Skip to main content
British Heart Journal logoLink to British Heart Journal
. 1992 May;67(5):361–367. doi: 10.1136/hrt.67.5.361

Role of atrial contraction and synchrony of ventricular contraction in the optimisation of ventriculoarterial coupling in humans.

K Yamamoto 1, K Kodama 1, T Masuyama 1, A Hirayama 1, S Nanto 1, M Mishima 1, A Kitabatake 1, T Kamada 1
PMCID: PMC1024855  PMID: 1389715

Abstract

OBJECTIVE--To examine the effects of pacing modes on the interaction between the left ventricle and arterial system in humans. DESIGN--The slope of the end systolic pressure-volume relation (end systolic elastance), effective arterial elastance, the ratio of effective arterial elastance to end systolic elastance, and mechanical energy efficiency were compared under different pacing modes (atrial, atrioventricular, and ventricular). PATIENTS--Nine male patients with sick sinus syndrome who had cardiac catheterisation for diagnosis and to see whether they needed a pacemaker. INTERVENTIONS--A conductance catheter with tip-manometer was inserted into the left ventricle to obtain pressure-volume loops, and two pacing catheters were inserted into the right atrium and into the right ventricle respectively. RESULTS--End systolic elastance was lower in atrioventricular pacing than in atrial pacing, but effective arterial elastance was not significantly different. End systolic elastance was lower in ventricular pacing than in atrioventricular pacing, and effective arterial elastance was higher in ventricular pacing than in atrioventricular pacing. Consequently the ratio of effective arterial elastance to end systolic elastance was lowest in atrial pacing and highest in ventricular pacing, and mechanical energy efficiency was highest in atrial pacing and lowest in ventricular pacing. CONCLUSIONS--Atrial contraction and synchronous ventricular contraction independently optimise ventriculoarterial coupling in terms of a transfer of energy. Thus atrial pacing gives the best ventriculo-arterial coupling among these pacing modes.

