Version 10.4 (NIST, Standard Reference Data Program, Gaithersburg, 2019). https://www.nist.gov/mml/acmd/trc/thermodata-engine/srd-nist-tde-103b
  • 35.Tropea C, Yarin AL, Foss JF. Springer Handbook of Experimental Fluid Mechanics. Berlin: Springer; 2007. [Google Scholar]
  • 36.Diky V, Chirico RD, Wilhoit RC, Dong Q, Frenkel M. J. Chem. Inf. Comput. Sci. 2003;43:15. doi: 10.1021/ci025534t. [DOI] [PubMed] [Google Scholar]
  • 37.M.L. Huber, Models for Viscosity, Thermal Conductivity, and Surface Tension of Selected Pure Fluids as Implemented in REFPROP v10.0 (National Institute of Standards and Technology, NISTIR 8209, 2018). https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8209.pdf
  • 38.International Association for the Properties of Water and Steam, Release on Surface Tension of Heavy Water Substance, IAPWS R5-85 (1994). http://www.iapws.org/relguide/surfd2o.pdf
  • 39.International Association for the Properties of Water and Steam, Revised Release on Surface Tension of Ordinary Water Substance, IAPWS R1-76 (2014). http://www.iapws.org/relguide/Surf-H2O.html
  • 40.Jain DVS, Singh S. Indian J. Chem. 1974;12:714. [Google Scholar]
  • 41.Prak DJL, Cowart JS, McDaniel AM, Trulove PC. J. Chem. Eng. Data. 2014;59:3571. doi: 10.1021/je500498m. [DOI] [Google Scholar]
  • 42.Dhillon MS, Mahl BS. Z. Phys. Chem. (Leipzig) 1978;259:249. doi: 10.1515/zpch-1978-25933. [DOI] [Google Scholar]
  • 43.Mahl BS, Chopra SL, Singh PP. Z. Phys. Chem. (Leipzig) 1972;249:337. [Google Scholar]
  • 44.Domínguez-Peréz M, Rilo E, Segade L, Franjo C, Cabeza O. J. Chem. Eng. Data. 2010;55:1317. doi: 10.1021/je900643r. [DOI] [Google Scholar]
  • 45.Gayol A, Casas LM, Andreatta AE, Martini RE, Legido JL. J. Chem. Eng. Data. 2013;58:758. doi: 10.1021/je301282p. [DOI] [Google Scholar]
  • 46.Mosteiro L, Casás LM, Legido JL. J. Chem. Thermodyn. 2009;41:695. doi: 10.1016/j.jct.2008.12.010. [DOI] [Google Scholar]
  • 47.Ouyang G, Lu G, Yang Y, Huang ZQ. Acta Sci. Nat. Univ. Sunyatseni. 2004;43:44. [Google Scholar]
  • 48.Wanchoo RK, Narayan J. Phys. Chem. Liq. 1992;25:15. doi: 10.1080/00319109208027283. [DOI] [Google Scholar]
  • 49.Ouyang G, Yang Y, Lu SS, Huang ZQ, Kang B. J. Chem. Eng. Data. 2004;49:330. doi: 10.1021/je0341763. [DOI] [Google Scholar]
  • 50.Calado JCG, McLure IA, Soares VAM. Fluid Phase Equilib. 1978;2:199. doi: 10.1016/0378-3812(78)80009-0. [DOI] [Google Scholar]
  • 51.Hsu JJ-C, Nagarajan N, Robinson RL., Jr J. Chem. Eng. Data. 1985;30:485. doi: 10.1021/je00042a036. [DOI] [Google Scholar]
