Skip to main content
Comparative Cytogenetics logoLink to Comparative Cytogenetics
. 2023 May 29;17:129–156. doi: 10.3897/CompCytogen.17.98903

Allium cytogenetics: a critical review on the Indian taxa

Biplab Kumar Bhowmick 1, Sayantika Sarkar 2, Dipasree Roychowdhury 2, Sayali D Patil 3, Manoj M Lekhak 3, Deepak Ohri 4, Satyawada Rama Rao 5, S R Yadav 3, R C Verma 6, Manoj K Dhar 7, S N Raina 8, Sumita Jha 2,
PMCID: PMC10252142  PMID: 37304149

Abstract

The genus Allium Linnaeus, 1753 (tribe Allieae) contains about 800 species worldwide of which almost 38 species are reported in India, including the globally important crops (onion, garlic, leek, shallot) and many wild species. A satisfactory chromosomal catalogue of Allium species is missing which has been considered in the review for the species occurring in India. The most prominent base number is x=8, with few records of x=7, 10, 11. The genome size has sufficient clues for divergence, ranging from 7.8 pg/1C to 30.0 pg/1C in diploid and 15.16 pg/1C to 41.78 pg/1C in polyploid species. Although the karyotypes are seemingly dominated by metacentrics, substantial variation in nucleolus organizing regions (NORs) is noteworthy. The chromosomal rearrangement between A.cepa Linnaeus, 1753 and its allied species has paved way to appreciate genomic evolution within Allium. The presence of a unique telomere sequence and its conservation in Allium sets this genus apart from all other Amaryllids and supports monophyletic origin. Any cytogenetic investigation regarding NOR variability, telomere sequence and genome size in the Indian species becomes the most promising field to decipher chromosome evolution against the background of species diversity and evolution, especially in the Indian subcontinent.

Keywords: Allium , Chromosome, FISH, Genome size, Indian species, NORs, Telomere

Introduction

The genus Allium Linnaeus, 1753 is considered a wonder crop of global importance, catering to the agriculture, condiment, pharmaceutical, nutraceutical and cosmetic sectors of economy owing to the presence of numerous species with tremendous significance. Among several herb species, an onion (A.cepa Linnaeus, 1753) that is valued throughout the continent attracts a lot of attention of the economic sectors mentioned above, followed by garlics, leeks and shallots having limited uses. Onion is the second of the five main world vegetables species (after tomato) whose worldwide production accounted for 9% of the total (42–45%) increase in production of vegetables between 2000–2019 (https://www.fao.org/3/cb4477en/online/cb4477en.html#chapter-2_1).

Allium, previously referred to Liliaceae, is now a member of Amaryllidaceae sensu Angiosperm Phylogeny Group or APG III (Haston et al. 2009). This large genus (about 800 species, Costa et al. 2020) was divided into 15 subgenera and 56 sections (Friesen et al. 2006). At present, Allium has its primary evolution centre across the Irano-Turanian phytochorion while secondary centres of diversity include Mediterranean basin and western North America (Friesen et al. 2006). The taxonomy and evolution of this diverse genus has been accepted as difficult.

Cytogenetics, being the only elementary discipline of genetics, focuses on genome structure, function and evolution. The evolutionary history of organisms is inscribed in the chromosomes, the physically visible form of genome. The very fundamental parameters such as chromosome count reports, when combined with molecular cytogenetic and phylogenetic data (Islam-Faridi et al. 2020; Senderowicz et al. 2021), or genome size estimates, can elucidate trends of evolution in context of ploidy changes. Molecular cytogenetic approaches, in line with the parameters mentioned already, can accelerate the understanding of the evolutionary questions (Borowska-Zuchowska et al. 2022; Nath et al. 2022). A general correlation between evolutionary trends and chromosomal features has been shown in many plant families (Van-Lume et al. 2017; Carta et al. 2020; Bhowmick and Jha 2022; Nath et al. 2022). Recently, a broad concurrence between karyology and geographical distribution has been shown in three Allioideae tribes, with respect to the diversification of Allieae to Northern Hemisphere from the Indian tectonic plate around 30 million years ago (Costa et al. 2020).

India is the world’s second-largest producer of onion after China, with a production rate of 16360 kg/ Ha (2020–2021) (https://eands.dacnet.nic.in/). After onion, A.sativum Linnaeus, 1753 (garlic) is the second largest species of Allium contributing significantly to agro-economical development of the country (https://eands.dacnet.nic.in/). Among the other species, A.schoenoprasum Linnaeus, 1753 and A.roylei Stearn, 1947 exhibited resistance qualities (Nanda et al. 2016) and promise adoption of advanced breeding. Keeping in mind the significance of Allium and the complications in taxonomy and evolution, a comprehensive summary of cytogenetic characters has been presented for Indian species of Allium.

Data compilation

Distribution of taxa, chromosome counts, ploidy, karyotypes and molecular cytogenetic reports have been compiled from original publications, chromosome atlases and databases e.g. Database on Genome-Related Information of Indian Plants or d-GRIP (http://indianpcd.com/; Jha et al. 2019), Index to Plant Chromosome Numbers or IPCN (http://www.tropicos.org/project/ipcn, Goldblatt and Lowry 2011), Chromosome Counts Database or CCDB (http://ccdb.tau.ac.il/, Rice et al. 2015), The Plant DNA C-values database (https://cvalues.science.kew.org/, Pellicer and Leitch 2020) and Plant rDNA Database (www.plantrdnadatabase.com, Vitales et al. 2017). In case of synonyms, the present taxonomic designations are retained with appropriate references.

Cytogenetic catalogue of Allium species in India

There are 35–40 species of Allium currently reported from India (ca. 38 species) (d-GRIP, Pandey et al. 2021, 2022). The species of Allium in India belong to nine subgenera namely, Cepa (5 species), Allium (5 species), Amerallium (4 species), Reticulatobulbosa (3 species), Polyprason (3 species), Anguinum (2 species), Butomissa (2 species), Melanocrommyum (1 species) and Rhizirideum (2 species) (Friesen et al. 2006). Majority of the Allium species prefer temperate mixed forests or rocky slopes ranging 1200–5480 meters of the western Himalayas (e.g. A.atropurpureum Waldst. et Kit., 1800, A.atrosanguineum Schrenk, 1842, A.auriculatum Kunth, 1843, A.caesioides Wendelbo, 1969, A.carolinianum Redouté, 1804, A.consanguineum Kunth, 1843, A.fedschenkoanum Regel, 1875, A.griffithianum Boiss., 1859, A.loratum Baker, 1874, A.oreoprasum Schrenk, 1842, A.roylei, A.schoenoprasum and A.schrenkii Regel, 1875). There are few species endemic to Kashmir and Uttarakhand (e.g. A.gilgiticum F.T. Wang et Tang, 1937 which is also endangered, A.stracheyi Baker, 1874 and A.negianum A. Pandey, K.M. Rai, Malav et S. Rajkumar, 2021) (Pandey et al. 2021). Rest of the species occupy the temperate habitats of north-eastern hill region (e.g. A.fasciculatum Rendle, 1906, A.hookeri Thwaites, 1864, A.macranthum Baker, 1874, A.platyspathum Schrenk, 1841, A.prattii C.H. Wright, 1903, A.rhabdotum Stearn, 1960, A.sikkimense Baker, 1874) while some wild or semi-wild species (A.przewalskianum Regel, 1875, A.tuberosum Rottler et Sprengel, 1825, A.victorialis Linnaeus, 1753, A.wallichii Kunth, 1843) occur in the western and eastern Himalayan regions.

Chromosome counts

The chromosome counts and karyotype details are known perhaps in 33 and 25 species, respectively (Table 1, Fig. 1). The prominent base number (x) is 8, irrespective of the subgenera, sections or the distribution pattern. Some western Himalayan species which are still not assigned to any of the subgenera (e.g. A.atropurpureum, A.caesioides, A.consanguineum, A.ascalonicum Linnaeus, 1756, A.blandum Wall., 1832, A.hypsistum Stearn, 1960) and endemic A.stracheyi have x=8. Divergent numbers such as x=7, 10 and 11 are found in the Indian species of the subgenus Amerallium (Table 1) which also justifiy their inclusion in a separate subgenus (Peruzzi et al. 2017). Chromosome number has not been studied in the newly discovered A.negianum of Rhizirideum, sect. Eduardia (Pandey et al. 2021), which together with its close relative A.przewalskianum of sect. Caespitosoprason (Pandey et al. 2021) not studied from the territory of India, needs to be investigated. Similarly, A.loratum, A.auriculatum, A.rhabdotum and an endemic A.gilgiticum still are not assigned to any of the subgenera, and any cytological information is also missing. The meiotic studies in some species have shown various configurations like multivalents or univalents and occasional irregularities as in A.chinense G. Don, 1827 (Gohil and Koul 1973, 1981), A.hookeri (Sharma et al. 2011), A.roylei (Sharma and Gohil 2003, 2011a; Kohli and Gohil 2011), A.rubellum M. Bieb., 1808 (Khoshoo and Sharma 1959; Koul et al. 1971) and A.tuberosum (Gohil and Koul 1983; Sharma and Gohil 2004, 2013a, b). In case of tetraploid A.ampeloprasum Linnaeus, 1753 (as A.porrum Linnaeus, 1753 in many studies), 16 bivalents were recorded regularly with complete absence of any multivalent (Koul and Gohil 1970b; Ved Brat and Dhingra 1973; Gohil and Koul 1977; Pandita and Mehra 1981a; Stack and Roelofs 1996). In this species, some peculiar features like appearance of bivalents in metaphase I instead of quadrivalents, localized chiasmata at pericentromeric regions have been reported (Levan 1940; Koul and Gohil 1970b; Stack and Roelofs 1996). Considering the incidence of vivipary and hybridization in A.cepa (Singh et al. 1967; Langer and Koul 1983; Puizina and Papea 1996), thorough meiotic analysis of the agriculturally important species (A.cepa, A.sativum, etc.) would be a significant aspect of future revision.

Table 1.

Chromosome numbers, ploidy and nuclear genome sizes in Indian species of Allium of Amaryllidaceae (Tribe Allieae, Subfamily Allioideae, sensu APG IV 2016).

