Skip to main content
British Heart Journal logoLink to British Heart Journal
. 1992 May;67(5):368–376. doi: 10.1136/hrt.67.5.368

Changes in myocardial echo amplitude during reversible ischaemia in humans.

D A Lythall 1, D G Gibson 1, S S Kushwaha 1, M S Norell 1, A G Mitchell 1, C J Ilsley 1
PMCID: PMC1024856  PMID: 1389716

Abstract

OBJECTIVE--This study investigated the changes in regional myocardial ultrasonic backscatter, measured as myocardial echo amplitude, that occur during reversible myocardial ischaemia in humans. DESIGN--Left anterior descending coronary angioplasty was used to produce reversible myocardial ischaemia in human subjects. Regional myocardial echo amplitude was studied in the interventricular septum and left ventricular posterior free wall before, during, and after coronary occlusion with the angioplasty balloon. Wall motion analysis of the left ventricle was performed from simultaneous cross sectional echocardiographic imaging. Patients were studied prospectively. PATIENTS--Six patients (mean age 56 (SD 11), range 46 to 69 years) with single vessel, left anterior descending coronary artery stenoses, were investigated during elective coronary angioplasty. A total of 11 balloon inflations were studied. SETTING--All patient studies were performed at Harefield Hospital. Echo amplitude analysis was performed at the Royal Brompton Hospital. INTERVENTIONS--Angioplasty was performed by the usual procedure at Harefield Hospital for elective coronary angioplasty. All routine medication including beta blockers and calcium antagonists were continued. Inflation pressures were up to 12 atm (1212 kPa) and mean inflation time ranged from 30 to 120 (86 (31)) s. In four studies the first inflation was examined, in three the second, in two the third, and in one each the fourth and fifth inflations. Echo amplitude and cross sectional echo-cardiographic studies were recorded with a 3.5 MHz Advanced Technology Laboratories (ATL) (720A/8736 series) mechanical sector scanner and an ATL Mark III (860-1 series) echocardiograph system with 45 dB logarithmic grey scale compression. MAIN OUTCOME MEASURES--Regional echo amplitude was examined in four regions of the left ventricle--namely, the basal and mid-septum, and basal and mid-posterior wall. Consecutive end diastolic and end systolic frames were analysed and cyclic variation was determined as the difference between the level of echo amplitude at end diastole and at end systole. Measurements were made before balloon inflation, at peak inflation, and after balloon deflation. Regional wall motion and systolic wall thickening were analysed qualitatively. RESULTS--Before balloon inflation, cyclic variation in echo amplitude was noted in all regions (basal septum, 2.4 (SD 1.1) dB; mid-septum, 2.5 (1.1) dB; basal posterior wall, 3.3 (2.1) dB; mid-posterior wall, 3.9 (1.6) dB). During balloon inflation there was a significant fall in cyclic variation to 0.4 (0.9) dB (p < 0.0002) in the mid-septum. This was predominantly owing to an increase in end systolic echo amplitude from 5.4 (2.0) dB to 9.3 (1.9) dB (p < or = 0.01). This was associated with the development of severe hypokinesis or akinesis in the mid-septum. No significant changes in echo amplitude occurred in the three other regions examined. Changes were completely reversed after balloon deflation. CONCLUSIONS--These results suggest a causal relation between occlusion of the supplying coronary artery and blunting of myocardial echo amplitude cyclic variation. It is suggested that balloon occlusion produced myocardial ischaemia. The resultant impairment of myocardial contraction then caused a blunting of cyclic variation in echo amplitude. The results of this study provide further data about the ability of quantitative studies of ultrasonic backscatter to identify alterations in the myocardium during injury.