  • 52.Gozalpour F, Danesh A, Todd AC, Tohidi B. Fluid Phase Equilib. 2005;233:144. doi: 10.1016/j.fluid.2005.03.032. [DOI] [Google Scholar]
  • 53.Worley RP. J. Chem. Soc. 1914;105:273. doi: 10.1039/CT9140500273. [DOI] [Google Scholar]
  • 54.Tahery R. J. Chem. Thermodyn. 2017;106:95. doi: 10.1016/j.jct.2016.11.018. [DOI] [Google Scholar]
  • 55.Dominguez-Perez M, Segade L, Cabeza O, Franjo C, Jimenez E. J. Chem. Eng. Data. 2006;51:294. doi: 10.1021/je0504111. [DOI] [Google Scholar]
  • 56.Hammick DL, Andrew LW. J. Chem. Soc. 1929 doi: 10.1039/JR9290000754. [DOI] [Google Scholar]
  • 57.Morgan JLR, Griggs MA. J. Am. Chem. Soc. 1917;39:2261. doi: 10.1021/ja02256a002. [DOI] [Google Scholar]
  • 58.Lam VT, Benson GC. Can. J. Chem. 1970;48:3773. doi: 10.1139/v70-637. [DOI] [Google Scholar]
  • 59.Ling TD, Van Winkle M. Ind. Eng. Chem. Chem. Eng. Data Ser. 1958;3:82. doi: 10.1021/i460003a017. [DOI] [Google Scholar]
  • 60.Vakili-Nezhaad GR, Al-Wadhahi M, Al-Haddabi S, Vakilinejad A, Acree WE. J. Chem. Thermodyn. 2021;152:106292. doi: 10.1016/j.jct.2020.106292. [DOI] [Google Scholar]
  • 61.Kahl H, Wadewitz T, Winkelmann J. J. Chem. Eng. Data. 2003;48:580. doi: 10.1021/je0201323. [DOI] [Google Scholar]
  • 62.Myers RS, Clever HL. J. Chem. Thermodyn. 1974;6:949. doi: 10.1016/0021-9614(74)90216-x. [DOI] [Google Scholar]
  • 63.Shastri SS, Mukherjee AK, Das TR. J. Chem. Eng. Data. 1993;38:399. doi: 10.1021/je00011a017. [DOI] [Google Scholar]
  • 64.Singh S, Lark BS, Aggarwal SK. Indian J. Chem. Sect. A: Inorg. Phys. Theor. Anal. 1982;21:1116. [Google Scholar]
  • 65.Kahl H, Wadewitz T, Winkelmann J. J. Chem. Eng. Data. 2003;48:1500. doi: 10.1021/je034062r. [DOI] [Google Scholar]
  • 66.Enders S, Kahl H, Winkelmann J. J. Chem. Eng. Data. 2007;52:1072. doi: 10.1021/je7000182. [DOI] [Google Scholar]
  • 67.Konobeev BI, Lyapin VV. Zh. Prikl. Khim. 1970;43:803. [Google Scholar]
  • 68.Abdulagatov IM, Adamov AP, Abdurakhmanov IM. J. Eng. Phys. Thermophys. 1992;63:1193. doi: 10.1007/BF00853519. [DOI] [Google Scholar]
  • 69.Mohsen-Nia M, Rasa H, Naghibi SF. J. Chem. Thermodyn. 2010;42:110. doi: 10.1016/j.jct.2009.07.018. [DOI] [Google Scholar]
  • 70.Mohsen-Nia M. Phys. Chem. Liq. 2011;49:608. doi: 10.1080/00319104.2010.489189. [DOI] [Google Scholar]
  • 71.Satherley J, Cooper DL, Schiffrin DJ. Fluid Phase Equilib. 2018;456:193. doi: 10.1016/j.fluid.2017.10.023. [DOI] [Google Scholar]
  • 72.Clever HL, Chase WE. J. Chem. Eng. Data. 1963;8:291. doi: 10.1021/je60018a004. [DOI] [Google Scholar]
  • 73.Ridgway K, Butler PA. J. Chem. Eng. Data. 1967;12:509. doi: 10.1021/je60035a012. [DOI] [Google Scholar]