Subgenus/ section Species (syn.) Chromosome number Ploidy 4C DNA value in diploid/ polyploid nuclei (pg) Genome size in diploid/polyploid (pg) References
Basic (x) Gametic (n) Zygotic (2n) 1C 1Cx
Amerallium/ Bromatorrhiza! A.fasciculatum Rendle (A.gageanum) 10a 20b, 40c Diploidd, Tetraploide a, b, d(Xu et al. 1998; Li et al. 2017), b(Huang et al. 1995), c, e(Dutta et al. 2015)
Amerallium/ Bromatorrhiza* A.hookeri Thwaites (A.tsoongii) 22a, 33b, 44c 63.24 (diploid, Feulgen cytophotometry)d 15.81 (diploid)d 15.81d a(Sen 1974a; Tang et al. 2005; Sharma et al. 2011), a, b, c(Huang et al. 1995), a, c(Phuong et al. 2010), a, d(Ohri et al. 1998; Ohri and Pistrick 2001)
Amerallium/ Bromatorrhiza! A.macranthum Baker (A.oviflorum Regel, A.simethis H.Lev.) 14a 14b, 28c a(Levan 1934), b, c(Huang et al. 1995; Tang et al. 2005)
Amerallium/ Bromatorrhiza*! A.wallichii Kunth. (A.bulleyanum Diels, A.caeruleum Wall.) 7a - 14b, 28c, 32d Diploide, Tetraploidf 64.98 (diploid, Feulgen Cytophotometry)g, 121.79 (tetraploid, Feulgen Cytophotometry)h, 119.13 (tetraploid, Feulgen microdensitometry)i 16.24 (diploid)g, 30.45 (tetraploid)h 16.24g, 15.22h a, b, c, e, f(Huang et al. 1995), c, f, i(Labani and Elkington 1987), d(Ved Brat 1965), a, b, c, e, f, g, h(Ohri et al. 1998), a, b, c, e, g, i(Ohri and Pistrick 2001)
Anguinum/ Anguinum* A.prattii C.H.Wright (A.cannifolium H. Lev., A.ellipticum Wall et Kunth) 8a 16b 16c, 32d Diploide, Tetraploidf a(Lu et al. 2017), a, c, e(Tang et al. 2005), b(Kurosawa 1966), c, d, e, f(Chunying et al. 2000)
Anguinum/ Anguinum! A.victorialis L. (A.anguinum Bubani, A.reticulatum St.-Lag.) 8a 8b 16c, 32d, 36e Diploidf, Tetraploidg 81.00 (diploid)h, 86.42 (diploid, Feulgen microdensitometry)i, 162.02 to 167.10 (Tetraploid, Feulgen cytophotometry)j 20.25 (diploid)h, 21.60 (diploid)i, 40.5–41.78 (tetraploid)j 20.25h, 21.60i, 20.25–20.89 a, b, f(Pandita and Mehra 1981a), c, f(Pandita and Mehra 1981b), a, c(Mehra and Sachdeva 1976; Lu et al. 2017), c, f, i(Labani and Elkington 1987), d, g, j(Ohri et al. 1998), d, g, j(Ohri and Pistrick 2001), e(Sen 1973a), h(Vakhtina et al. 1977)
Melanocrommyum/ Brevicaule # Alliumchitralicum Wang & Tang (A.badakhshanicum, A.pauli) 16a, 32b 34.35 (tetraploid, flow cytometry)c** 17.17 (tetraploid, flow cytometry)c** a(Pedersen and Wendelbo 1966), b, c**(Gurushidze et al. 2012)
Butomissa/ Butomissa* A.tuberosum Rottler ex Spreng. (A.chinense Maxim., A.clarkei Hook.f.) 8a 8b, 16c, 32d 16e, 32f, 24g, 31, 33h, 48i, 61–64 j, 62k, 64l Tetraploidm, Hexaploidn, Octaploido, Autotetraploidp, Autopolyploidq 66.80 (tetraploid)r, 121 (tetraploid)s, 109.36 (tetraploid, Feulgen cytophotometry)t, 121.47–123.25 (tetraploid, Feulgen Cytophotometry)u 30.36–30.62 (tetraploid)u 15.18–15.31u a, c, f, m, p(Pandita and Mehra 1981a), a, f, m(Talukder and Sen 2000; Kumar and Thonger 2018), b(Li et al. 1985), c, f(Sharma and Gohil 2004), c, p(Sen 1974b), f, m, u(Ohri et al. 1998; Ohri and Pistrick 2001), d(Koul 1963), e(Yang et al. 1998), f(Sharma and Gohil 2013b; f, i, n, q(Sharma and Gohil 2013a), g(Huang et al. 1985), h(Gohil and Koul 1973; Gohil and Kaul 1981), j(Gohil and Kaul 1979; Ohri 1990), k(Seo 1977), l(Kojima et al. 1991), o(Gohil and Kaul 1979), p(Dutta and Bandyopadhyay 2014), r(Nanushyan and Polyakov 1989), s(Walters 1992), t(Talukder and Sen 1999)
Butomissa/ Austromontana*! A.oreoprasum Schrenk 16 a, 48 b a(Gohil and Koul 1973; Gohil and Kaul 1981), b(Ved Brat 1965)
Rhizirideum/ Caespitosoprason* A.przewalskianum Regel (A.jacquemontiivar.parviflorum (Ledeb.) Aswal, A.junceum Jacquem. et Baker) 8a 16b, 32c, 64d Diploide, Tetraploidf Octaploidg Autopolyploidh a, b, e, f(Tang et al. 2005), c(Gohil and Kaul 1981), d, g(Xue et al. 2000), h(Ao 2008)
Allium/ Allium* A.ampeloprasum L. (A.adscendens, A.porrumvar.ampeloprasum) 8a 16b, 24c, 32d, 40e, 56f Diploidg, polyploidh/ autotetraploidi 48.20 (tetraploid, feulgen cytophotometry)j, 100.54 (cytometry)k, 119.64/ 121.15 (tetraploid, feulgen cytophotometry)l, 119.80 (tetraploid, feulgen cytophotometry)m 16.7 (diploid, flow cytometry)n**, 25.35–27.45 (tetraploid, flow cytometry)m,n** 16.7 (diploid, flow cytometry)n**, 12.67–13.73 (tetraploid, flow cytometry)m,n** a, b, d, g, h, i, n**(Ricroch et al. 2005), a, d, h, i(Pandita and Mehra 1981a), c, e(IPCN), d, h, i(Maragheh et al. 2019), d, h, i, k(Arumuganathan and Earle 1991), d, h, i, l(Labani and Elkington 1987), d, h, i, m(Ohri et al. 1998; Ohri and Pistrick 2001), f, h(von Bothmer 1975), j(Ranjekar et al. 1978)
Allium/ Allium* A.sativum L. (A.arenarium Sadler et Rchb, A.controversum Schrad. et Willd.) 8a 8b 16c, 12d Diploide 63.00 (diploid)f, 64.90 (diploid, Feulgen Cytophotometry)g, 65.40 (diploid)h, 66.40–69.00 (diploid)i, 68.20l, 71.40m, 73.59–91.80 (diploid, Feulgen Cytophotometry)j, 120 (diploid, Feulgen Cytophotometry)k 15.75 (diploid)f,16.23 (diploid)g,16.35 (diploid)h, 16.6–17.25 (diploid)i, 17.05l, 17.85m, 18.40–22.95 (diploid)j, 30.0 (diploid)k 15.75f, 16.23g, 16.35h, 16.6–17.25i, 17.05l, 17.85m, 18.40–22.95j, 30.0k a(Gohil and Koul 1971), a, c, e(Kumar and Thonger 2018), b(Koul and Gohil 1970a), b, k(Cortes et al. 1983), c, e(Bacelar et al. 2021), c, e, g(Ohri et al. 1998; Ohri and Pistrick 2001), d(Sato and Kawamura 1981), h(Ranjekar et al. 1978), f(Murin 1976), i(Chakravarty and Sen 1992), j(Talukder and Sen 1999), l (Walters 1992), m(Olszewska and Osiecka 1982)
Allium/ Avulsea* A.griffithianum Boiss. (A.bahri, A.jacquemontiivar.grandiflorum) 8a 16b 16c, 32d Diploide, Tetraploidf, Autotetraploidg 41.15 (diploid, Feulgen cytophotometry)h 10.29 (diploid)h 10.29h a, b, d, f(Pandita and Mehra 1981a), c, e, h(Ohri et al. 1998; Ohri and Pistrick 2001), f, g(Pandita and Mehra 1981b)
Allium/ Avulsea* A.rubellum M. Bieb. (A.albanum Grossh., A.leptophyllum Wall.) 16a 16b, 24c, Diploidd, Triploide, Tetraploidf, Numerical hybridg, Autopolyploidh a, f(Koul et al. 1971), b, d(Abdali and Miri 2020), c(Gohil and Koul 1973), e, h(Khoshoo and Sharma 1959), g(Ved Brat 1967)
Allium/ Caerulea! A.jacquemontii Kunth 8a 8b 16c Diploidd a, b(Pandita and Mehra 1981a), c(Gohil and Kaul 1981), c, d(Pandita and Mehra 1981b)
Reticulatobulbosa/ Reticulatobulbosa! A.humile Kunth (A.govanianum, A.nivale) 8a 8b Diploidc a, b, c(Pandita and Mehra 1981a), b(Mehra and Sachdeva 1975), c(Pandita and Mehra 1981b)
Reticulatobulbosa/ Reticulatobulbosa! A.schrenkii Regel (A.bogdoicola Regel) 32a a(Friesen 1985)
Reticulatobulbosa/ Sikkimensia* A.sikkimense Baker (A.kansuense Regel, A.tibeticum Rendle) 16a, 32b a(Mehra and Pandita 1979), b(Gu et al. 1993)
Polyprason/ Falcatifolia* A.carolinianum DC. (A.aitchisonii, A.obtusifolium) 8a 16b 16c, 32d Diploide, Tetraploidf 52.90 (diploid, Feulgen cytophotometry)g 13.23 (diploid)g 13.23g a(Tang et al. 2005), b(Kumari and Saggoo 2016), c, e, g(Ohri et al. 1998; Ohri and Pistrick 2001), d(Gohil and Kaul 1981), f(Oyuntsetseg et al. 2013), d, f(Pandita and Mehra 1981b; Dutta et al. 2015)
Polyprason/ Oreiprason* A.roylei Stearn (A.lilacinum Royle et Regel, A.rubens Baker) 8a 8b 16c Diploidd 63.00 (diploid)e, 70.03 (diploid, Feulgen microdensitometry)f 15.75 (diploid)e, 17.51 (diploid)f 15.75e, 17.51f a, b, c, d(Kohli and Gohil 2011), b, c, d(Sharma and Gohil 2011a; Kohli and Kaul 2013), c, d, e, f(Labani and Elkington 1987), e(Walters 1992)
Polyprason/ Falcatifolia*! A.platyspathum Schrenk (A.platyspathumsubsp.platyspathum) 16a a(Friesen1986; Zakirova and Nafanailova 1988)
Cepa/ Cepa* A.cepa L. (A.cepavar.aggregatum, A.cepavar.anglicum) 8a 6b, 8c 14d, 16e, 24f Diploidg, Triploidh 65.4 (diploid, flow cytometry)i, 66.40–69.00 (diploid, Feulgen cytophotometry)j, 67–71.61 (diploid, Feulgen cytophotometry)k, 67.5 (diploid, flow cytometry)l 16.35 (diploid)i, 16.60–17.25 (diploid)j, 16.75–17.90 (diploid)k, 16.87 (diploid)l, 16.2 (diploid)m**, 17.18–17.32 (diploid)n** 16.35i, 16.60–17.25j, 16.75–17.90k, 16.87l, 16.2m**, 17.18–17.32n** a, e, g(Mancia et al. 2015), a, m**(Ricroch et al. 2005), b(Wang and Zheng 1987), c(Ved Brat and Dhingra 1973; Gohil and Kaul 1980a; Talukder and Sen 2000; Sharma and Gohil 2011b), e(Rees et al. 1979; Sato 1981; Joshi and Ranjekar 1982; Cortes et al. 1983; Schubert and Wobus 1985; Fuchs et al. 1995; Johnson and Zhatay 1996; Kim et al. 2002), e(Van't Hof 1965) e, f, g, h(Puizina and Papea 1996), e, g(Narayan 1988; Ahirwar and Verma 2015), e, g, i(Arumuganathan and Earle 1991), e, l(Ulrich et al. 1988), e, j(Chakravarty and Sen 1992), n**(Baranyi and Grielhuber 1999), k(Talukder and Sen 1999)
Cepa/ Annuloprason* A.atrosanguineum Kar. et Kir. (A.monadelphum) 8a 16b,32c diploidd a, b, d(Tang et al. 2005), b, d(Ved Brat 1965), c(Zhukova 1967)
Cepa/ Annuloprason* A.fedschenkoanum Regel. (A.atrosanguineumvar.fedschenkoanum) 8a 8b 16c Diploidd a, b, d(Pandita and Mehra 1981a), c, d(Pandita and Mehra 1981b)
Cepa/ Sacculiferum* A.chinense G. Don. (A.bakeri, A.bodinieri) 8a 16b, 24c, 32d Triploide, Tetraploidf, Segmental allotetraploidg 130.86 (tetraploid, Feulgen cytophotometry)h 32.7 (tetraploid)h 16.35h a, d, f, i(Ohri et al. 1998), a, d, f, g, h(Ohri and Pistrick 2001), b(Katayama 1928), c, d, e, f(Wufeng et al. 1993), d(Ohri et al. 1998; Ogura et al. 1999), d(Dutta and Bandyopadhyay 2014), g(Gohil and Koul 1981)
Cepa/ Schoenoprasum* A.schoenoprasum L. (A.acutum Spreng., A.alpinum (DC.) Hegetschw.) 8a 8b 14c, 16d, 24e, 32f, 48g Diploidh 31.20 (diploid, 79)i, 33.20 (diploid)j, 33.80 (diploid)k, 34.90 (diploid)l 37.73(diploid, Feulgen Cytophotometry)m, 60.66 (tetraploid)n 7.8 (diploid)i, 8.3 (diploid)j, 8.45 (diploid)k, 8.72 (diploid)l, 9.43 (diploid)m, 15.16 (tetraploid)n 7.8i, 8.3j, 8.45k, 8.72l, 9.43m, 7.58n a, b, h(Pandita and Mehra 1981a), c(Ohri 1990), d(Dutta and Bandyopadhyay 2014), d, h, m(Ohri et al. 1998; Ohri and Pistrick 2001), e(Kurosawa 1979), f(El-Gadi and Elkington 1977), g(Pogosian 1997), h(Pandita and Mehra 1981b), i(Ranjekar et al. 1978), j(Anderson et al. 1985), k(Jones and Rees 1968), l(Nanushyan and Polyakov 1989), n(Labani and Elkington 1987)
A.ascalonicum L. (A.carneum, A.fissile) 8a 8b 16c Diploidd 66.32–68.67 (diploid, Feulgen cytophotometry)e 16.58–17.16 (diploid)e 8.29–8.28e a(Darlington and Wylie 1955), b, c(Cortes et al. 1983), d, e(Talukder and Sen 1999)
A.atropurpureum Waldst. et Kit. (A.nigrumvar.atropurpureum) 8a 8b 16c,32d diploide, tetraploidf 112.81 (tetraploid, Feulgen cytophotometry)g, 113.66 (diploid, Feulgen cytophotometry)h 28.2 (tetraploid)g, 28.45 (diploid)h 14.1g 28.45h a, b, c, e(Koul 1966; Pandita and Mehra 1981a), c, h(Labani and Elkington 1987), d, f, g(Ohri et al. 1998; Ohri and Pistrick 2001), c, h(Gurushidze et al. 2012)
A.blandum Wall. 16a 32b Tetraploidc a, b, c(Mehra and Sachdeva 1976; dGRIP)
A.caesioides Wendelbo (A.kachrooi) 8a 16b Diploidc a, b, c(dGRIP) , a, c(Pandita and Mehra 1981a), b(Gohil and Kaul 1980a)
A.consanguineum Kunth 8a 8b 16c Diploidd a, b, d(Pandita and Mehra 1981a), a, b(Gohil and Koul 1971), c, d(Gohil and Kaul 1980b)
A.hypsistum Stearn 32a a(dGRIP)
A.stracheyi Baker (A.longistaminum Royle) 8a 8b 16c, 14d, 32e, 48f Diploidg a, b, g(Pandita and Mehra 1981a), c(Pandita and Mehra 1981b), d(Shopova 1966), d, e, f(Sen 1974a)