Full text

PDF
361

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpert M. A., Curtis J. J., Sanfelippo J. F., Flaker G. C., Walls J. T., Mukerji V., Villarreal D., Katti S. K., Madigan N. P., Morgan R. J. Comparative survival following permanent ventricular and dual-chamber pacing for patients with chronic symptomatic sinus node dysfunction with and without congestive heart failure. Am Heart J. 1987 Apr;113(4):958–965. doi: 10.1016/0002-8703(87)90057-3. [DOI] [PubMed] [Google Scholar]
  2. Applegate R. J., Cheng C. P., Little W. C. Simultaneous conductance catheter and dimension assessment of left ventricle volume in the intact animal. Circulation. 1990 Feb;81(2):638–648. doi: 10.1161/01.cir.81.2.638. [DOI] [PubMed] [Google Scholar]
  3. Asanoi H., Sasayama S., Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res. 1989 Aug;65(2):483–493. doi: 10.1161/01.res.65.2.483. [DOI] [PubMed] [Google Scholar]
  4. Baan J., Jong T. T., Kerkhof P. L., Moene R. J., van Dijk A. D., van der Velde E. T., Koops J. Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc Res. 1981 Jun;15(6):328–334. doi: 10.1093/cvr/15.6.328. [DOI] [PubMed] [Google Scholar]
  5. Baan J., van der Velde E. T., de Bruin H. G., Smeenk G. J., Koops J., van Dijk A. D., Temmerman D., Senden J., Buis B. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 1984 Nov;70(5):812–823. doi: 10.1161/01.cir.70.5.812. [DOI] [PubMed] [Google Scholar]
  6. Badke F. R., Boinay P., Covell J. W. Effects of ventricular pacing on regional left ventricular performance in the dog. Am J Physiol. 1980 Jun;238(6):H858–H867. doi: 10.1152/ajpheart.1980.238.6.H858. [DOI] [PubMed] [Google Scholar]
  7. Bedotto J. B., Grayburn P. A., Black W. H., Raya T. E., McBride W., Hsia H. H., Eichhorn E. J. Alterations in left ventricular relaxation during atrioventricular pacing in humans. J Am Coll Cardiol. 1990 Mar 1;15(3):658–664. doi: 10.1016/0735-1097(90)90642-3. [DOI] [PubMed] [Google Scholar]
  8. Boltwood C. M., Jr, Appleyard R. F., Glantz S. A. Left ventricular volume measurement by conductance catheter in intact dogs. Parallel conductance volume depends on left ventricular size. Circulation. 1989 Nov;80(5):1360–1377. doi: 10.1161/01.cir.80.5.1360. [DOI] [PubMed] [Google Scholar]
  9. Burkhoff D., Alexander J., Jr, Schipke J. Assessment of Windkessel as a model of aortic input impedance. Am J Physiol. 1988 Oct;255(4 Pt 2):H742–H753. doi: 10.1152/ajpheart.1988.255.4.H742. [DOI] [PubMed] [Google Scholar]
  10. Burkhoff D., Oikawa R. Y., Sagawa K. Influence of pacing site on canine left ventricular contraction. Am J Physiol. 1986 Aug;251(2 Pt 2):H428–H435. doi: 10.1152/ajpheart.1986.251.2.H428. [DOI] [PubMed] [Google Scholar]
  11. Burkhoff D., Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986 Jun;250(6 Pt 2):R1021–R1027. doi: 10.1152/ajpregu.1986.250.6.R1021. [DOI] [PubMed] [Google Scholar]
  12. Burkhoff D., Sugiura S., Yue D. T., Sagawa K. Contractility-dependent curvilinearity of end-systolic pressure-volume relations. Am J Physiol. 1987 Jun;252(6 Pt 2):H1218–H1227. doi: 10.1152/ajpheart.1987.252.6.H1218. [DOI] [PubMed] [Google Scholar]
  13. Burkhoff D. The conductance method of left ventricular volume estimation. Methodologic limitations put into perspective. Circulation. 1990 Feb;81(2):703–706. doi: 10.1161/01.cir.81.2.703. [DOI] [PubMed] [Google Scholar]
  14. Burkhoff D., van der Velde E., Kass D., Baan J., Maughan W. L., Sagawa K. Accuracy of volume measurement by conductance catheter in isolated, ejecting canine hearts. Circulation. 1985 Aug;72(2):440–447. doi: 10.1161/01.cir.72.2.440. [DOI] [PubMed] [Google Scholar]