  • 74.Schmidt RL, Clever HL. J. Colloid Interface Sci. 1968;26:19. doi: 10.1016/0021-9797(68)90266-X. [DOI] [Google Scholar]
  • 75.Koller TM, Yan S, Steininger C, Klein T, Fröba AP. Int. J. Thermophys. 2019;40:79. doi: 10.1007/s10765-019-2544-y. [DOI] [Google Scholar]
  • 76.Papaioannou D, Panayiotou CG. J. Chem. Eng. Data. 1994;39:457. doi: 10.1021/je00015a012. [DOI] [Google Scholar]
  • 77.Jimenez Cuesta E, Casad H, Segade L, Franjo C. J. Chem. Eng. Data. 2000;45:862. doi: 10.1021/je000060k. [DOI] [Google Scholar]
  • 78.Giner B, Villares A, Martin S, Artigas H, Lafuente C. J. Chem. Eng. Data. 2007;52:1904. doi: 10.1021/je700215z. [DOI] [Google Scholar]
  • 79.Trieschmann HG. Z. Phys. Chem. Abt. B. 1935;29:328. doi: 10.1515/zpch-1935-2933. [DOI] [Google Scholar]
  • 80.Ramakrishna V, Patel M. Indian J. Chem. 1970;8:256. [Google Scholar]
  • 81.Schmidt RL, Randall JC, Clever HL. J. Phys. Chem. 1966;70:3912. doi: 10.1021/j100884a027. [DOI] [Google Scholar]
  • 82.Gomez-Diaz D, Mejuto JC, Navaza JM, Rodriguez-Alvarez A. J. Chem. Eng. Data. 2002;47:872. doi: 10.1021/je010288n. [DOI] [Google Scholar]
  • 83.Gomez-Diaz D, Mejuto JC, Navaza JM. J. Chem. Eng. Data. 2001;46:720. doi: 10.1021/je000310x. [DOI] [Google Scholar]
  • 84.Mejia A, Segura H, Cartes M, Calvo C. Fluid Phase Equilib. 2008;270:75. doi: 10.1016/j.fluid.2008.06.006. [DOI] [Google Scholar]
  • 85.Suri SK, Ramakrishna V. J. Phys. Chem. 1968;72:3073. doi: 10.1021/j100855a001. [DOI] [Google Scholar]
  • 86.Abroodi M, Bagheri A, Razavizadeh BM. J. Mol. Liq. 2019;287:110924. doi: 10.1016/j.molliq.2019.110924. [DOI] [Google Scholar]
  • 87.Rinker EB, Oelschlager DW, Colussi AT, Henry KR, Sandall OC. J. Chem. Eng. Data. 1994;39:392. doi: 10.1021/je00014a046. [DOI] [Google Scholar]
  • 88.Vazquez G, Alvarez E, Rendo R, Romero E, Navaza JM. J. Chem. Eng. Data. 1996;41:806. doi: 10.1021/je960012t. [DOI] [Google Scholar]
  • 89.Alvarez E, Rendo R, Sanjurjo B, Sanchez-Vilas M, Navaza JM. J. Chem. Eng. Data. 1998;43:1027. doi: 10.1021/je980106y. [DOI] [Google Scholar]
  • 90.Aguila-Hernandez J, Trejo Rodriguez A, Gracia-Fadrique J. Fluid Phase Equilib. 2001;185:165. doi: 10.1016/s0378-3812(01)00467-8. [DOI] [Google Scholar]
  • 91.Alvarez E, Cancela A, Maceiras R, Navaza JM, Taboas R. J. Chem. Eng. Data. 2003;48:32. doi: 10.1021/je020048n. [DOI] [Google Scholar]
  • 92.Fu D, Du L, Wang H. J. Chem. Thermodyn. 2014;69:132. doi: 10.1016/j.jct.2013.10.016. [DOI] [Google Scholar]
  • 93.Dey A, Dash SK, Mandal B. Fluid Phase Equilib. 2018;463:91. doi: 10.1016/j.fluid.2018.01.030. [DOI] [Google Scholar]