*(Friesen et al. 2006), # (Fritsch et al. 2010), ! (Li et al. 2010), superscripts with the same letters correspond to references from which data are obtained, 1C and 1Cx genome sizes have been calculated from 4C DNA values published in references, ** indicate 1C and 1Cx genome sizes that have been determined following 2C DNA values in corresponding references.

Figure 1.

Figure 1.

Bar graph showing statistics of cytological reports in the species of Allium in India.

Ploidy and genome size

The greatest variation in ploidy has been observed in A.tuberosum (subgenus Butomissa), A.przewalskianum (subgenus Rhizirideum), A.chinense G. Don, 1827 (subgenus Cepa) and A.rubellum, A.ampeloprasum, A.griffithianum (subgenus Allium) (Table 1). Polyploidy is reported in almost all subgenera and species. However, Peruzzi et al. (2017) reported absence of polyploidy in subgenus Anguinum and emphasized on correlation between chromosome size and ploidy to infer the trend of evolution. Any such correlation for Indian taxa is not possible at this stage due to lack of data for all the species.

Among the diploid species, the range of genome size (Table 1) is from 7.8 pg/1C in A.schoenoprasum (subgenus Cepa) to 30.0 pg/1C in A.sativum Linnaeus, 1753 (subgenus Allium). Among the polyploid taxa, the range of genome size (Table 1) is 15.16 pg/1C in A.schoenoprasum, 34.35 pg/1C (A.chitralicum F.T. Wang et Tang, 1937) to 40.5–41.78 pg/1C in A.victorialis. Thus, the lowest values of genome size for the entire array of Allium species in India is represented by diploid and polyploid species of A.schoenoprasum (subgenus Cepa).

The genome size evolution of Allium species has been envisaged in relation to growth pattern (dormancy), habitat preference and evolutionary history of the subgenera and sections (Ohri et al. 1998). The authors suggested an overall lack of correlation between genome size and chromosome numbers, although continuity in variation was particularly evident in few species. The present review has showed a 2.25-fold (diploid) or 2.43-fold (tetraploid) difference in genome size in the species occurring in India, although the base number (x) is predominantly 8.

Karyotype features

The karyotype features are known in 8 subgenera and 14 sections of Allium species occurring in India (Fig. 1). The majority of species are characterized by metacentric chromosomes except for subgenus Amerallium with predominantly submetacentric chromosomes (Table 2). One pair of chromosomes with subterminal constriction has been the characteristic of some species such as A.cepa (Sato1981), A.blandum, A.stracheyi and A.victoralis (Mehra and Sachdeva 1976).

Table 2.

Karyotype features and molecular chromosomal landmarks in species of Allium (Amaryllidaceae, Subfamily Allioideae, Tribe Allieae, sensu APG IV 2016) occurring in India.

Subgenera/ sections Species Karyotype Heterochromatin banding (Giemsa/ Fluorochrome/others) rDNA/ telomeric/ other signals References
Chromosome morphology SAT or NORs/ 2n No. of signals/2n Features
Amerallium/ Bromatorrhiza! A.fasciculatum Rendle Majorly submetacentric, few telocentric and metacentrica 4b a, b(Xu et al. 1998; Dutta et al. 2015; Li et al. 2017)
Amerallium/ Bromatorrhiza* A.hookeri Thwaites Majorly submetacentric, few metacentrica 2b a, b(Sharma et al. 2011)
Amerallium/ Bromatorrhiza*! A.wallichii Kunth. Majority submetacentrica 2b a, b(Huang et al. 1995)
Anguinum/ Anguinum* A.prattii C.H.Wright Majority metacentrica 2b/4c a, b(Tang et al. 2005), a, b, c(Chunying et al. 2000)
Anguinum/ Anguinum! A.victorialis L. Majority metacentrica or sub–metacentricb 2c a(Pandita and Mehra 1981b), b, c(Mehra and Sachdeva 1976)
Butomissa/ Butomissa* A.tuberosum Rottler et Spreng. Majority metacentrica or submetacentricb,c 3d/ 4e / 6f 5S:4–6g 5S: proximal and intercalaryh a(Kumar and Thonger 2018), a, e(Talukder and Sen 2000), a, c, d, e(Sharma and Gohil 2013b), a, b(Sharma and Gohil 2013a), g, h(Do and Seo 2000)
Rhizirideum/ Caespitosoprason* Alliumprzewalskianum Regel Majority metacentric chromosomesa 2b a, b(Tang et al. 2005)
Allium/ Allium* A.ampeloprasum L. Majorly metacentric, few sub–metacentrica, few subacrocentricb 8c Interstitial C– bands colocalized to silver stained regions in 8 active NORsd, 8 CMA3+/DAPI– bands colocalized to silver stained regions and 35S rDNA sites in NORse 35S:8, 5S: 13 (polymorphic) f 35S: interstitial (4) and pericentromeric (4) in short armsg, 5S: interstitial/ pericentromeric, non–coloclaized to 35S except in one chromosome of 8th pair where it flanks 35S siteh a, c, e, f, g, h(Maragheh et al. 2019), b, c(Koul and Gohil 1970b), b, c, d(Stack and Roelofs 1996)
Allium/ Allium* A.sativum L. Majority metacentrica 2b/ 4c/ 6d/ 4–8e C–Bands: nucleolarf, telomeric and interstitialg, centromeric (2 pairs)h; N–bands: nucelolar (4)i; Active NORs (AgNORs):2, occasionally4j; CMA+/DAPI–bands: 4–6k 5S: 4l, 6m; 45S and 5S rDNA localizedn; telomeric signals in all chromosomeso; numerous satellite signalsp telomeric signals distalq, satellite signals sub–telomeric and interstitialr a(Kumar and Thonger 2018), a, c(Talukder and Sen 2000), a, k(Bacelar et al. 2021), b(Koul and Gohil 1970a), d, f, g(Cortes et al. 1983), e, g, h, j(Yuzbasioglu 2004), i(Cortes and Escalza 1986; Wajahatullah and Vahidy 1990), l(Do and Seo 2000), m(Lee et al. 1999; Son et al. 2012), n(Adams et al. 2001), o, p, q, r(Peška et al. 2019)
Allium/ Avulsea* A.griffithianum Boiss. Majorly metacentrica a(Pandita and Mehra 1981b),
Allium/ Avulsea* Alliumrubellum M. Bieb. Majority metacentric to sub–metacentrica 2b/ 6c/ 8d a, b(Abdali and Miri 2020), a, c(Koul et al. 1971), a, d(Khoshoo and Sharma 1959)
Allium/ Caerulea! A.jacquemontii Kunth Majority metacentrica a(Pandita and Mehra 1981b)
Reticulatobulbosa/ Reticulatobulbosa! A.humile Kunth Majority metacentrica a(Pandita and Mehra 1981b)
Polyprason/ Oreiprason* A.roylei Stearn Majority metacentrica or sub–metacentricb 2c tyr-FISH mapping of bulb alliinase gened a, b, c(Sharma and Gohil 2008), c(Kohli and Gohil 2011), d(Khrustaleva et al. 2019)
Polyprason/ Falcatifolia* A.carolinianum DC. Majorly metacentric, few sub–meta– or sub–telocentrica 2b a, b(Pandita and Mehra 1981b; Tang et al. 2005; Dutta et al. 2015;)
Cepa/ Cepa* A.cepa L. Majority metacentric, few submetacentrica 1b, 1–2c, 1–4d, 2e, 2–4f C–Bands: telomericg, intercalaryh, distali, centromeric and at satellitesj; heterochromatic CMA/DAPI/AMD bands at NORs and telomeresk 18S–5.8S–25S rDNA loci: 2–4l, 45S rDNA loci: 3m, 4n, 4–5o, 5p; 5S rDNA loci: 2q, 4r Variable rDNA sitess; distal 45S rDNA loci colocalized with telomeric tandem repeatt and non–colocalized to 5S lociu; 5S loci proximal and distalv or interstitialw; tyrFISH (with allinase, CHS–B and EST markers) reveal chromosome evolutionz a(Fiskesjo 1975; Sulistyaningsih et al. 2002; Ahirwar and Verma 2014), a, d, g(Sato 1981), a,e(Talukder and Sen 2000), a, f(Battaglia 1957), b(Bozzini 1964), c, g, h, j(Puizina and Papea 1996), e,k(Kim et al. 2002), e, o, q, s, u, w(Mancia et al. 2015), g(Ghosh and Roy 1977), i(Tanaka and Taniguchi 1975), l(Schubert and Wobus 1985), m(Fu et al. 2019), n(Do et al. 2001), p(Ricroch et al. 1992), r(Shibata and Hizume 2002), t(Fajkus et al. 2016), v(Shibata and Hizume 2002), z(Khrustaleva et al. 2019)
Cepa/ Annuloprason* A.atrosanguineum Kar. et Kir. majorly metacentrica 2b a, b(Tang et al. 2005)
Cepa/ Annuloprason* A.fedschenkoanum Regel. Majority metacentric chromosomesa a(Pandita and Mehra 1981b)
Cepa/ Sacculiferum* A.chinense G. Don. Majority sub– metacentrica or submetacentricb 2–4c a(Ogura et al. 1999), a, c(Sen 1973b), b, c(Gohil and Koul 1981)
Cepa/ Schoenoprasum* A.schoenoprasum L. Majority metacentrica 1–6b C–bandsc 5S: 4d 5S: interstitial in chromosome 6e, tyr–FISH of alliinase reveal chromosome evolutionf a(Pandita and Mehra 1981b; Cai and Chinnappa 1987), a, b(Dutta and Bandyopadhyay 2014), a, c(Tardif and Morisset 1992), d, e(Shibata and Hizume 2002), f(Khrustaleva et al. 2019)
A.ascalonicum L. metacentric to sub–metacentrica 2b Distal C bands in all chromosomesc a, b(Darlington and Haque 1955; Talukder and Sen 2000), b(Darlington and Wylie 1955), b, c(Cortes et al. 1983), c(Seo and Kim 1975)
A.atropurpureum Waldst. et Kit. Majorly nearly metacentric and few submetacentrica a(Pandita and Mehra 1981b)
A.blandum Wall. metacentrica a(Mehra and Sachdeva 1976; Pandita and Mehra 1981b)
A.consanguineum Kunth Majority metacentric or sub–metacentric chromosomesa 2 (interstitial)b a(Mehra and Sachdeva 1976), a, b(Pandita and Mehra 1981b)
A.stracheyi Baker Majority metacentrica or sub–metacentricb a(Pandita and Mehra 1981b), b(Mehra and Sachdeva 1976)

*(Friesen et al. 2006), # (Fritsch et al. 2010), ! (Li et al. 2010), superscripts with the same letters correspond to references from which data are obtained.