  15. Faerestrand S., Oie B., Ohm O. J. Noninvasive assessment by Doppler and M-mode echocardiography of hemodynamic responses to temporary pacing and to ventriculoatrial conduction. Pacing Clin Electrophysiol. 1987 Jul;10(4 Pt 1):871–885. doi: 10.1111/j.1540-8159.1987.tb06044.x. [DOI] [PubMed] [Google Scholar]
  16. Grossman W., Braunwald E., Mann T., McLaurin L. P., Green L. H. Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation. 1977 Nov;56(5):845–852. doi: 10.1161/01.cir.56.5.845. [DOI] [PubMed] [Google Scholar]
  17. Hood W. B., Jr, Joison J., Abelmann W. H., Norman J. C. Asynchronous contraction due to late systolic bulging at left ventricular pacing sites. Am J Physiol. 1969 Jul;217(1):215–221. doi: 10.1152/ajplegacy.1969.217.1.215. [DOI] [PubMed] [Google Scholar]
  18. Iwase M., Sotobata I., Yokota M., Takagi S., Jing H. X., Kawai N., Hayashi H., Murase M. Evaluation by pulsed Doppler echocardiography of the atrial contribution to left ventricular filling in patients with DDD pacemakers. Am J Cardiol. 1986 Jul 1;58(1):104–109. doi: 10.1016/0002-9149(86)90251-1. [DOI] [PubMed] [Google Scholar]
  19. Kass D. A., Beyar R., Lankford E., Heard M., Maughan W. L., Sagawa K. Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation. 1989 Jan;79(1):167–178. doi: 10.1161/01.cir.79.1.167. [DOI] [PubMed] [Google Scholar]
  20. Kass D. A., Midei M., Graves W., Brinker J. A., Maughan W. L. Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure-volume relationships in man. Cathet Cardiovasc Diagn. 1988;15(3):192–202. doi: 10.1002/ccd.1810150314. [DOI] [PubMed] [Google Scholar]
  21. Kass D. A., Yamazaki T., Burkhoff D., Maughan W. L., Sagawa K. Determination of left ventricular end-systolic pressure-volume relationships by the conductance (volume) catheter technique. Circulation. 1986 Mar;73(3):586–595. doi: 10.1161/01.cir.73.3.586. [DOI] [PubMed] [Google Scholar]
  22. Kil P. J., Schiereck P. End-systolic pressure-volume relations of isolated ejecting rabbit left ventricles after quick diastolic volume changes. Cardiovasc Res. 1985 Dec;19(12):782–792. doi: 10.1093/cvr/19.12.782. [DOI] [PubMed] [Google Scholar]
  23. Kono A., Maughan W. L., Sunagawa K., Hamilton K., Sagawa K., Weisfeldt M. L. The use of left ventricular end-ejection pressure and peak pressure in the estimation of the end-systolic pressure-volume relationship. Circulation. 1984 Dec;70(6):1057–1065. doi: 10.1161/01.cir.70.6.1057. [DOI] [PubMed] [Google Scholar]
  24. Kruse I., Arnman K., Conradson T. B., Rydén L. A comparison of the acute and long-term hemodynamic effects of ventricular inhibited and atrial synchronous ventricular inhibited pacing. Circulation. 1982 May;65(5):846–855. doi: 10.1161/01.cir.65.5.846. [DOI] [PubMed] [Google Scholar]
  25. Little W. C., Cheng C. P., Peterson T., Vinten-Johansen J. Response of the left ventricular end-systolic pressure-volume relation in conscious dogs to a wide range of contractile states. Circulation. 1988 Sep;78(3):736–745. doi: 10.1161/01.cir.78.3.736. [DOI] [PubMed] [Google Scholar]
  26. Little W. C., Reeves R. C., Arciniegas J., Katholi R. E., Rogers E. W. Mechanism of abnormal interventricular septal motion during delayed left ventricular activation. Circulation. 1982 Jun;65(7):1486–1491. doi: 10.1161/01.cir.65.7.1486. [DOI] [PubMed] [Google Scholar]
  27. Masuyama T., Kodama K., Nakatani S., Kitabatake A. Effects of atrioventricular interval on left ventricular diastolic filling assessed with pulsed Doppler echocardiography. Cardiovasc Res. 1989 Dec;23(12):1034–1042. doi: 10.1093/cvr/23.12.1034. [DOI] [PubMed] [Google Scholar]