  • 94.Fu D, Xie J, Wang F, Wang S. J. Chem. Thermodyn. 2018;116:197. doi: 10.1016/j.jct.2017.08.024. [DOI] [Google Scholar]
  • 95.Shojaeian A. J. Mol. Liq. 2018;254:26. doi: 10.1016/j.molliq.2018.01.077. [DOI] [Google Scholar]
  • 96.de los S. López-Lázaro J, Iglesias-Silva GA, Estrada-Baltazar A, Baraja-Fernandez J. J. Chem. Eng. Data. 2015;60:1823. doi: 10.1021/acs.jced.5b00009. [DOI] [Google Scholar]
  • 97.Segade L, de Llano JJ, Dominguez-Perez M, Cabeza O, Cabanas M, Jimenez E. J. Chem. Eng. Data. 2003;48:1251. doi: 10.1021/je034053i. [DOI] [Google Scholar]
  • 98.Mejia A, Cartes M, Segura H. J. Chem. Thermodyn. 2011;43:1395. doi: 10.1016/j.jct.2011.04.005. [DOI] [Google Scholar]
  • 99.Andreatta AE, Martini RE, Legido JL, Casas L. Int. J. Eng. Res. Sci. 2016;2:51. [Google Scholar]
  • 100.Onder E, Sarier N. Thermochim. Acta. 2020;690:178698. doi: 10.1016/j.tca.2020.178698. [DOI] [Google Scholar]
  • 101.Evans HB, Clever HL. J. Phys. Chem. 1964;68:3433. doi: 10.1021/j100793a507. [DOI] [Google Scholar]
  • 102.Yang J, Wu J. J. Chem. Thermodyn. 2022;170:106782. doi: 10.1016/j.jct.2022.106782. [DOI] [Google Scholar]
  • 103.Prak DJL, Mungan AL, Cowart JS, Trulove PC. J. Chem. Eng. Data. 2018;63:1642. doi: 10.1021/acs.jced.8b00008. [DOI] [Google Scholar]
  • 104.Bi S, Li X, Zhao G, Wu J. Fluid Phase Equilib. 2010;298:150. doi: 10.1016/j.fluid.2010.07.026. [DOI] [Google Scholar]
  • 105.Nagarajan N, Robinson RL., Jr J. Chem. Eng. Data. 1986;31:168. doi: 10.1021/je00044a012. [DOI] [Google Scholar]
  • 106.Shaver RD, Robinson RL, Jr, Gasem KAM. Fluid Phase Equilib. 2001;179:43. doi: 10.1016/s0378-3812(00)00475-1. [DOI] [Google Scholar]
  • 107.Rolo LI, Caco AI, Queimada AJ, Marrucho IM, Coutinho JAP. J. Chem. Eng. Data. 2002;47:1442. doi: 10.1021/je025536+. [DOI] [Google Scholar]
  • 108.Queimada AJ, Caco AI, Marrucho IM, Coutinho JAP. J. Chem. Eng. Data. 2005;50:1043. doi: 10.1021/je050024r. [DOI] [Google Scholar]
  • 109.Grigor’ev VN, Rudenko NS. Zh. Eksp. Teor. Fiz. 1964;47:92. [Google Scholar]
  • 110.Blagoi YP, Kropachev GP, Pashkov VV. Ukr. Fiz. Zh. 1967;12:1300. [Google Scholar]
  • 111.Abroodi M, Bagheri A, Razavizadeh BM. J. Chem. Eng. Data. 2020;65:3173. doi: 10.1021/acs.jced.0c00192. [DOI] [Google Scholar]
  • 112.Anonymous, Chem. Eng. Oil Gas 3, 1 (1981). https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=STQG198103000&dbname=CJFD7984
  • 113.Vazquez G, Alvarez E, Navaza JM, Rendo R, Romero E. J. Chem. Eng. Data. 1997;42:57. doi: 10.1021/je960238w. [DOI] [Google Scholar]