The predominance of metacentric chromosomes and symmetric nature of karyotypes is in accordance with earlier studies (Peruzzi et al. 2017). However, few species show a tendency for asymmetry (A.atrosanguineum, A.carolinianum, A.griffithianum, A.fasciculatum) and some fall into 2A (A.chinense, A.przewalskianum) or 2B category (A.schoenoprasum, A.tuberosum) in Stebbins’ index.

Presence of B-chromosomes has been reported in 97 species of Allium (Vujošević et al. 2013) belonging mostly to Allium, Cepa and Rhizirideum subgenera (Peruzzi et al. 2017). Among the species found in India, Sharma and Iyengar (1961) first reported the occurrence of B-chromosomes (2–10 in number) in diploid population of A.stracheyi and not in the polyploid populations. The B-chromosomes were found to occur in pollen mother cells as well as in pollen grains of A.stracheyi (Sen 1974c). However, Mehra and Sachdeva (1976) reported 2n=16 in A.stracheyi collected from the Valley of Flowers with no B-chromosome. One or two B-chromosome(s) were reported in A.ascalonicum (Bartolo et al. 1984), A.ampeloprasum, (subgenus Allium) (Khazanehdari and Jones 1996), A.prattii (subgenus Anguinum) (Chunying et al. 2000), A.przewalskianum (subgenus Rhizirideum) (Ao 2008; Xie-Kui et al. 2008) while many B-chromosomes (1–10) were recorded in A.schoenoprasum (Halkka 1985; Cai and Chinnappa 1987; Tardif and Morisset 1992) and in A.stracheyi (subgenus Cepa) (Sharma and Aiyangar 1961; Shopova 1966; Pandita and Mehra 1981b).

Nucleolus organizer regions or NORs are significant markers for chromosome identification. Among the species considered presently, NORs/ satellite-bearing chromosomes often show infra-specific or cultivar-specific differences particularly in A.cepa, A.sativum and A.tuberosum (Table 2).

In case of subgenus Allium, eight active NORs have been shown in A.ampeloprasum by C- banding, CMA3+/DAPI- banding, AgNOR staining and FISH (Table 2). In A.sativum secondary constrictions were observed in two to even six chromosomes by C and N banding (Ghosh and Roy 1977; Roy 1978; Cortes et al. 1983), in addition to showing population specific differences (Roy 1978). NORs were also confirmed in four chromosomes by N banding (Cortes and Escalza 1986; Wajahatullah and Vahidy 1990). Recently, two pairs of chromosomes with secondary constrictions were reported in some Brazilian accessions of A.sativum of which one pair was suggested to contain intercalary NOR (Bacelar et al. 2021). CMA banding method was used to show the infraspecific heterochromatin variability of nucleolar (proximal) and non-nucleolar (distal and proximal) CMA bands in the Brazilian garlic accessions for their identification. This study remains to be done in case of Indian cultivars.

Alliumcepa varieties with different ploidy levels (e.g. A.cepavar.viviparum, then supposed to be a hybrid between A.cepa and A.fistulosum Linnaeus, 1753) (Singh et al. 1967; Langer and Koul 1983; Puizina and Papea 1996) show variable number of satellited chromosomes (Bozzini 1964; Singh et al. 1967; Koul and Gohil 1971; Langer and Koul 1983; Puizina and Papea 1996). Many of the conventional staining and C-banding studies showed the presence of two satellite chromosomes in A.cepa (Ved Brat and Dhingra 1973; Fiskesjo 1975; Bhattacharyya 1976; Talukder and Sen 2000). Application of differential staining with sequence specific fluorochromes elucidated two NORs in A.cepa (Kim et al. 2002). However, reports claiming variable numbers of NORs (Battaglia 1957; Sato 1981; Puizina and Papea 1996) could not be ruled out. With the application of silver staining, 1–4 active NORs in the satellite region were observed (Sato 1981) while variable number of NORs (2–5) was elucidated by 45S-rDNA hybridization (Table 2). The 45S rDNA sites are distally located and found to co-occur with telomeric tandem repeats (18S). The 5S rDNA loci are reported to range from 2–4 and do not co-occur with the 45S rDNA site.

One interesting feature is that satellites occur mostly in the short arms except for some cases in the subgenera Allium and Amerallium (Peruzzi et al. 2017). The same phenomenon has been found to exist in case of A.cepa, A.sativum and A.ampeloprasum (Kim et al. 2002; Maragheh et al. 2019; Bacelar et al. 2021). However, the localization of satellites in the species of Amerallium and other subgenera of Indian occurrence opens interesting scope of future study. The major difference between subgenera Allium and Cepa lie in the localization of the NORs rather than numbers of rDNA loci. The NORs are interstitial in Allium and distal in Cepa (Fig. 2) as confirmed by heterochromatic CMA banding, Ag-NOR staining as well as rDNA FISH (Kim et al. 2002; Fajkus et al. 2016; Maragheh et al. 2019; Bacelar et al. 2021).

Figure 2.

Figure 2.

Diagram showing NOR landmarks based on globally published reports in the three species of the genus Allium occurring in India. The modal karyotypes for subgenera are adopted and modified after Peruzzi et al. (2017). Diagrams showing NORs are modified after the published reports on A.ampeloprasum (as A.porrum in Maragheh et al. 2019), A.sativum (Bacelar et al. 2021) and A.cepa (Fajkus et al. 2016).

Chromosome specialization in A.cepa

Telomeres and rDNA loci are the two especially variable features of A.cepa chromosomes. Many authors have previously argued that genomic rearrangements are responsible for positional variations of 45S rDNA loci in A.cepa (Ricroch et al. 1992; Do et al. 2001; Mancia et al. 2015). The rDNA sequences have been found to contain Copia-like retroelements in A.cernuum Roth, 1798 that were dispersed via homogenization mechanisms (Fajkus et al. 2016). The rDNA loci in A.cepa have been observed to co-occur with telomeric repeats although telomeres evolved independently of rDNA sequences (Fajkus et al. 2016).

The plant telomere was once thought to be composed of Arabidopsis Heynhold, 1842 prototype TTTAGGG repeats (Richards and Ausubel 1988). Exception to this was observed in Asparagales, where an 80 million years old mutation gave rise to human type (TTAGGG) repeat in the family Iridaceae (Adams et al. 2001; Weiss and Scherthan 2002; Sýkorová et al. 2003) and subfamily Allioideae (Sýkorová et al. 2006). The genus Allium is different from all other subfamilies of Amaryllidaceae and also other plant groups in terms of the unique telomere sequence. The telomeric sequence (TTATGGGCTCGG)n surfaced long back (Fuchs et al. 1995) and is neither Arabidopsis nor human type. The sequence has been found to be conserved in Allium, probing for monophyletic origin of this genus (Fajkus et al. 2016). The telomeres of land plants, including the unique ones like that of Amaryllids, have received less attention (Peska and Garcia 2020). For example, telomeric repeat in Arabidopsisthaliana (Linnaeus, 1753) Heynhold, 1842 is a Pol III transcribed lncRNA (Fajkus et al. 2019). Hence, the Allium and non-Allium taxa of Amaryllidaceae provide excellent scope for studying telomere evolution in eukaryotes.

Recent updates on cytogenetic relationships

A robust phylogenetic analysis supported by genome size and karyotype parameters was found to elucidate the evolution of Gilliesieae of Allioideae (Pellicer et al. 2017). The phylogenetic background of the genus Allium has paved way for refinement of classification, inter-species relationships and cytogeographic evolution (Friesen et al. 2006; Gurushidze et al. 2007, 2008; Fritsch et al. 2010; Li et al. 2010, 2017; Abugalieva et al. 2017; Herden et al. 2016; Huo et al. 2019; Costa et al. 2020). Global sampling of 207 species of Allium (Allieae) highlighted the ancestral number (x=8) and the reasons behind symmetric karyotype evolution (Peruzzi et al. 2017).

The utility of cytogenetic mapping remains unparallel to investigate synteny comparison between phylogenetically related species that has been employed to interpret chromosome evolution in Allium crop species from Russia (Khrustaleva et al. 2019). The presence of flavonoids and sulphur-containing compounds are responsible for the onion’s characteristic flavour and the enzyme alliinase is part of the biosynthesis (Lancaster and Collin 1981). Recent techniques like ultra-sensitive tyramide-FISH (tyr-FISH) and SteamDrop protocol have facilitated the physical detection of the alliinase as well as chalcone synthase genes along with expressed sequence tag (EST) markers. The bulb alliinase gene was located on the long arm of chromosome 4 in A.cepa and A.schoenoprasum while the same gene was found in the short arm of chromosome 4 in the related (A.fistulosum, A.altaicum Pallas, 1773, A.oschaninii O. Fedtschenko, 1906, and A.pskemense B. Fedtschenko, 1905) and phylogenetically distant species (A.roylei and A.nutans Linnaeus, 1753) (Khrustaleva et al. 2019). Khrustaleva et al. (2019) proposed a pericentric inversion model for rearrangements in chromosome 4 in line with divergence of A.cepa and A.fistulosum, responsible for breaking collinearity of the genes controlling flavour and bulb colour. This particular report focussed on genomic kinship and genomic rearrangement among the closely related Allium species. Also, the practical benefit of molecular cytogenetic mapping becomes apparent in terms of suitably utilizing the genomic resources for onion breeding. These studies would also help to address genomic relationships among A.cepa, A.schoenoprasum and A.roylei, occurring in India.

Summary and future prospects

Considering the impact of cytogenetic investigation in Allium phylogeny at a global scale, it is unfortunate to notice the lack of attention in an Indian context in spite of species abundance. Although A.cepa has often been regarded as the common material for cytogenetic analysis and the popular ‘Alliumcepa test’ (Pathiratne et al. 2015; Bonciu et al. 2018), systematic chromosome analysis is still missing in Indian A.cepa as well as other species. The present dataset and existing references are not exhaustive but furnish the prerequisite to search for further chromosomal landmarks (NORs, genome size etc) and complement future phylogenetic studies or cyto-geographical evolution of Allium, involving the unexplored wild and endemic species in the subcontinent. The crops, onion and garlic, have been admired from ancient time in global cuisines and Indian culinary practices (c.a. 5000 years ago) and continue to be tremendously important in agriculture and pharmaceutical industries (Rana et al. 2011; Nile and Park 2013). The cultivation of onions is challenged by a number of biotic threats which are the direct or indirect manifestation of the current climatic adversity (Le et al. 2021). Identification of wild relatives of the crop having high resistance is germane to address available genomic sources (Dempewolf et al. 2014), which is necessary for Allium crop species of India (Gedam et al. 2021). Interesting discoveries on the ‘neodomesticate’ western Himalaya taxon A.negianum (Pandey et al. 2021) along with other endemic less-known species (A.stracheyi, A.roylei, A.wallichii and A.przewaliskianum) are assets of Indian repository in line with global assemblages. The genomic attributes of Indian Allium germplasm as outlined in this review, could help strategic upgradation of cultivation practices.

Author contribution

Conceptualization, supervision, project administration and funding: SJ, MML, DO, SRR, SRY, MKD, SNR, RCV. Data Curation and data analysis: BKB, SS, DRC, SDP. Writing and Editing: BKB, SS, DRC, MML, DO, SJ.

Acknowledgements

SJ thanks National Academy of Sciences (India) for award of Senior Scientist Fellowship to continue research. The work is supported by Department of Biotechnology, Ministry of Science and Technology, Government of India under the project entitled “Network Programme for Enrichment and Update of Plant Chromosome Database for Spermatophytes and Archegoniate” vide No. BT/PR7866/NDB/39/272/2013 in which all the authors are beneficiaries.

