Skip to main content
British Heart Journal logoLink to British Heart Journal
. 1994 Jun;71(6):572–578. doi: 10.1136/hrt.71.6.572

Intravascular ultrasound imaging of angiographically normal coronary arteries: a prospective study in vivo.

J Ge 1, R Erbel 1, T Gerber 1, G Görge 1, L Koch 1, M Haude 1, J Meyer 1
PMCID: PMC1025457  PMID: 8043342

Abstract

Intravascular ultrasound imaging (IVUS) was performed to elucidate the discrepancy between clinical history and angiographic findings and to measure the diameter and area of the lumen of the normal left coronary artery in 55 patients who presented with chest pain but had normal coronary angiograms. The left coronary artery (LCA) was scanned with a 4.8F, 20 MHz mechanically rotated ultrasound catheter at 413 sites. Atherosclerotic lesions were identified at 72 (17%) sites in 25 patients. The mean (SD) (range) plaque area was 5.55 (3.56) mm2 (2-26 mm2) and it occupied 28.8 (9.6)% (13-70%) of the coronary cross sectional area. Calcification was detected at 24 (33%) atherosclerotic sites in nine patients. The correlation coefficients for the lumen dimensions measured at normal sites by IVUS and by angiography were r = 0.93 (SEE = 0.43) mm for lumen diameter and r = 0.89 (SEE = 4.27) mm2 for lumen area (both p < 0.001). 16 of the 30 patients in whom no atherosclerotic plaques were detected in the LCA lumen by IVUS had no risk factors of coronary artery disease. The cross sectional area of 90 consecutive images of left main coronary artery (LMCA), proximal left anterior descending coronary artery (proximal LAD), and mid LAD was measured in these 16 subjects. The mean (SEM) areas at end diastole were LMCA 17.33 (7.98) mm2; proximal LAD 13.56 (5.85) mm2; mid LAD 9.75 (4.67) mm2. During the cardiac cycle the cross sectional area changed by 10.2 (4.0)% in the LMCA, by 8.3 (4.7)% in the proximal LAD, and by 9.8 (4.0)% in the mid LAD. In 11 patients with plagues the change in cross sectional area in plague segments (5.8(3.1)%) was significantly lower than in the segments from patients without plagues (p < 0.001). Lumen area reached a maximum in early diastole rather than in late diastole. IVUS can imagine atherosclerotic lesions that are angiographically silent; it also provides detailed information about plague characteristics. The variation in coronary cross sectional area during the cardiac cycle should not be ignored during quantitative analysis. Maximum dimensions in normal segments are reached in early diastole. Further studies are needed to clarify the clinical significance of atherosclerosis detected by IVUS in patients presenting with chest pain but normal coronary angiography.