Full text

PDF
368

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam M., Khaja F., Brymer J., Marzelli M., Goldstein S. Echocardiographic evaluation of left ventricular function during coronary artery angioplasty. Am J Cardiol. 1986 Jan 1;57(1):20–25. doi: 10.1016/0002-9149(86)90944-6. [DOI] [PubMed] [Google Scholar]
  2. Aygen M., Popp R. L. Influence of the orientation of myocardial fibers on echocardiographic images. Am J Cardiol. 1987 Jul 1;60(1):147–152. doi: 10.1016/0002-9149(87)91002-2. [DOI] [PubMed] [Google Scholar]
  3. Doorey A. J., Mehmel H. C., Schwarz F. X., Kübler W. Amelioration by nitroglycerin of left ventricular ischemia induced by percutaneous transluminal coronary angioplasty: assessment by hemodynamic variables and left ventriculography. J Am Coll Cardiol. 1985 Aug;6(2):267–274. doi: 10.1016/s0735-1097(85)80159-5. [DOI] [PubMed] [Google Scholar]
  4. Edwards W. D., Tajik A. J., Seward J. B. Standardized nomenclature and anatomic basis for regional tomographic analysis of the heart. Mayo Clin Proc. 1981 Aug;56(8):479–497. [PubMed] [Google Scholar]
  5. Friedman P. L., Shook T. L., Kirshenbaum J. M., Selwyn A. P., Ganz P. Value of the intracoronary electrocardiogram to monitor myocardial ischemia during percutaneous transluminal coronary angioplasty. Circulation. 1986 Aug;74(2):330–339. doi: 10.1161/01.cir.74.2.330. [DOI] [PubMed] [Google Scholar]
  6. Grines C. L., Topol E. J., Bates E. R., Juni J. E., Walton J. A., Jr, O'Neill W. W. Infarct vessel status after intravenous tissue plasminogen activator and acute coronary angioplasty: prediction of clinical outcome. Am Heart J. 1988 Jan;115(1 Pt 1):1–7. doi: 10.1016/0002-8703(88)90510-8. [DOI] [PubMed] [Google Scholar]
  7. Hauser A. M., Gangadharan V., Ramos R. G., Gordon S., Timmis G. C. Sequence of mechanical, electrocardiographic and clinical effects of repeated coronary artery occlusion in human beings: echocardiographic observations during coronary angioplasty. J Am Coll Cardiol. 1985 Feb;5(2 Pt 1):193–197. doi: 10.1016/s0735-1097(85)80036-x. [DOI] [PubMed] [Google Scholar]
  8. Heyndrickx G. R., Millard R. W., McRitchie R. J., Maroko P. R., Vatner S. F. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975 Oct;56(4):978–985. doi: 10.1172/JCI108178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jain A., Gettes L. S. Patterns of ST-segment change during acute no-flow myocardial ischemia produced by balloon occlusion during angioplasty of the left anterior descending coronary artery. Am J Cardiol. 1991 Feb 1;67(4):305–307. doi: 10.1016/0002-9149(91)90564-2. [DOI] [PubMed] [Google Scholar]
  10. Jennings R. B., Ganote C. E. Structural changes in myocardium during acute ischemia. Circ Res. 1974 Sep;35 (Suppl 3):156–172. [PubMed] [Google Scholar]
  11. Kloner R. A., DeBoer L. W., Darsee J. R., Ingwall J. S., Braunwald E. Recovery from prolonged abnormalities of canine myocardium salvaged from ischemic necrosis by coronary reperfusion. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7152–7156. doi: 10.1073/pnas.78.11.7152. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  12. Kloner R. A., Ganote C. E., Whalen D. A., Jr, Jennings R. B. Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Pathol. 1974 Mar;74(3):399–422. [PMC free article] [PubMed] [Google Scholar]
  13. Labovitz A. J., Lewen M. K., Kern M., Vandormael M., Deligonal U., Kennedy H. L. Evaluation of left ventricular systolic and diastolic dysfunction during transient myocardial ischemia produced by angioplasty. J Am Coll Cardiol. 1987 Oct;10(4):748–755. doi: 10.1016/s0735-1097(87)80266-8. [DOI] [PubMed] [Google Scholar]