Citation

Bhowmick BK, Sarkar S, Roychowdhury D, Patil SD, Lekhak MM, Ohri D, Rama Rao S, Yadav SR, Verma RC, Dhar MK, Raina SN, Jha S (2023) Allium cytogenetics: a critical review on the Indian taxa. Comparative Cytogenetics 17: 129–156. https://doi.org/10.3897/compcytogen.17.98903

Funding Statement

The work is supported by Department of Biotechnology, Ministry of Science and Technology, Government of India under the project entitled “Network Programme for Enrichment and Update of Plant Chromosome Database for Spermatophytes and Archegoniate” vide No. BT/PR7866/NDB/39/272/2013

ORCID

Biplab Kumar Bhowmick https://orcid.org/0000-0001-6029-1098

Sayantika Sarkar https://orcid.org/0000-0002-8738-9500

Dipasree Roychowdhury https://orcid.org/0000-0001-7537-4056

Sayali D. Patil https://orcid.org/0000-0000-0000-00000

Manoj M. Lekhak https://orcid.org/0000-0001-5753-2225

Deepak Ohri https://orcid.org/0000-0001-6327-4330

Satyawada Rama Rao https://orcid.org/0000-0003-0309-720X

S. R. Yadav https://orcid.org/0000-0001-6728-5483

R. C. Verma https://orcid.org/0000-0000-0000-00000

Manoj K. Dhar https://orcid.org/0000-0002-8777-6244

S. N. Raina https://orcid.org/0000-0002-4916-3359

Sumita Jha https://orcid.org/0000-0002-1375-2768

References

  1. Abdali S, Miri SM. (2020) Chromosome counts for six species of Allium (Amaryllidaceae) from Iran. The Iranian Journal of Botany 26(2): 179–187. [Google Scholar]
  2. Abugalieva S, Volkova L, Genievskaya Y, Ivaschenko A, Kotukhov Y, Sakauova G, Turuspekov Y. (2017) Taxonomic assessment of Allium species from Kazakhstan based on ITS and matK markers. BMC Plant Biology 17(2): 51–60. 10.1186/s12870-017-1194-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adams SP, Leitch IJ, Bennett MD, Leitch AR. (2001) Aloe L. – a second plant family without (TTTAGGG) telomeres. Chromosoma 109: 201–205. 10.1007/s004120050429 [DOI] [PubMed] [Google Scholar]
  4. Ahirwar R, Verma RC. (2015) Colchicine induced asynaptic chromosomal behavior at meiosis in Alliumcepa L. The Nucleus 58: 47–51. 10.1007/s13237-015-0133-4 [DOI] [Google Scholar]
  5. Anderson LK, Stack SM, Fox MH, Chuanshan Z. (1985) The relationship between genome size and synaptonemal complex length in higher plants. Experimental Cell Research 156(2): 367–378. 10.1016/0014-4827(85)90544-0 [DOI] [PubMed] [Google Scholar]
  6. Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20. 10.1111/boj.12385 [DOI] [Google Scholar]
  7. Ao C. (2008) Chromosome numbers and karyotypes of Alliumprzewalskianum populations. Acta Biologica Cracoviensia Series Botanica 50: 43–49. [Google Scholar]
  8. Arumuganathan K, Earle ED. (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Molecular Biology Reporter 9: 229–241. 10.1007/BF02672073 [DOI] [Google Scholar]
  9. Bacelar PAA, Feitoza LL, Valente SES, Gomes RLF, Martins LV, Almeida PM, Silva VB, Lopes ACA, Carvalh R, Peron AP. (2021) Variations in heterochromatin content reveal important polymorphisms for studies of genetic improvement in garlic (Alliumsativum L.). Brazilian Journal of Biology 83: e243514. 10.1590/1519-6984.243514 [DOI] [PubMed]
  10. Baranyi M, Greilhuber J. (1999) Genome size in Allium: in quest of reproducible data. Annals of Botany 83(6): 687–695. 10.1006/anbo.1999.0871 [DOI] [Google Scholar]
  11. Bartolo G, Brullo S, Pavone P, Terrasi MC. (1984) Cytotaxonomical notes on some Liliaceae of N. Cyrenaica. Webbia 38: 601–622. 10.1080/00837792.1984.10670329 [DOI] [Google Scholar]
  12. Battaglia E. (1957) Alliumascalonicum L., A.fistulosum L., A.cepa L.: Analisi Cariotipica. Caryologia 10: 1–28. 10.1080/00087114.1957.10797610 [DOI] [Google Scholar]
  13. Bhattacharyya R. (1976) A tetraploid Alliumcepa from Bangladesh. Cytologia 41: 513–521. 10.1508/cytologia.41.513 [DOI] [Google Scholar]
  14. Bhowmick BK, Jha S. (2022) A critical review on cytogenetics of Cucurbitaceae with updates on Indian taxa. Comparative Cytogenetics 16: 93–125. 10.3897/compcytogen.v16.i2.79033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, Menicucci F, Pesnya DS, Popescu A, Romanovsky AV, Schiff S. (2018) An evaluation for the standardization of the Alliumcepa test as cytotoxicity and genotoxicity assay. Caryologia 71(3): 191–209. 10.1080/00087114.2018.1503496 [DOI] [Google Scholar]
  16. Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. (2022) Tracing the evolution of the angiosperm genome from the cytogenetic point of view. Plants 11(6): e784. 10.3390/plants11060784 [DOI] [PMC free article] [PubMed]
  17. Bozzini A. (1964) On the karyotype of a viviparous onion, known as AlliumcepaL.varviviparum (Metzg.) Alef. Caryologia 17: 459–470. 10.1080/00087114.1964.10796142 [DOI] [Google Scholar]
  18. Cai Q, Chinnappa CC. (1987) Giemsa C-banded karyotypes of seven North American species of Allium. American Journal of Botany 74: 1087–1092. 10.2307/2443949 [DOI] [Google Scholar]
  19. Carta A, Bedini G, Peruzzi L. (2020) A deep dive into the ancestral chromosome number and genome size of flowering plants. New Phytologist 228(3): 1097–1106. 10.1111/nph.16668 [DOI] [PubMed] [Google Scholar]
  20. Chakravarty B, Sen S. (1992) DNA and protein contents in different varieties of Alliumcepa and Alliumsativum. Allium Improvement Newsletter 1: 61–66. [Google Scholar]
  21. Chunying X, Jiemei X, Jianquan L. (2000) Karyotype studies of Alliumprattii among 4 populations in southern Qinghai. Acta Botanica Boreali-Occidentalia Sinica 20(2): 288–293. [Google Scholar]
  22. Cortes F, Escalza P. (1986) Analysis of different banding patterns and late replicating regions in chromosomes of Alliumcepa, A.sativum and A.nigrum. Genetica 71: 39–46. 10.1007/BF00123231 [DOI] [Google Scholar]
  23. Cortes F, Gonzalez-Gil G, Hazen MJ. (1983) C-banding and sister chromatid exchanges in three species of the genus Allium (A.cepa, A.ascalonicum and A.sativum). Caryologia 36: 203–210. 10.1080/00087114.1983.10797661 [DOI] [Google Scholar]
  24. Costa L, Jimenez H, Carvalho R, Carvalho-Sobrinho J, Escobar I, Souza G. (2020) Divide to conquer: evolutionary history of Allioideae tribes (Amaryllidaceae) is linked to distinct trends of karyotype evolution. Frontiers in Plant Science 11: e320. 10.3389/fpls.2020.00320 [DOI] [PMC free article] [PubMed]
  25. Darlington CD, Haque A. (1955) The timing of mitosis and meiosis in Alliumascalonicum: A problem of differentiation. Heredity 9: 117–127. 10.1038/hdy.1955.6 [DOI] [Google Scholar]
  26. Darlington CD, Wylie AP. (1955) Chromosome Atlas of Flowering Plants. George Allen & Unwin Ltd., London.
  27. Dempewolf H, Eastwood RJ, Guarino L, Khoury CK, Muller JV, Toll J. (2014) Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecology and Sustainable Food Systems 38(4): 369–377. 10.1080/21683565.2013.870629 [DOI] [Google Scholar]
  28. dGRIP (2022) Database for genome related information in Indian plants. http://indianpcd.com/
  29. Do GS, Seo BB. (2000) Phylogenetic relationships among Alliumsubg.Rhizirideum species based on the molecular variation of 5S rRNA genes. Korean Journal of Biological Sciences 4(1): 77–85. 10.1080/12265071.2000.9647527 [DOI] [Google Scholar]
  30. Do GS, Seo BB, Yamamoto M, Suzuki G, Mukai Y. (2001) Identification and chromosomal location of tandemly repeated DNA sequences in Alliumcepa. Genes & Genetic Systems 76: 53–60. 10.1266/ggs.76.53 [DOI] [PubMed] [Google Scholar]
  31. Dutta M, Bandyopadhyay M. (2014) Comparative karyomorphological studies of three edible locally important species of Allium from India. The Nucleus 57(1): 25–31. 10.1007/s13237-014-0106-z [DOI] [Google Scholar]
  32. Dutta M, Negi KS, Bandyopadhyay M. (2015) Novel cytogenetic resources of wild Allium (Amaryllidaceae) from India. The Nucleus 58(1): 15–21. 10.1007/s13237-015-0130-7 [DOI] [Google Scholar]
  33. El-Gadi A, Elkington TT. (1977) Numerical taxonomic studies on species in AlliumsubgenusRhizirideum. New Phytologist 79: 183–201. 10.1111/j.1469-8137.1977.tb02195.x [DOI] [Google Scholar]
  34. Fajkus P, Peška V, Sitová Z, Fulnečková J, Dvořáčková M, Gogela R, Sýkorová E, Hapala J, Fajkus J. (2016) Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase. The Plant Journal 85(3): 337–347. 10.1111/tpj.13115 [DOI] [PubMed] [Google Scholar]
  35. Fajkus P, Peška V, Závodník M, Fojtová M, Fulnečková J, Dobias Š, Kilar A, Dvořáčková M, Zachová D, Nečasová I, Sims J, Sýkorová E, Fajkus J. (2019) Telomerase RNAs in land plants. Nucleic Acids Research 47(18): 9842–9856. 10.1093/nar/gkz695 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Fiskesjo G. (1975) Chromosomal relationships between three species of Allium as revealed by C-banding. Hereditas 81: 23–32. 10.1111/j.1601-5223.1975.tb01010.x [DOI] [Google Scholar]
  37. Friesen N, Fritsch RM, Blattner FR. (2006) Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso: A Journal of Systematic and Floristic Botany 22(1): 372–395. 10.5642/aliso.20062201.31 [DOI] [Google Scholar]
  38. Friesen NV. (1985) Chromosome numbers in the representatives of the family Alliaceae from Siberia. Botanicheskii Zhurnal SSSR 70(7): 1001–1002. [Google Scholar]
  39. Friesen NV. (1986) Chromosome numbers of the representatives of the family Alliaceae from Siberia. Botanicheskii Zhurnal 71: 113–115. [Google Scholar]
  40. Fritsch RM, Blattner FR, Gurushidz M. (2010) New classification of AlliumL.subg.Melanocrommyum (Webb & Berthel.) Rouy (Alliaceae) based on molecular and morphological characters. Phyton (Horn) 49(2): 145–220. [Google Scholar]
  41. Fu J, Zhang H, Guo F, Ma L, Wu J, Yue M, Zheng X, Qiu Z, Li L. (2019) Identification and characterization of abundant repetitive sequences in Alliumcepa. Scientific Reports 9: e16756. 10.1038/s41598-019-52995-9 [DOI] [PMC free article] [PubMed]
  42. Fuchs J, Brandes A, Schubert I. (1995) Telomere sequence localization and karyotype evolution in higher plants. Plant Systematics and Evolution 196: 227–241. 10.1007/BF00982962 [DOI] [Google Scholar]
  43. Gedam PA, Thangasamy A, Shirsat DV, Ghosh S, Bhagat KP, Sogam OA, Gupta AJ, Mahajan V, Soumia PS, Salunkhe VN, Khade YP, Gawande SJ, Hanjagi PS, Shiv Ramakrishnan R, Singh M. (2021) Screening of onion (Alliumcepa L.) genotypes for drought tolerance using physiological and yield based indices through multivariate analysis. Frontiers in Plant Science 12: e122. 10.3389/fpls.2021.600371 [DOI] [PMC free article] [PubMed]