  • 114.Han J, Jin J, Eimer DA, Melaaen MC. J. Chem. Eng. Data. 2012;57:1095. doi: 10.1021/je2010038. [DOI] [Google Scholar]
  • 115.Jayarathna SA, Jayarathna CK, Kottage DA, Dayarathna S, Eimer DA, Melaaen MC. J. Chem. Eng. Data. 2013;58:343. doi: 10.1021/je300920t. [DOI] [Google Scholar]
  • 116.Jayarathna SA, Weerasooriya A, Dayarathna S, Eimer DA, Melaaen MC. J. Chem. Eng. Data. 2013;58:986. doi: 10.1021/je301279x. [DOI] [Google Scholar]
  • 117.Luning Prak DJ, Cowart JS, Trulove PC. J. Chem. Eng. Data. 2014;59:3842. doi: 10.1021/je5007532. [DOI] [Google Scholar]
  • 118.Koefoed J, Villadsen JV. Acta Chem. Scand. 1958;12:1124. doi: 10.3891/acta.chem.scand.12-1124. [DOI] [Google Scholar]
  • 119.Queimada AJ, Silva FAE, Caco AI, Marrucho IM, Coutinho JAP. Fluid Phase Equilib. 2003;214:211. doi: 10.1016/s0378-3812(03)00354-6. [DOI] [Google Scholar]
  • 120.Yue H, Liu Z. J. Chem. Eng. Data. 2016;61:1270. doi: 10.1021/acs.jced.5b00903. [DOI] [Google Scholar]
  • 121.Zhou H, Zhu W. Huaxue Gongcheng. 1993;21:61. [Google Scholar]
  • 122.R. Heide, J. Schenk, in Bestimmung der der Transportgrößen von HFKW, Bericht zum AiF-Forschungsvorhaben Nr. 10044B, Heft 1: Viskosität und Oberflächenspannung (Forschungsrat Kältetechnik e.V., Frankfurt am Main, 1996)
  • 123.Okada M, Shibata T, Sato Y, Higashi Y. Int. J. Thermophys. 1999;20:119. doi: 10.1023/a:1021482231102. [DOI] [Google Scholar]
  • 124.Fröba AP, Will S, Leipertz A. Int. J. Thermophys. 2001;22:1349. doi: 10.1023/a:1012832701996. [DOI] [Google Scholar]
  • 125.Duan YY, Lin H. Fluid Phase Equilib. 2003;213:89. doi: 10.1016/s0378-3812(03)00236-x. [DOI] [Google Scholar]
  • 126.Bi S, Zhao G, Wu J. Fluid Phase Equilib. 2009;287:23. doi: 10.1016/j.fluid.2009.09.005. [DOI] [Google Scholar]
  • 127.Lin H, Duan YY. J. Chem. Eng. Data. 2004;49:372. doi: 10.1021/je0342163. [DOI] [Google Scholar]
  • 128.Lin H, Duan YY. Int. J. Thermophys. 2003;24:1495. doi: 10.1023/b:ijot.0000004090.64922.63. [DOI] [Google Scholar]
  • 129.Zhang C, Li G, Yue L, Guo Y, Fang W. J. Chem. Eng. Data. 2015;60:2541. doi: 10.1021/acs.jced.5b00105. [DOI] [Google Scholar]
  • 130.Myers RS, Clever HL. J. Chem. Eng. Data. 1969;14:161. doi: 10.1021/je60041a014. [DOI] [Google Scholar]
  • 131.Sprow FB, Prausnitz JM. Trans. Am. Inst. Chem. Eng. 1965;62:1105. doi: 10.1039/TF9666201105. [DOI] [Google Scholar]
  • 132.Ramsay W, Aston E. Trans. R. Ir. Acad. 1902;32:93. [Google Scholar]
  • 133.Ritzel A. Z. Phys. Chem. Stoechiom. Verwandschaftsl. 1907;60:319. doi: 10.1515/zpch-1907-6014. [DOI] [Google Scholar]