  28. Masuyama T., Kodama K., Uematsu M., Nanto S., Taniura K., Kitabatake A., Inoue M. Beneficial effects of atrioventricular sequential pacing on cardiac output and left ventricular filling assessed with pulsed Doppler echocardiography. Jpn Circ J. 1986 Sep;50(9):799–807. doi: 10.1253/jcj.50.799. [DOI] [PubMed] [Google Scholar]
  29. McKay R. G., Spears J. R., Aroesty J. M., Baim D. S., Royal H. D., Heller G. V., Lincoln W., Salo R. W., Braunwald E., Grossman W. Instantaneous measurement of left and right ventricular stroke volume and pressure-volume relationships with an impedance catheter. Circulation. 1984 Apr;69(4):703–710. doi: 10.1161/01.cir.69.4.703. [DOI] [PubMed] [Google Scholar]
  30. Miyazawa K., Arai T., Shirato K., Haneda T., Ikeda S. Regional contraction patterns of the left ventricle during ventricular pacing. Tohoku J Exp Med. 1977 Jun;122(2):167–174. doi: 10.1620/tjem.122.167. [DOI] [PubMed] [Google Scholar]
  31. Murgo J. P., Westerhof N., Giolma J. P., Altobelli S. A. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation. 1980 Jul;62(1):105–116. doi: 10.1161/01.cir.62.1.105. [DOI] [PubMed] [Google Scholar]
  32. Naito M., Dreifus L. S., David D., Michelson E. L., Mardelli T. J., Kmetzo J. J. Reevaluation of the role of atrial systole to cardiac hemodynamics: evidence for pulmonary venous regurgitation during abnormal atrioventricular sequencing. Am Heart J. 1983 Feb;105(2):295–302. doi: 10.1016/0002-8703(83)90530-6. [DOI] [PubMed] [Google Scholar]
  33. Nitsch J., Seiderer M., Büll U., Lüderitz B. Evaluation of left ventricular performance by radionuclide ventriculography in patients with atrioventricular versus ventricular demand pacemakers. Am Heart J. 1984 May;107(5 Pt 1):906–911. doi: 10.1016/0002-8703(84)90826-3. [DOI] [PubMed] [Google Scholar]
  34. Nozawa T., Yasumura Y., Futaki S., Tanaka N., Uenishi M., Suga H. Efficiency of energy transfer from pressure-volume area to external mechanical work increases with contractile state and decreases with afterload in the left ventricle of the anesthetized closed-chest dog. Circulation. 1988 May;77(5):1116–1124. doi: 10.1161/01.cir.77.5.1116. [DOI] [PubMed] [Google Scholar]
  35. Pepine C. J., Nichols W. W., Conti C. R. Aortic input impedance in heart failure. Circulation. 1978 Sep;58(3 Pt 1):460–465. doi: 10.1161/01.cir.58.3.460. [DOI] [PubMed] [Google Scholar]
  36. Reiter M. J., Hindman M. C. Hemodynamic effects of acute atrioventricular sequential pacing in patients with left ventricular dysfunction. Am J Cardiol. 1982 Mar;49(4):687–692. doi: 10.1016/0002-9149(82)91947-6. [DOI] [PubMed] [Google Scholar]
  37. Rosenqvist M., Brandt J., Schüller H. Long-term pacing in sinus node disease: effects of stimulation mode on cardiovascular morbidity and mortality. Am Heart J. 1988 Jul;116(1 Pt 1):16–22. doi: 10.1016/0002-8703(88)90244-x. [DOI] [PubMed] [Google Scholar]
  38. Rosenqvist M., Isaaz K., Botvinick E. H., Dae M. W., Cockrell J., Abbott J. A., Schiller N. B., Griffin J. C. Relative importance of activation sequence compared to atrioventricular synchrony in left ventricular function. Am J Cardiol. 1991 Jan 15;67(2):148–156. doi: 10.1016/0002-9149(91)90437-p. [DOI] [PubMed] [Google Scholar]
  39. Sagawa K., Suga H., Shoukas A. A., Bakalar K. M. End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol. 1977 Nov;40(5):748–753. doi: 10.1016/0002-9149(77)90192-8. [DOI] [PubMed] [Google Scholar]
  40. Suga H., Hayashi T., Shirahata M. Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol. 1981 Jan;240(1):H39–H44. doi: 10.1152/ajpheart.1981.240.1.H39. [DOI] [PubMed] [Google Scholar]