  44. Ghosh S, Roy SC. (1977) Orientation of interphase chromosomes as detected by Giemsa C-bands. Chromosoma 61: 49–55. 10.1007/BF00292679 [DOI] [PubMed] [Google Scholar]
  45. Gohil RN, Kaul R. (1979) Seed progeny studies in Alliums. I. Numerical variants in the progeny of tetraploid Alliumtuberosum Rottl. ex Spreng. Beiträge zur Biologie der Pflanzen 54: 304–309. [Google Scholar]
  46. Gohil RN, Kaul R. (1980a) Studies on male and female meiosis in Indian Allium I. Four diploid species. Chromosoma 77: 123–127. 10.1007/BF00329538 [DOI] [Google Scholar]
  47. Gohil RN, Kaul R. (1980b) An interesting variation in the development of the female gametophyte of Alliumconsanguineum. Caryologia 33(2): 295–297. 10.1080/00087114.1980.10796843 [DOI] [Google Scholar]
  48. Gohil RN, Kaul R. (1981) Studies on male and female meiosis in Indian Allium II, Autotetraploid Alliumtuberosum. Chromosoma 82: 735–739. 10.1007/BF00285778 [DOI] [Google Scholar]
  49. Gohil RN, Koul AK. (1971) Desynapsis in some diploid and polyploidy species of Allium. Canadian Journal of Genetics and Cytology 13: 723–728. 10.1139/g71-104 [DOI] [Google Scholar]
  50. Gohil RN, Koul AK. (1973) Some adaptive genetic-evolutionary processes accompanying polyploidy in the Indian Alliums. Botaniska Notiser 126: 426–432. [Google Scholar]
  51. Gohil RN, Koul AK. (1977) The cause of multivalent suppression in Alliumampeloprasum L. Beiträge zur Biologie der Pflanzen 53: 473–478. [Google Scholar]
  52. Gohil RN, Koul AK. (1981) Cytology of the tetraploid Alliumchinense G. Don. Caryologia 34(1): 73–81. 10.1080/00087114.1981.10796874 [DOI] [Google Scholar]
  53. Gohil RN, Koul AK. (1983) Seed progeny studies in Alliums. II. Male meiosis in the progeny plants of tetraploid Alliumtuberosum Rottl. ex Spreng. Cytologia 48: 109–118. 10.1508/cytologia.48.109 [DOI] [Google Scholar]
  54. Goldblatt P, Lowry PP. (2011) The Index to Plant Chromosome Numbers (IPCN): three decades of publication by the Missouri Botanical Garden come to an end. Annals of the Missouri Botanical Garden 98(2): 226–227. 10.3417/2011027 [DOI] [Google Scholar]
  55. Gu Z, Wang L, Sun H, Wu S. (1993) A cytological study of some plants from Qinghai-Xizang Plateau. Acta Botanica Yunnanica 15: 377–384. [Google Scholar]
  56. Gurushidze M, Fritsch RM, Blattner FR. (2008) Phylogenetic analysis of Alliumsubg.Melanocrommyum infers cryptic species and demands a new sectional classification. Molecular Phylogenetics and Evolution 49(3): 997–1007. 10.1016/j.ympev.2008.09.003 [DOI] [PubMed] [Google Scholar]
  57. Gurushidze M, Fuchs J, Blattner FR. (2012) The evolution of genome size variation in drumstick onions (AlliumsubgenusMelanocrommyum). Systematic Botany 37(1): 96–104. 10.1600/036364412X616675 [DOI] [Google Scholar]
  58. Gurushidze M, Mashayekhi S, Blattner FR, Friesen N, Fritsch RM. (2007) Phylogenetic relationships of wild and cultivated species of AlliumsectionCepa inferred by nuclear rDNA ITS sequence analysis. Plant Systematics and Evolution 269(3): 259–269. 10.1007/s00606-007-0596-0 [DOI] [Google Scholar]
  59. Halkka L. (1985) Chromosome counts of Finnish vascular plants. Annales Botanici Fennici 22: 315–317. [Google Scholar]
  60. Haston E, Richardson JE, Stevens PF, Chase MW, Harris DJ. (2009) The Linear Angiosperm Phylogeny Group (LAPG) III: a linear sequence of the families in APG III. Botanical Journal of the Linnean Society 161(2): 128–131. 10.1111/j.1095-8339.2009.01000.x [DOI] [Google Scholar]
  61. Herden T, Hanelt P, Friesen N. (2016) Phylogeny of AlliumL.subgenusAnguinum (G. Don. ex WDJ Koch) N. Friesen (Amaryllidaceae). Molecular Phylogenetics and Evolution 95: 79–93. 10.1016/j.ympev.2015.11.004 [DOI] [PubMed] [Google Scholar]
  62. Huang R, Wei R, Yan Y. (1985) Discovery of spontaneous triploid of Alliumtuberosum. Journal of Wuhan Botanical Research 3: 429–431. [Google Scholar]
  63. Huang R, Xu J, Hong Y. (1995) A study on karyotypes and their evolutionary trends in Alliumsect.Bromatorrhiza Ekberg (Liliaceae). Cathaya 7: 133–145. [Google Scholar]
  64. Huo Y, Gao L, Liu B, Yang Y, Kong S, Sun Y, Yang Y, Wu X. (2019) Complete chloroplast genome sequences of four Allium species: comparative and phylogenetic analyses. Scientific Reports 9(1): 1–14. 10.1038/s41598-019-48708-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Islam-Faridi N, Sakhnokho HF, Nelson CD. (2020) New chromosome number and cyto-molecular characterization of the African Baobab (Adansoniadigitata L.) – “The Tree of Life”. Scientific Reports 10: e13174. 10.1038/s41598-020-68697-6 [DOI] [PMC free article] [PubMed]
  66. Jha S, Raina SN, Ohri D, Verma RC, Dhar MK, Lekhak MM, Yadav SR, Mahadev N, Satyawada RR. (2019) A new online database on genome-related information of Indian plants. Plant Systematics and Evolution 305(9): 837–843. 10.1007/s00606-019-01602-5 [DOI] [Google Scholar]
  67. Johnson MAT, Zhatay N. (1996) Cytology of Alliumsect.Allium. In: Mathew B. (Ed.) A Review of Allium sect.Allium. Kew Royal Botanic Gardens, Kew, 17–31.
  68. Jones RN, Rees H. (1968) Nuclear DNA variation in Allium. Heredity 23: 591–605. 10.1038/hdy.1968.76 [DOI] [Google Scholar]
  69. Joshi CP, Ranjekar PK. (1982) Visualization and distribution of heterochromatin in interphase nuclei of several plant species as revealed by a new giemsa banding technique. Cytologia 47: 471–480. 10.1508/cytologia.47.471 [DOI] [Google Scholar]
  70. Katayama Y. (1928) The chromosome number in Phaseolus and Allium and observation on the size of stomata in different species of Triticum. Jour. Sci. Agric. Soc. Tokyo 303: 52–54. [Google Scholar]
  71. Khazanehdari KA, Jones GH. (1996) Meiotic synapsis of the Alliumporrum B chromosome: evidence for a derived isochromosome origin. Genome 39(6): 1199–1204. 10.1139/g96-151 [DOI] [PubMed] [Google Scholar]
  72. Khoshoo TN, Sharma VB. (1959) Cytology of the autotriploid Alliumrubellum. Chromosoma 10: 136–143. 10.1007/BF00396567 [DOI] [PubMed] [Google Scholar]
  73. Khrustaleva L, Kudryavtseva N, Romanov D, Ermolaev A, Kirov I. (2019) Comparative Tyramide-FISH mapping of the genes controlling flavor and bulb color in Allium species revealed an altered gene order. Scientific Reports 9(1): 1–11. 10.1038/s41598-019-48564-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Kim ES, Punina EO, Rodionov AV. (2002) Chromosome CPD (PI/DAPI) and CMA/DAPI-banding patterns in Alliumcepa L. Russian Journal of Genetics 38(4): 489–496. 10.1023/A:1015250219322 [DOI] [PubMed] [Google Scholar]
  75. Kohli B, Gohil RN. (2011) Is Alliumroylei Stearn still evolving through multiple interchanges? The Nucleus 54(1): 19–23. 10.1007/s13237-011-0018-0 [DOI]
  76. Kohli B, Kaul V. (2013) Sterility in Alliumroylei Stearn – A lesser explored taxon. International Journal of Pharma and Bio Sciences 4(1): 741–746. [Google Scholar]
  77. Kojima A, Hinata K, Noda S. (1991) An improvement of squash method for cytological study of female meiosis in Alliumtuberosum, Liliaceae. Chromosome Information Service (CIS) 50: 5–7. [Google Scholar]
  78. Koul AK. (1963) A spontaneously occurring reciprocal translocation heterozygote of Alliumcepa. The Journal of Indian Botanical Society 42: 416–419. [Google Scholar]
  79. Koul AK. (1966) Structural hybridity in Alliumatropurpureum Waldst. & Kit. Journal of Cytology and Genetics 1: 87–89. [Google Scholar]
  80. Koul AK, Gohil RN. (1970a) Causes averting sexual reproduction in Alliumsativum L. Cytologia 35: 197–202. 10.1508/cytologia.35.197 [DOI] [Google Scholar]
  81. Koul AK, Gohil RN. (1970b) Cytology of tetraploid Alliumampeloprasum with chiasma localization. Chromosoma 29: 12–19. 10.1007/BF01183658 [DOI] [Google Scholar]
  82. Koul AK, Gohil RN. (1971) Further studies on natural triploidy in viviparous onion. Cytologia 36(2): 253–261. 10.1508/cytologia.36.253 [DOI] [Google Scholar]
  83. Koul AK, Sharma MC, Gohil RN. (1971) Cytology of the tetraploid Alliumrubellum Bieb. Caryologia 24: 149–155. 10.1080/00087114.1971.10796422 [DOI] [Google Scholar]
  84. Kumar S, Thonger T. (2018) Karyomorphology of five Allium species from Nagaland, North-Eastern Region of India. Jordan Journal of Biological Sciences 11(1): 9–15. [Google Scholar]
  85. Kumari K, Saggoo MIS. (2016) Male meiosis and morphometric analysis of ethnobotanically important Alliumcarolinianum DC. from Kinnaur district of Himachal Pradesh, India. Asian Journal of Pharmaceutical and Clinical Research 9(4): 396–398. [Google Scholar]
  86. Kurosawa S. (1966) Cytological studies on some eastern Himalayan plants. In: Hara H. (Ed.) The Flora of Eastern Himalaya.University of Tokyo, Japan, 658–690.
  87. Kurosawa S. (1979) Notes on chromosome numbers of Spermatophytes II. Journal of Japanese Botany 54: 155–160. [Google Scholar]
  88. Labani RM, Elkington TT. (1987) Nuclear DNA variation in the genus Allium L. (Liliaceae). Heredity 59: 119–128. 10.1038/hdy.1987.103 [DOI] [Google Scholar]
  89. Lancaster JE, Collin HA. (1981) Presence of alliinase in isolated vacuoles and of alkyl cysteine sulphoxides in the cytoplasm of bulbs of onion (Alliumcepa). Plant Science Letters 22(2): 169–176. 10.1016/0304-4211(81)90139-5 [DOI] [Google Scholar]
  90. Langer A, Koul AK. (1983) Studies on nucleolus and nucleolar chromosomes in angiosperms VII. Nature of nucleolar chromosome polymorphism in Alliumcepavar.viviparum (Metzg.) Alef. Cytologia 48: 323–332. 10.1508/cytologia.48.323 [DOI] [Google Scholar]
  91. Le D, Audenaert K, Haesaert G. (2021) Fusarium basal rot: profile of an increasingly important disease in Allium spp. Tropical Plant Pathology 46: 241–253. 10.1007/s40858-021-00421-9 [DOI] [Google Scholar]
  92. Lee SH, Do GS, Seo BB. (1999) Chromosomal localization of 5S rRNA gene loci and the implications for relationships within the Allium complex. Chromosome Research 7: 89–93. 10.1023/a:1009222411001 [DOI] [PubMed] [Google Scholar]
  93. Levan A. (1934) Cytological studies in Allium, V Alliummacranthum. Hereditas 18: 349–359. 10.1111/j.1601-5223.1934.tb02619.x [DOI] [Google Scholar]