  • 134.Morgan JLR, Scarlett AJ. J. Am. Chem. Soc. 1917;39:2275. doi: 10.1021/ja02256a003. [DOI] [Google Scholar]
  • 135.Traube J. J. Prakt. Chem. 1885;31:77. [Google Scholar]
  • 136.Descude M. J. Phys. Paris. 1903;2:348. [Google Scholar]
  • 137.Morgan JLR, Neidle M. J. Am. Chem. Soc. 1913;35:1856. doi: 10.1021/ja02201a006. [DOI] [Google Scholar]
  • 138.Bircumshaw LL. J. Chem. Soc. Trans. 1922;121:887. doi: 10.1039/CT9222100887. [DOI] [Google Scholar]
  • 139.Ernst RC, Watkins CH, Ruwe HH. J. Phys. Chem. 1936;40:627. doi: 10.1021/j150374a008. [DOI] [Google Scholar]
  • 140.Valentiner S, Hohls HW. Z. Phys. 1937;108:101. doi: 10.1007/BF01375002. [DOI] [Google Scholar]
  • 141.Bonnell WS, Byman L, Keyes DB. Ind. Eng. Chem. 1940;32:532. doi: 10.1021/ie50364a019. [DOI] [Google Scholar]
  • 142.Stahlberger B, Guyer A. Helv. Chim. Acta. 1950;33:243. doi: 10.1002/hlca.19500330203. [DOI] [Google Scholar]
  • 143.Teitel’baum BY, Gortalova TA, Sidorova EE. Zh. Fiz. Khim. 1951;25:911. [Google Scholar]
  • 144.Efremov YV. Zh. Fiz. Khim. 1968;42:1906. [Google Scholar]
  • 145.Wan LSC, Jeyabalan T. Chem. Pharm. Bull. 1986;34:4744. doi: 10.1248/cpb.34.4744. [DOI] [Google Scholar]
  • 146.Kalbassl MA, Biddulph MW. J. Chem. Eng. Data. 1988;33:473. doi: 10.1021/je00054a024. [DOI] [Google Scholar]
  • 147.Vazquez G, Alvarez E, Navaza JM. J. Chem. Eng. Data. 1995;40:611. doi: 10.1021/je00019a016. [DOI] [Google Scholar]
  • 148.Belda R, Herraez JV, Diez O. Phys. Chem. Liq. 2005;43:91. doi: 10.1080/00319100512331327342. [DOI] [Google Scholar]
  • 149.Maximino RB. Phys. Chem. Liq. 2009;47:475. doi: 10.1080/00319100802241657. [DOI] [Google Scholar]
  • 150.Ludzik K, Kustrzepa K, Piekarski H, Jozwiak M. J. Chem. Eng. Data. 2016;61:1047. doi: 10.1021/acs.jced.5b00485. [DOI] [Google Scholar]
  • 151.Gonçalves D, Paludetti MF, Florido PM, Tonetti C, Gonçalves CB, Rodrigues CEC. J. Chem. Eng. Data. 2018;63:2718. doi: 10.1021/acs.jced.8b00086. [DOI] [Google Scholar]
  • 152.Raza MA, Hallett PD, Liu X, He M, Afzal W. J. Chem. Eng. Data. 2019;64:5049. doi: 10.1021/acs.jced.9b00026. [DOI] [Google Scholar]
  • 153.Gonçalves D, Panzarin C, Gonçalves CB, Rodrigues CEC. Fluid Phase Equilib. 2020;521:112730. doi: 10.1016/j.fluid.2020.112730. [DOI] [Google Scholar]
  • 154.Khosharay S, Rahmanzadeh M, ZareNezhad B. Int. J. Thermophys. 2020;41:166. doi: 10.1007/s10765-020-02738-0. [DOI] [Google Scholar]
  • 155.Gomez-Diaz D, Navaza JM. J. Chem. Eng. Data. 2021;66:2160. doi: 10.1021/acs.jced.1c00061. [DOI] [Google Scholar]
  • 156.Bagheri A, Amiri-Majed AH. J. Chem. Thermodyn. 2012;51:45. doi: 10.1016/j.jct.2012.02.017. [DOI] [Google Scholar]