  41. Suga H., Hisano R., Goto Y., Yamada O., Igarashi Y. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res. 1983 Sep;53(3):306–318. doi: 10.1161/01.res.53.3.306. [DOI] [PubMed] [Google Scholar]
  42. Suga H., Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974 Jul;35(1):117–126. doi: 10.1161/01.res.35.1.117. [DOI] [PubMed] [Google Scholar]
  43. Suga H., Sagawa K., Shoukas A. A. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973 Mar;32(3):314–322. doi: 10.1161/01.res.32.3.314. [DOI] [PubMed] [Google Scholar]
  44. Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol. 1979 Mar;236(3):H498–H505. doi: 10.1152/ajpheart.1979.236.3.H498. [DOI] [PubMed] [Google Scholar]
  45. Suga H., Yamada O., Goto Y., Igarashi Y. Peak isovolumic pressure-volume relation of puppy left ventricle. Am J Physiol. 1986 Feb;250(2 Pt 2):H167–H172. doi: 10.1152/ajpheart.1986.250.2.H167. [DOI] [PubMed] [Google Scholar]
  46. Sunagawa K., Maughan W. L., Burkhoff D., Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983 Nov;245(5 Pt 1):H773–H780. doi: 10.1152/ajpheart.1983.245.5.H773. [DOI] [PubMed] [Google Scholar]
  47. Sunagawa K., Maughan W. L., Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985 Apr;56(4):586–595. doi: 10.1161/01.res.56.4.586. [DOI] [PubMed] [Google Scholar]
  48. Sunagawa K., Maughan W. L., Sagawa K. Stroke volume effect of changing arterial input impedance over selected frequency ranges. Am J Physiol. 1985 Apr;248(4 Pt 2):H477–H484. doi: 10.1152/ajpheart.1985.248.4.H477. [DOI] [PubMed] [Google Scholar]
  49. Sunagawa K., Sagawa K., Maughan W. L. Ventricular interaction with the loading system. Ann Biomed Eng. 1984;12(2):163–189. doi: 10.1007/BF02584229. [DOI] [PubMed] [Google Scholar]
  50. Van Hessen M. W., Schiereck P., Stokhof A. A., De Beer E. L., Hak J. B., Wesenhagen H., Bruens M. G., te Kloeze W., Crowe A. Effect of timing of transient diastolic changes in ventricular filling on LV performance in dogs. Am J Physiol. 1989 Jul;257(1 Pt 2):H305–H313. doi: 10.1152/ajpheart.1989.257.1.H305. [DOI] [PubMed] [Google Scholar]
  51. Videen J. S., Huang S. K., Bazgan I. D., Mechling E., Patton D. D. Hemodynamic comparison of ventricular pacing, atrioventricular sequential pacing, and atrial synchronous ventricular pacing using radionuclide ventriculography. Am J Cardiol. 1986 Jun 1;57(15):1305–1308. doi: 10.1016/0002-9149(86)90209-2. [DOI] [PubMed] [Google Scholar]
  52. Werns S. W., Shea M. J., Lucchesi B. R. Free radicals and myocardial injury: pharmacologic implications. Circulation. 1986 Jul;74(1):1–5. doi: 10.1161/01.cir.74.1.1. [DOI] [PubMed] [Google Scholar]
  53. Wish M., Fletcher R. D., Gottdiener J. S., Cohen A. I. Importance of left atrial timing in the programming of dual-chamber pacemakers. Am J Cardiol. 1987 Sep 1;60(7):566–571. doi: 10.1016/0002-9149(87)90306-7. [DOI] [PubMed] [Google Scholar]
  54. Yamamoto K., Kodama K., Masuyama T., Hirayama A., Nanto S., Mishima M., Kitabatake A., Kamada T. Adverse effects of epinephrine in patients with advanced left ventricular dysfunction: analysis of ventriculo-arterial coupling. Int J Cardiol. 1992 Feb;34(2):143–155. doi: 10.1016/0167-5273(92)90150-2. [DOI] [PubMed] [Google Scholar]
  55. Zile M. R., Blaustein A. S., Shimizu G., Gaasch W. H. Right ventricular pacing reduces the rate of left ventricular relaxation and filling. J Am Coll Cardiol. 1987 Sep;10(3):702–709. doi: 10.1016/s0735-1097(87)80215-2. [DOI] [PubMed] [Google Scholar]

Articles from British Heart Journal are provided here courtesy of BMJ Publishing Group

RESOURCES