Full text

PDF
572

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartorelli A. L., Potkin B. N., Almagor Y., Keren G., Roberts W. C., Leon M. B. Plaque characterization of atherosclerotic coronary arteries by intravascular ultrasound. Echocardiography. 1990 Jul;7(4):389–395. doi: 10.1111/j.1540-8175.1990.tb00379.x. [DOI] [PubMed] [Google Scholar]
  2. Davidson C. J., Sheikh K. H., Harrison J. K., Himmelstein S. I., Leithe M. E., Kisslo K. B., Bashore T. M. Intravascular ultrasonography versus digital subtraction angiography: a human in vivo comparison of vessel size and morphology. J Am Coll Cardiol. 1990 Sep;16(3):633–636. doi: 10.1016/0735-1097(90)90354-r. [DOI] [PubMed] [Google Scholar]
  3. Davies S. W., Winterton S. J., Rothman M. T. Intravascular ultrasound to assess left main stem coronary artery lesion. Br Heart J. 1992 Nov;68(5):524–526. doi: 10.1136/hrt.68.11.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ge J., Erbel R., Seidel I., Görge G., Reichert T., Gerber T., Meyer J. Experimentelle Uberprüfung der Genauigkeit und Sicherheit des intraluminalen Ultraschalls. Z Kardiol. 1991 Oct;80(10):595–601. [PubMed] [Google Scholar]
  5. Grondin C. M., Dyrda I., Pasternac A., Campeau L., Bourassa M. G., Lespérance J. Discrepancies between cineangiographic and postmortem findings in patients with coronary artery disease and recent myocardial revascularization. Circulation. 1974 Apr;49(4):703–708. doi: 10.1161/01.cir.49.4.703. [DOI] [PubMed] [Google Scholar]
  6. Hodgson J. M., Graham S. P., Savakus A. D., Dame S. G., Stephens D. N., Dhillon P. S., Brands D., Sheehan H., Eberle M. J. Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. Int J Card Imaging. 1989;4(2-4):187–193. doi: 10.1007/BF01745149. [DOI] [PubMed] [Google Scholar]
  7. Hutchins G. M., Bulkley B. H., Miner M. M., Boitnott J. K. Correlation of age and heart weight with tortuosity and caliber of normal human coronary arteries. Am Heart J. 1977 Aug;94(2):196–202. doi: 10.1016/s0002-8703(77)80280-9. [DOI] [PubMed] [Google Scholar]
  8. Isner J. M., Kishel J., Kent K. M., Ronan J. A., Jr, Ross A. M., Roberts W. C. Accuracy of angiographic determination of left main coronary arterial narrowing. Angiographic--histologic correlative analysis in 28 patients. Circulation. 1981 May;63(5):1056–1064. doi: 10.1161/01.cir.63.5.1056. [DOI] [PubMed] [Google Scholar]
  9. Leung W. H., Stadius M. L., Alderman E. L. Determinants of normal coronary artery dimensions in humans. Circulation. 1991 Dec;84(6):2294–2306. doi: 10.1161/01.cir.84.6.2294. [DOI] [PubMed] [Google Scholar]
  10. Lockwood G. R., Ryan L. K., Gotlieb A. I., Lonn E., Hunt J. W., Liu P., Foster F. S. In vitro high resolution intravascular imaging in muscular and elastic arteries. J Am Coll Cardiol. 1992 Jul;20(1):153–160. doi: 10.1016/0735-1097(92)90152-d. [DOI] [PubMed] [Google Scholar]
  11. MacAlpin R. N., Abbasi A. S., Grollman J. H., Jr, Eber L. Human coronary artery size during life. A cinearteriographic study. Radiology. 1973 Sep;108(3):567–576. doi: 10.1148/108.3.567. [DOI] [PubMed] [Google Scholar]
  12. Nishimura R. A., Edwards W. D., Warnes C. A., Reeder G. S., Holmes D. R., Jr, Tajik A. J., Yock P. G. Intravascular ultrasound imaging: in vitro validation and pathologic correlation. J Am Coll Cardiol. 1990 Jul;16(1):145–154. doi: 10.1016/0735-1097(90)90472-2. [DOI] [PubMed] [Google Scholar]
  13. Nissen S. E., Gurley J. C., Grines C. L., Booth D. C., McClure R., Berk M., Fischer C., DeMaria A. N. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation. 1991 Sep;84(3):1087–1099. doi: 10.1161/01.cir.84.3.1087. [DOI] [PubMed] [Google Scholar]
  14. Ozbek C., Wölk T., Bach R., Dyckmans J., Schieffer H. Excimer-Laser-Koronarangioplastie nach primär erfolgloser PTCA. Z Kardiol. 1992 Mar;81(3):152–156. [PubMed] [Google Scholar]
  15. Pandian N. G., Kreis A., Brockway B., Isner J. M., Sacharoff A., Boleza E., Caro R., Muller D. Ultrasound angioscopy: real-time, two-dimensional, intraluminal ultrasound imaging of blood vessels. Am J Cardiol. 1988 Sep 1;62(7):493–494. doi: 10.1016/0002-9149(88)90992-7. [DOI] [PubMed] [Google Scholar]
  16. RODRIGUEZ F. L., ROBBINS S. L. Capacity of human coronary arteries; a postmortem study. Circulation. 1959 Apr;19(4):570–578. doi: 10.1161/01.cir.19.4.570. [DOI] [PubMed] [Google Scholar]
  17. Siegel R. J., Chae J. S., Forrester J. S., Ruiz C. E. Angiography, angioscopy, and ultrasound imaging before and after percutaneous balloon angioplasty. Am Heart J. 1990 Nov;120(5):1086–1090. doi: 10.1016/0002-8703(90)90120-m. [DOI] [PubMed] [Google Scholar]
  18. Vieweg W. V., Alpert J. S., Hagan A. D. Caliber and distribution of normal coronary arterial anatomy. Cathet Cardiovasc Diagn. 1976;2(3):269–280. doi: 10.1002/ccd.1810020304. [DOI] [PubMed] [Google Scholar]
  19. Vlodaver Z., Frech R., Van Tassel R. A., Edwards J. E. Correlation of the antemortem coronary arteriogram and the postmortem specimen. Circulation. 1973 Jan;47(1):162–169. doi: 10.1161/01.cir.47.1.162. [DOI] [PubMed] [Google Scholar]
  20. White C. W., Wright C. B., Doty D. B., Hiratza L. F., Eastham C. L., Harrison D. G., Marcus M. L. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med. 1984 Mar 29;310(13):819–824. doi: 10.1056/NEJM198403293101304. [DOI] [PubMed] [Google Scholar]

Articles from British Heart Journal are provided here courtesy of BMJ Publishing Group

RESOURCES