  • 157.Azizian S, Hemmati M. J. Chem. Eng. Data. 2003;48:662. doi: 10.1021/je025639s. [DOI] [Google Scholar]
  • 158.Campbell RH, Kartzmark EM. J. Chem. Thermodyn. 1973;5:163. doi: 10.1016/s0021-9614(73)80076-x. [DOI] [Google Scholar]
  • 159.Uchida SI, Matsumoto K. Kagaku Kogaku. 1958;22:570. doi: 10.1252/kakoronbunshu1953.22.570. [DOI] [Google Scholar]
  • 160.Shipp WE. J. Chem. Eng. Data. 1970;15:308. doi: 10.1021/je60045a020. [DOI] [Google Scholar]
  • 161.Rong ZM, Lu Y. Huaxue Gongcheng. 1988;16:56. [Google Scholar]
  • 162.Ernst RC, Litkenhous EE, Spanyer JW. J. Phys. Chem. 1932;36:842. doi: 10.1021/j150333a006. [DOI] [Google Scholar]
  • 163.Teitel'baum BY, Ganelina SG, Gortalova TA. Zh. Fiz. Khim. 1951;25:1043. [Google Scholar]
  • 164.Howard KS, McAllister RA. AIChE J. 1957;3:325. doi: 10.1002/aic.690030308. [DOI] [Google Scholar]
  • 165.Toryanik AI, Pogrebnik VG. J. Struct. Chem. 1976;17:464. doi: 10.1007/BF00746671. [DOI] [Google Scholar]
  • 166.Baidakov VG, Kaverin AM, Khotienkova MN. Fluid Phase Equilib. 2013;356:90. doi: 10.1016/j.fluid.2013.07.008. [DOI] [Google Scholar]
  • 167.Seneviratne KN, Hughes TJ, Johns ML, Marsh KN, May EF. J. Chem. Thermodyn. 2017;111:173. doi: 10.1016/j.jct.2017.03.002. [DOI] [Google Scholar]
  • 168.Blagoi YP. Ukr. Fiz. Zh. 1960;5:109. [Google Scholar]
  • 169.Fuks S, Bellemans A. Physica. 1966;32:594. doi: 10.1016/0031-8914(66)90049-8. [DOI] [Google Scholar]
  • 170.Tanaka K, Higashi Y. J. Chem. Eng. Data. 2009;54:1656. doi: 10.1021/je800756r. [DOI] [Google Scholar]
  • 171.Zhao G, Bi S, Wu J, Liu Z. J. Chem. Eng. Data. 2010;55:3077. doi: 10.1021/je901085t. [DOI] [Google Scholar]
  • 172.Duan YY, Hong L. J. Chem. Eng. Data. 2003;48:1068. doi: 10.1021/je030137f. [DOI] [Google Scholar]
  • 173.Liu Y, Kondou C, Coquelet C, Houriez C. Int. J. Refrig. 2021;132:276. doi: 10.1016/j.ijrefrig.2021.09.021. [DOI] [Google Scholar]
  • 174.Lin H, Duan YY. J. Chem. Eng. Data. 2005;50:182. doi: 10.1021/je049743g. [DOI] [Google Scholar]
  • 175.Cui J, Bi S, Meng X, Wu J. J. Chem. Eng. Data. 2016;61:950. doi: 10.1021/acs.jced.5b00798. [DOI] [Google Scholar]
  • 176.Tanaka K, Higashi Y. J. Chem. Eng. Jpn. 2013;46:371. doi: 10.1252/jcej.13we021. [DOI] [Google Scholar]
  • 177.Anonymous, Freon Fluorocarbons – Properties and Applications (E.I. Du Pont De Nemours & Co. (INC.), Wilmington, 1969)
  • 178.Blagoi YP, Rudenko NS. Izv. Vyssh. Uchebn. Zaved. Fiz. 1959;2:22. [Google Scholar]
  • 179.Ostromukhov VB, Ostronov MG. Zh. Fiz. Khim. 1994;68:39. [Google Scholar]