  94. Levan A. (1940) Meiosis of Alliumporrum. A tetraploid species with chiasma localisation. Hereditas 26: 454–462. 10.1111/j.1601-5223.1940.tb03248.x [DOI] [Google Scholar]
  95. Li MJ, Guo XL, Li J, Zhou SD, Liu Q, He XJ. (2017) Cytotaxonomy of Allium (Amaryllidaceae) subgenera Cyathophora and Ameralliumsect.Bromatorrhiza. Phytotaxa 331(2): 185–198. 10.11646/phytotaxa.331.2.3 [DOI] [Google Scholar]
  96. Li QQ, Zhou SD, He XJ, Yu Y, Zhang YC, Wei XQ. (2010) Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Annals of Botany 106: 709–733. 10.1093/aob/mcq177 [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Li R, Liu L, Wang X. (1985) Karyotype analysis on the different cultivars of Alliumtuberosum Rottle. Chinese Bulletin of Botany 3(5): 43–46. [Google Scholar]
  98. Lu Y, Deng Y, Lu L, He X. (2017) Karyotypes of nineteen populations of four species in AlliumsubgenusAnguinum. Guangxi Zhiwu/Guihaia 37(7): 811–821. [Google Scholar]
  99. Mancia FH, Sohn SH, Ahn YK, Kim DS, Kim JS, Kwon YS, Kim CW, Lee TH, Hwang YJ. (2015) Distribution of various types of repetitive DNAs in Alliumcepa L. based on dual color FISH. Horticulture, Environment and Biotechnology 56(6): 793–799. 10.1007/s13580-015-1100-3 [DOI] [Google Scholar]
  100. Maragheh FP, Janus D, Senderowicz M, Haliloglu K, Kolano B. (2019) Karyotype analysis of eight cultivated Allium species. Journal of Applied Genetics 60(1): 1–11. 10.1007/s13353-018-0474-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Mehra PN, Pandita TK. (1979) IOPB chromosome number reports LXIV. Taxon 28: 391–408. 10.1002/j.1996-8175.1979.tb00530.x [DOI] [Google Scholar]
  102. Mehra PN, Sachdeva SK. (1975) IOPB chromosome number reports XLIX. Taxon 24: 501–516. 10.1002/j.1996-8175.1975.tb00341.x [DOI] [Google Scholar]
  103. Mehra PN, Sachdeva SK. (1976) Cytological observations on some West Himalayan monocots. III. Alliaceae. Cytologia 41: 23–30. 10.1508/cytologia.41.23 [DOI] [Google Scholar]
  104. Murin A. (1976) Polyploidy and mitotic cycle. The Nucleus 19: 192–195. [Google Scholar]
  105. Nanda S, Chand SK, Mandal P, Tripathy P, Joshi RK. (2016) Identification of novel source of resistance and differential response of Allium genotypes to purple blotch pathogen, Alternariaporri (Ellis) Ciferri. The Plant Pathology Journal 32(6): 519–527. 10.5423/PPJ.OA.02.2016.0034 [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Nanushyan ER, Polyakov VJ. (1989) Zavisimost mezhdu kolichestvom DNK, tolshchinoy mitoticheskikh khromosom i obyemom pyltsevykh zeren u nekotorykh vidov roda Allium L. Biologicheskiye Nauki (Moskva) 8: 50–56. [Google Scholar]
  107. Narayan RKJ. (1988) Constraints upon the organization and evolution of chromosomes in Allium. Theoretical and Applied Genetics 75: 319–329. 10.1007/BF00303971 [DOI] [Google Scholar]
  108. Nath S, Sarkar S, Patil SD, Saha PS, Lekhak MM, Ray S, Rama Rao S, Yadav SR, Verma RC, Dhar MK, Raina SN, Jha S. (2022) Cytogenetic diversity in Scilloideae (Asparagaceae): a comprehensive recollection and exploration of karyo-evolutionary trends. The Botanical Review. 10.1007/s12229-022-09279-1 [DOI]
  109. Nile SH, Park SW. (2013) Total phenolics, antioxidant and xanthine oxidase inhibitory activity of three colored onions (Alliumcepa L.). Frontiers in Life Science 7(3–4): 224–228. 10.1080/21553769.2014.901926 [DOI] [Google Scholar]
  110. Ogura H, Kondo K, Morimoto M, Aizawa T, Chen Z, Hong D. (1999) A karyological study of Alliumgrayi Regel and A.chinense G. Don in Sichuan Province, China. Chromosome Science 3: 119–122. [Google Scholar]
  111. Ohri D, Fritsch RM, Hanelt P. (1998) Evolution of genome size in Allium (Alliaceae). Plant Systematics and Evolution 210: 57–86. 10.1007/BF00984728 [DOI] [Google Scholar]
  112. Ohri D, Pistrick K. (2001) Phenology and genome size variation in Allium L. - a tight correlation? Plant Biology (Stuttgart) 3: 654–660. 10.1055/s-2001-19362 [DOI] [Google Scholar]
  113. Ohri M. (1990) Studies on the factor of existence in Alliumchinense guessed from elimination of the constitution of chromosomes. Journal of the Faculty of Agriculture, Shinshu University 27: 49–90. [Google Scholar]
  114. Olszewska MJ, Osiecka R. (1982) The relationship between 2C DNA content, life cycle type, systematic position, and the level of DNA endoreplication in nuclei of parenchyma cells during growth and differentiation of roots in some monocotyledonous species. Biochemie und Physiologie der Pflanzen 177(4–5): 319–336. 10.1016/S0015-3796(82)80026-7 [DOI] [Google Scholar]
  115. Oyuntsetseg B, Friesen N, Darikhand D. (2013) Alliumcarolinianum DC., A new species to the outer Mongolia. Turczaninowia 16(2): 88–90. [Google Scholar]
  116. Pandey A, Malav PK, Rai KM, Ahlawat SP. (2022) Genus Allium L. of the Indian Region: A field guide for germplasm collection and identification. ICAR-National Bureau of Plant Genetic Resources, New Delhi.
  117. Pandey A, Malav PK, Rai MK, Ahlawat SP. (2021) ‘Neodomesticates’ of the Himalayan Allium spices (Allium species) in Uttarakhand, India and studies on eco-geography and morphology. Genetic Resources and Crop Evolution 68(5): 2167–2179. 10.1007/s10722-021-01164-x [DOI] [Google Scholar]
  118. Pandita TK, Mehra PN. (1981a) Cytology of Alliums of Kashmir Himalayas, III. Male Meiosis. The Nucleus 24(3): 147–151. [Google Scholar]
  119. Pandita TK, Mehra PN. (1981b) Cytology of Alliums of Kashmir Himalayas, I. Wild species. The Nucleus 24(1, 2): 5–10.
  120. Pathiratne A, Hemachandra CK, De Silva N. (2015) Efficacy of Alliumcepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities. Environmental Monitoring and Assessment 187(12): 1–12. 10.1007/s10661-015-4954-z [DOI] [PubMed] [Google Scholar]
  121. Pedersen K, Wendelbo P. (1966) Chromosome numbers of some SW Asian Allium species. Blyttia 24: 307–313. [Google Scholar]
  122. Pellicer J, Hidalgo O, Walker J, Chase MW, Christenhusz MJ, Shackelford G, Leitch IJ, Fay MF. (2017) Genome size dynamics in tribe Gilliesieae (Amaryllidaceae, subfamily Allioideae) in the context of polyploidy and unusual incidence of Robertsonian translocations. Botanical Journal of the Linnean Society 184(1): 16–31. 10.1093/botlinnean/box016 [DOI] [Google Scholar]
  123. Pellicer J, Leitch IJ. (2020) The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 226(2): 301–305. 10.1111/nph.16261 [DOI] [PubMed] [Google Scholar]
  124. Peruzzi L, Carta A, Altinordu F. (2017) Chromosome diversity and evolution in Allium (Allioideae, Amaryllidaceae). Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology 151(2): 212–220. 10.1080/11263504.2016.1149123 [DOI] [Google Scholar]
  125. Peska V, Garcia S. (2020) Origin, diversity, and evolution of telomere sequences in plants. Frontiers in Plant Science 11: e117. 10.3389/fpls.2020.00117 [DOI] [PMC free article] [PubMed]
  126. Peska V, Mandakova T, Ihradska V, Fajkus J. (2019) Comparative dissection of three giant genomes: Alliumcepa, Alliumsativum, and Alliumursinum. International Journal of Molecular Sciences 20(3): e733. 10.3390/ijms20030733 [DOI] [PMC free article] [PubMed]
  127. Phuong PTM, Tashiro Y. (2010) Study on diversity and chromosome numbers of edible Allium crops in Vietnam. Journal of Science and Development 8: 138–144. [Google Scholar]
  128. Pogosian AI. (1997) Chromosome numbers in some species of monocotyledons from the Transcaucasia. Botanicheskii Zhurnal (Moscow & Leningrad) 82(6): 117–118. [Google Scholar]
  129. Puizina J, Papea D. (1996) Cytogenetical evidences for hybrid structure and origin of diploid and triploid shallots (Alliumcepavar.viviparum, Liliaceae) from Dalmatia (Croatia). Plant Systematics and Evolution 199: 203–215. 10.1007/BF00984905 [DOI] [Google Scholar]
  130. Rana S, Pal R, Vaiphei K, Sharma S, Ola R. (2011) Garlic in health and disease. Nutrition Research Reviews 24(1): 60–71. 10.1017/S0954422410000338 [DOI] [PubMed] [Google Scholar]
  131. Ranjekar PK, Pallotta D, Lafontaine JG. (1978) Analysis of plant genomes V. Comparative study of molecular properties of DNAs of seven Allium species. Biochemical Genetics 16: 957–970. 10.1007/BF00483747 [DOI] [PubMed] [Google Scholar]
  132. Rees H, Narayan RKJ, Hutchinson J. (1979) DNA variation associated with the evolution of flowering species. The Nucleus 22: 1–5. [Google Scholar]
  133. Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I. (2015) The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytologist 206(1): 19–26. 10.1111/nph.13191 [DOI] [PubMed] [Google Scholar]
  134. Richards EJ, Ausubel FM. (1988) Isolation of a higher eukaryotic telomere from Arabidopsisthaliana. Cell 53(1): 127–136. 10.1016/0092-8674(88)90494-1 [DOI] [PubMed] [Google Scholar]
  135. Ricroch A, Peffley EB, Baker RJ. (1992) Chromosomal location of rDNA in Allium: in situ hybridization using biotin-and fluorescein-labelled probe. Theoretical and Applied Genetics 83(4): 413–418. 10.1007/BF00226528 [DOI] [PubMed] [Google Scholar]
  136. Ricroch A, Yockteng R, Brown SC, Nadot S. (2005) Evolution of genome size across some cultivated Allium species. Genome 48: 511–520. 10.1139/g05-017 [DOI] [PubMed] [Google Scholar]
  137. Roy SC. (1978) Polymorphism in giemsa banding patterns in Alliumsativum. Cytologia 43: 97–100. 10.1508/cytologia.43.97 [DOI] [Google Scholar]
  138. Sato S. (1981) Cytological studies on the satellited chromosomes of Alliumcepa. Caryologia 34(4): 431–440. 10.1080/00087114.1981.10796911 [DOI] [Google Scholar]
  139. Sato S, Kawamura S. (1981) Cytological studies on the nucleolus and the NOR-carrying segments of Alliumsativum. Cytologia 46: 781–790. 10.1508/cytologia.46.781 [DOI] [Google Scholar]
  140. Schubert I, Wobus U. (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92: 143–148. 10.1007/BF00328466 [DOI] [Google Scholar]
  141. Sen S. (1973a) Structural hybridity intra- and interspecific level in Liliales. Folia Biologica (Cracow) 21: 183–197. [PubMed] [Google Scholar]
  142. Sen S. (1973b) Polysomaty and its significance in Liliales. Cytologia 38: 737–751. 10.1508/cytologia.38.737 [DOI] [Google Scholar]
  143. Sen S. (1974a) Cryptic structural changes in the evolution of cultivated Alliums. Indian Journal of Heredity 8: 41–50. [Google Scholar]