  14. Logan-Sinclair R., Wong C. M., Gibson D. G. Clinical application of amplitude processing of echocardiographic images. Br Heart J. 1981 Jun;45(6):621–627. doi: 10.1136/hrt.45.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Madaras E. I., Barzilai B., Perez J. E., Sobel B. E., Miller J. G. Changes in myocardial backscatter throughout the cardiac cycle. Ultrason Imaging. 1983 Jul;5(3):229–239. doi: 10.1177/016173468300500303. [DOI] [PubMed] [Google Scholar]
  16. Massay R. J., Logan-Sinclair R. B., Bamber J. C., Gibson D. G. Quantitative effects of speckle reduction on cross sectional echocardiographic images. Br Heart J. 1989 Oct;62(4):298–304. doi: 10.1136/hrt.62.4.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Masuyama T., Nellessen U., Schnittger I., Tye T. L., Haskell W. L., Popp R. L. Ultrasonic tissue characterization with a real time integrated backscatter imaging system in normal and aging human hearts. J Am Coll Cardiol. 1989 Dec;14(7):1702–1708. doi: 10.1016/0735-1097(89)90019-3. [DOI] [PubMed] [Google Scholar]
  18. Milunski M. R., Canter C. E., Wickline S. A., Sobel B. E., Miller J. G., Pérez J. E. Cardiac cycle-dependent variation of integrated backscatter is not distorted by abnormal myocardial wall motion in human subjects with paradoxical septal motion. Ultrasound Med Biol. 1989;15(4):311–317. doi: 10.1016/0301-5629(89)90043-4. [DOI] [PubMed] [Google Scholar]
  19. Milunski M. R., Mohr G. A., Pérez J. E., Vered Z., Wear K. A., Gessler C. J., Sobel B. E., Miller J. G., Wickline S. A. Ultrasonic tissue characterization with integrated backscatter. Acute myocardial ischemia, reperfusion, and stunned myocardium in patients. Circulation. 1989 Sep;80(3):491–503. doi: 10.1161/01.cir.80.3.491. [DOI] [PubMed] [Google Scholar]
  20. Milunski M. R., Mohr G. A., Wear K. A., Sobel B. E., Miller J. G., Wickline S. A. Early identification with ultrasonic integrated backscatter of viable but stunned myocardium in dogs. J Am Coll Cardiol. 1989 Aug;14(2):462–471. doi: 10.1016/0735-1097(89)90203-9. [DOI] [PubMed] [Google Scholar]
  21. Mimbs J. W., Bauwens D., Cohen R. D., O'Donnell M., Miller J. G., Sobel B. E. Effects of myocardial ischemia on quantitative ultrasonic backscatter and identification of responsible determinants. Circ Res. 1981 Jul;49(1):89–96. doi: 10.1161/01.res.49.1.89. [DOI] [PubMed] [Google Scholar]
  22. Norell M. S., Lyons J. P., Gershlick A. H., Gardener J. E., Rothman M. T., Layton C. A., Balcon R. Assessment of left ventricular performance during percutaneous transluminal coronary angioplasty: a study by intravenous digital subtraction ventriculography. Br Heart J. 1988 Apr;59(4):419–428. doi: 10.1136/hrt.59.4.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Olshansky B., Collins S. M., Skorton D. J., Prasad N. V. Variation of left ventricular myocardial gray level on two-dimensional echocardiograms as a result of cardiac contraction. Circulation. 1984 Dec;70(6):972–977. doi: 10.1161/01.cir.70.6.972. [DOI] [PubMed] [Google Scholar]
  24. Pandian N. G., Kerber R. E. Two-dimensional echocardiography in experimental coronary stenosis. I. Sensitivity and specificity in detecting transient myocardial dyskinesis: comparison with sonomicrometers. Circulation. 1982 Sep;66(3):597–602. doi: 10.1161/01.cir.66.3.597. [DOI] [PubMed] [Google Scholar]
  25. Pandian N. G., Kieso R. A., Kerber R. E. Two-dimensional echocardiography in experimental coronary stenosis. II. Relationship between systolic wall thinning and regional myocardial perfusion in severe coronary stenosis. Circulation. 1982 Sep;66(3):603–611. doi: 10.1161/01.cir.66.3.603. [DOI] [PubMed] [Google Scholar]