  • 180.Baidakov VG, Kaverin AM, Andbaeva VN. Fluid Phase Equilib. 2008;270:116. doi: 10.1016/j.fluid.2008.06.016. [DOI] [Google Scholar]
  • 181.Kaverin AM, Andbaeva VN, Baidakov VG. Zh. Fiz. Khim. 2006;80:495. doi: 10.1134/s0036024406030174. [DOI] [Google Scholar]
  • 182.Baidakov VG, Kaverin AM. Zh. Fiz. Khim. 2004;78:1150. [Google Scholar]
  • 183.Clendenning KA. Can. J. Res. Sect. F. 1946;24:249. doi: 10.1139/cjr46f-030. [DOI] [Google Scholar]
  • 184.Nakanishi K, Matsumoto T, Hayatsu M. J. Chem. Eng. Data. 1971;16:44. doi: 10.1021/je60048a010. [DOI] [Google Scholar]
  • 185.Won YS, Chung DK, Mills AF. J. Chem. Eng. Data. 1981;26:140. doi: 10.1021/je00024a011. [DOI] [Google Scholar]
  • 186.Hoke BC, Chen JC. J. Chem. Eng. Data. 1991;36:322. doi: 10.1021/je00003a019. [DOI] [Google Scholar]
  • 187.Horibe A, Fukusako S, Yamada M. Int. J. Thermophys. 1996;17:483. doi: 10.1007/bf01443405. [DOI] [Google Scholar]
  • 188.Tsierkezos NG, Molinou IE. J. Chem. Eng. Data. 1998;43:989. doi: 10.1021/je9800914. [DOI] [Google Scholar]
  • 189.Habrdova K, Hovorka S, Bartovska L. J. Chem. Eng. Data. 2004;49:1003. doi: 10.1021/je049955d. [DOI] [Google Scholar]
  • 190.Zhang J, Zhang P, Han F, Chen G, Deng R, Wei XH. J. Chem. Eng. Data. 2008;53:2372. doi: 10.1021/je800271e. [DOI] [Google Scholar]
  • 191.Rafati AA, Bagheri A, Najafi M. J. Chem. Thermodyn. 2011;43:248. doi: 10.1016/j.jct.2010.09.003. [DOI] [Google Scholar]
  • 192.Tiwari AK, Sonu, Saha SK. J. Chem. Thermodyn. 2014;70:24. doi: 10.1016/j.jct.2013.10.010. [DOI] [Google Scholar]
  • 193.Saji Y, Okuda T. Adv. Cryog. Eng. 1965;10:209. [Google Scholar]
  • 194.Bi S, Cui J, Zhao G, Wu J. Fluid Phase Equilib. 2016;414:60. doi: 10.1016/j.fluid.2016.01.013. [DOI] [Google Scholar]
  • 195.Waterman HI, van Herwijnen WRE, den Hartog HW. J. Appl. Chem. (Lond.) 1958;8:625. doi: 10.1002/jctb.5010081001. [DOI] [Google Scholar]
  • 196.K.C. Nadler, Ph.D. Thesis, Cornell University, 1987
  • 197.Sulla II, Baidakov VG. Zh. Fiz. Khim. 1994;68:63. [Google Scholar]
  • 198.Virtanen P, Gommers R, Oliphant TE, et al. Nat. Methods. 2020;17:261. doi: 10.1038/s41592-019-0686-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Bezera AS, Santos JMT, Paredes MLL. Fluid Phase Equilib. 2010;288:55. doi: 10.1016/j.fluid.2009.10.011. [DOI] [Google Scholar]
  • 200.Gasem KAM, Dulcamara PB, Dickson KB, Robinson RL. Fluid Phase Equilib. 1989;53:39. doi: 10.1016/0378-3812(89)80071-8. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from International Journal of Thermophysics are provided here courtesy of Springer

RESOURCES