  144. Sen S. (1974b) Floral biology, meiosis, pollen cytology and cause of seed setting in Alliumtuberosum Rottl. Caryologia 27(1): 7–16. 10.1080/00087114.1974.10796557 [DOI] [Google Scholar]
  145. Sen S. (1974c) Nature and behaviour of B chromosomes in Alliumstracheyii Baker and Urgineaindica Kunth. Cytologia 39: 245–251. 10.1508/cytologia.39.245 [DOI] [Google Scholar]
  146. Senderowicz M, Nowak T, Rojek-Jelonek M, Bisaga M, Papp L, Weiss-Schneeweiss H, Kolano B. (2021) Descending dysploidy and bidirectional changes in genome size accompanied Crepis (Asteraceae) evolution. Genes 12(9): e1436. 10.3390/genes12091436 [DOI] [PMC free article] [PubMed]
  147. Seo B. (1977) Cytogenetic studies of some tetraploids in Allium. Korean Journal of Botany 20: 71–76. [Google Scholar]
  148. Seo BB, Kim JH. (1975) Karyotypic analyses based on heterochromatin distribution in Alliumfistulosum and Alliumascalonicum. Korean Journal of Botany 18: 92–100. [Google Scholar]
  149. Sharma AK, Aiyangar HR. (1961) Occurrence of B-chromosomes in diploid Alliumstracheyi Baker and their elimination in polyploids. Chromosoma 12(1): 310–317. 10.1007/BF00328926 [DOI] [Google Scholar]
  150. Sharma G, Gohil RN. (2003) Cytology of Alliumroylei Stearn. 1. Meiosis in a population with complex interchanges. Cytologia 68: 115–119. 10.1508/cytologia.68.115 [DOI] [Google Scholar]
  151. Sharma G, Gohil RN. (2004) Chromosomal chimeras in the male track of Alliumtuberosum Rottl. ex Spreng. Caryologia 57(2): 158–162. 10.1080/00087114.2004.10589386 [DOI] [Google Scholar]
  152. Sharma G, Gohil RN. (2008) Intrapopulation karyotypic variability in Alliumroylei Stearn – a threatened species. Botanical Journal of the Linnean Society 158(2): 242–248. 10.1111/j.1095-8339.2008.00862.x [DOI] [Google Scholar]
  153. Sharma G, Gohil RN. (2011a) Occurrence of differential meiotic associations and additional chromosomes in the embryo-sac mother cells of Alliumroylei Stearn. Journal of Genetics 90: 45–49. 10.1007/s12041-011-0031-8 [DOI] [PubMed] [Google Scholar]
  154. Sharma G, Gohil RN. (2011b) Occurrence of multivalents and additional chromosomes in the pollen mother cells of Alliumcepa L. The Nucleus 54(3): 137–140. 10.1007/s13237-011-0042-0 [DOI] [Google Scholar]
  155. Sharma G, Gohil RN. (2013a) Origin and cytology of a novel cytotype of Alliumtuberosum Rottl. ex Spreng. (2n=48). Genetic Resources and Crop Evolution 60: 503–511. 10.1007/s10722-012-9852-4 [DOI] [Google Scholar]
  156. Sharma G, Gohil RN. (2013b) Double hypoploid of Alliumtuberosum Rottl. ex Spreng. (2n=4x=30): its origin and cytology. Genetic Resources and Crop Evolution 60: 2283–2292. 10.1007/s10722-013-9995-y [DOI] [Google Scholar]
  157. Sharma G, Gohil RN, Kaul V. (2011) Cytological status of Alliumhookeri Thwaites (2n=22). Genetic Resources and Crop Evolution 58: 1041–1050. 10.1007/s10722-010-9641-x [DOI] [Google Scholar]
  158. Shibata F, Hizume M. (2002) Evolution of 5S rDNA units and their chromosomal localization in Alliumcepa and Alliumschoenoprasum revealed by microdissection and FISH. Theoretical and Applied Genetics 105(2–3): 167–172. 10.1007/s00122-002-0950-0 [DOI] [PubMed] [Google Scholar]
  159. Shopova M. (1966) The nature and behaviour of supernumerary chromosomes in the Rhizirideum group of the genus Allium. Chromosoma 19: 149–158. 10.1007/BF00293680 [DOI] [PubMed] [Google Scholar]
  160. Singh F, Ved Brat S, Khoshoo TN. (1967) Natural triploidy in viviparous onions. Cytologia 32: 403–407. 10.1508/cytologia.32.403 [DOI] [Google Scholar]
  161. Son JH, Park KC, Lee SI, Jeon EJ, Kim HH, Kim NS. (2012) Sequence variation and comparison of the 5S rRNA sequences in Allium species and their chromosomal distribution in four Allium species. Journal of Plant Biology 55: 15–25. 10.1007/s12374-011-9185-4 [DOI] [Google Scholar]
  162. Stack SM, Roelofs D. (1996) Localized chiasmata and meiotic nodules in the tetraploid onion Alliumporrum. Genome 39: 770–783. 10.1139/g96-097 [DOI] [PubMed] [Google Scholar]
  163. Sulistyaningsih E, Yamastai K, Tashiro Y. (2002) Genetic characteristics of the Indonesian white shallot. Journal of the Japanese Society for Horticultural Science 71: 504–508. 10.2503/jjshs.71.504 [DOI] [Google Scholar]
  164. Sýkorová E, Leitch AR, Fajkus J. (2006) Asparagales telomerases which synthesize the human type of telomeres. Plant Molecular Biology 60(5): 633–646. 10.1007/s11103-005-5091-9 [DOI] [PubMed] [Google Scholar]
  165. Sýkorová E, Lim KY, Kunická Z, Chase MW, Bennett MD, Fajkus J, Leitch AR. (2003) Telomere variability in the monocotyledonous plant order Asparagales. Proceedings of the Royal Society of London, Series B, Biological Sciences 270(1527): 1893–1904. 10.1098/rspb.2003.2446 [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Talukder K, Sen S. (1999) In situ cytophotometric estimation of nuclear DNA in different cultivars of Allium species. Cytobios 99(390): 57–65. [Google Scholar]
  167. Talukder K, Sen S. (2000) Chromosome characteristics in some Allium sp. and assessment of their interrelationship. The Nucleus 43(1, 2): 46–57.
  168. Tanaka R, Taniguchi K. (1975) A banding method for plant chromosomes. Japanese Journal of Genetics 50: 163–167. 10.1266/jjg.50.163 [DOI] [Google Scholar]
  169. Tang H, Lihua M, Shiqimg A, Jianquaan L. (2005) Origin of the Qinghai-Tibetan Plateau endemic Milula (Liliaceae): further insights from karyological comparisons with Allium. Caryologia 58(4): 320–331. 10.1080/00087114.2005.10589470 [DOI] [Google Scholar]
  170. Tardif B, Morisset P. (1992) Relation between numbers of B-chromosomes and C-bands in Alliumschoenoprasum L. Cytologia 57: 349–352. 10.1508/cytologia.57.349 [DOI] [Google Scholar]
  171. Ulrich I, Fritz B, Ulrich W. (1988) Application of DNA fluorochromes for flow cytometric DNA analysis of plant protoplasts. Plant Science 55: 151–158. 10.1016/0168-9452(88)90171-9 [DOI] [Google Scholar]
  172. Vakhtina LI, Zakirova RO, Vakhtin YB. (1977) Interspecific differences in DNA contents and taxonomically valid characters in Allium L. (Liliaceae). Botanicheskii Zhurnal (Moscow & Leningrad) 62: 667–684. [Google Scholar]
  173. Van-Lume B, Esposito T, Diniz-Filho JAF, Gagnon E, Lewis GP, Souza G. (2017) Heterochromatic and cytomolecular diversification in the Caesalpinia group (Leguminosae): relationships between phylogenetic and cytogeographical data. Perspectives in Plant Ecology, Evolution and Systematics 29: 51–63. 10.1016/j.ppees.2017.11.004 [DOI] [Google Scholar]
  174. Van‘t Hof J. (1965) Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Experimental Cell Research 39: 48–58. 10.1016/0014-4827(65)90006-6 [DOI] [PubMed] [Google Scholar]
  175. Ved Brat S. (1965) Genetic systems in Allium. I. Chromosome variation. Chromosoma 16: 486–499. 10.1007/BF00343176 [DOI] [Google Scholar]
  176. Ved Brat S. (1967) Genetic systems in Allium IV. Balance in hybrids. Heredity 22: 387–396. 10.1038/hdy.1967.48 [DOI] [Google Scholar]
  177. Ved Brat S, Dhingra B. (1973) Genetic systems in Allium V. Breakdown of classical system in Alliumcepa. The Nucleus 16: 11–19. [Google Scholar]
  178. Vitales D, D’Ambrosio U, Galvez F, Kovařík A, Garcia S. (2017) Third release of the plant rDNA database with updated content and information on telomere composition and sequenced plant genomes. Plant Systematics and Evolution 303(8): 1115–1121. 10.1007/s00606-017-1440-9 [DOI] [Google Scholar]
  179. von Bothmer R. (1975) The Alliumampeloprasum complex on Crete. Mitteilungen (aus) der Botanischen Staatssammlung München 12: 267–288. [Google Scholar]
  180. Vujošević M, Jovanović V, Blagojević J. (2013) Polyploidy and B chromosomes in Alliumflavum from Serbia. Archives of Biological Sciences 65(1): 23–32. 10.2298/ABS1301023V [DOI] [Google Scholar]
  181. Wajahatullah MK, Vahidy AA. (1990) Karyotyping and localization of nucleolar organizer regions in garlic, Alliumsativum L. Cytologia 55: 501–504. 10.1508/cytologia.55.501 [DOI] [Google Scholar]
  182. Walters ZW. (1992) Rapid nuclear DNA content estimation for Allium spp. using flowcytometry. Allium Improvement Newsletter 2: 4–6. [Google Scholar]
  183. Wang C, Zheng G. (1987) The relationship between the intercellular chromatin migration of pollen mother cells and the changes of chromosome numbers during the genesis of male gametes in Alliumcepa. Acta Botanica Sinica 29: 247–252. [Google Scholar]
  184. Weiss H, Scherthan H. (2002) Aloe spp. – plants with vertebrate-like telomeric sequences. Chromosome Research 10(2): 155–164. 10.1023/A:1014905319557 [DOI] [PubMed] [Google Scholar]
  185. Wufeng D, Jinqiao X, Xin X. (1993) Studies on karyotypes of four Chinese scallions (Alliumchinensis G. Don). Journal of Wuhan Botanical Research 11: 199–203. [Google Scholar]
  186. Xie-Kui C, Ao C, Zhang Q, Chen L, Liu J. (2008) Diploid and tetraploid distribution of Alliumprzewalskianum Regel. (Liliaceae) in the Qinghai-Tibetan Plateau and adjacent regions. Caryologia 61(2): 192–200. 10.1080/00087114.2008.10589629 [DOI] [Google Scholar]
  187. Xu J, Yang L, He X, Xue P. (1998) A study on karyotype differentiation of Alliumfasciculatum (Liliaceae). Acta Phytotaxonomica Sinica 36(4): 346–352. [Google Scholar]
  188. Xue CY, Xu JM, Liu JQ. (2000) Karyotypes of nine populations of Alliumprzewalskianum from Qinghai. Acta Botanica Yunnanica 22: 148–154. [Google Scholar]
  189. Yang L, Xu J, Zhang X, Wan H. (1998) Karyotypical studies of six species on the genus Allium. Acta Phytotaxonomica Sinica 36(1): 36–46. [Google Scholar]
  190. Yuzbasioglu D. (2004) Karyotyping, C- and NOR banding of Alliumsativum L. (Liliaceae) cultivated in Turkey. Pakistan Journal of Botany 36(2): 343–349. [Google Scholar]
  191. Zakirova RO, Nafanailova II. (1988) Chromosome numbers in some species of the Kazakhstan flora. Botanicheskii Zhurnal (Moscow & Leningrad) 73: 1493–1494. [Google Scholar]
  192. Zhukova PG. (1967) Karyology of some plants cultivated in the Arctic-Alpine Botanical Garden. In: Avrorin NA. (Ed.) Plantarum in Zonam Polarem Transportatio II.Leningrad, 139–149.

Articles from Comparative Cytogenetics are provided here courtesy of Pensoft Publishers

RESOURCES