  26. Piscione F., Hugenholtz P. G., Serruys P. W. Impaired left ventricular filling dynamics during percutaneous transluminal angioplasty for coronary artery disease. Am J Cardiol. 1987 Jan 1;59(1):29–37. doi: 10.1016/s0002-9149(87)80064-4. [DOI] [PubMed] [Google Scholar]
  27. Rijsterborgh H., Mastik F., Lancée C. T., Sassen L. M., Verdouw P. D., Roelandt J., Bom N. The relative contributions of myocardial wall thickness and ischemia to ultrasonic myocardial integrated backscatter during experimental ischemia. Ultrasound Med Biol. 1991;17(1):41–48. doi: 10.1016/0301-5629(91)90007-j. [DOI] [PubMed] [Google Scholar]
  28. Sagar K. B., Rhyne T. L., Warltier D. C., Pelc L., Wann L. S. Intramyocardial variability in integrated backscatter: effects of coronary occlusion and reperfusion. Circulation. 1987 Feb;75(2):436–442. doi: 10.1161/01.cir.75.2.436. [DOI] [PubMed] [Google Scholar]
  29. Serruys P. W., Wijns W., van den Brand M., Meij S., Slager C., Schuurbiers J. C., Hugenholtz P. G., Brower R. W. Left ventricular performance, regional blood flow, wall motion, and lactate metabolism during transluminal angioplasty. Circulation. 1984 Jul;70(1):25–36. doi: 10.1161/01.cir.70.1.25. [DOI] [PubMed] [Google Scholar]
  30. Shung K. K., Sigelmann R. A., Reid J. M. Scattering of ultrasound by blood. IEEE Trans Biomed Eng. 1976 Nov;23(6):460–467. doi: 10.1109/tbme.1976.324604. [DOI] [PubMed] [Google Scholar]
  31. Vered Z., Barzilai B., Mohr G. A., Thomas L. J., 3rd, Genton R., Sobel B. E., Shoup T. A., Melton H. E., Miller J. G., Pérez J. E. Quantitative ultrasonic tissue characterization with real-time integrated backscatter imaging in normal human subjects and in patients with dilated cardiomyopathy. Circulation. 1987 Nov;76(5):1067–1073. doi: 10.1161/01.cir.76.5.1067. [DOI] [PubMed] [Google Scholar]
  32. Visser C. A., David G. K., Kan G., Romijn K. H., Meltzer R. S., Koolen J. J., Dunning A. J. Two-dimensional echocardiography during percutaneous transluminal coronary angioplasty. Am Heart J. 1986 Jun;111(6):1035–1041. doi: 10.1016/0002-8703(86)90003-7. [DOI] [PubMed] [Google Scholar]
  33. Weiner J. M., Astein C. S., Arthur J. H., Pirzada F. A., Hood W. B., Jr Persistence of myocardial injury following brief periods of coronary occlusion. Cardiovasc Res. 1976 Nov;10(6):678–686. doi: 10.1093/cvr/10.6.678. [DOI] [PubMed] [Google Scholar]
  34. Wickline S. A., Thomas L. J., 3rd, Miller J. G., Sobel B. E., Perez J. E. A relationship between ultrasonic integrated backscatter and myocardial contractile function. J Clin Invest. 1985 Dec;76(6):2151–2160. doi: 10.1172/JCI112221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wickline S. A., Thomas L. J., 3rd, Miller J. G., Sobel B. E., Perez J. E. Sensitive detection of the effects of reperfusion on myocardium by ultrasonic tissue characterization with integrated backscatter. Circulation. 1986 Aug;74(2):389–400. doi: 10.1161/01.cir.74.2.389. [DOI] [PubMed] [Google Scholar]
  36. Wohlgelernter D., Cleman M., Highman H. A., Fetterman R. C., Duncan J. S., Zaret B. L., Jaffe C. C. Regional myocardial dysfunction during coronary angioplasty: evaluation by two-dimensional echocardiography and 12 lead electrocardiography. J Am Coll Cardiol. 1986 Jun;7(6):1245–1254. doi: 10.1016/s0735-1097(86)80143-7. [DOI] [PubMed] [Google Scholar]
  37. Zhao M. J., Zhang H., Robinson T. F., Factor S. M., Sonnenblick E. H., Eng C. Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional ("stunned") but viable myocardium. J Am Coll Cardiol. 1987 Dec;10(6):1322–1334. doi: 10.1016/s0735-1097(87)80137-7. [DOI] [PubMed] [Google Scholar]

Articles from British Heart Journal are provided here courtesy of BMJ Publishing Group

RESOURCES