Abstract
Infectious diseases are commonly implicated as potential initiators of autoimmune diseases (ADs) and represent the most commonly known factor in the development of autoimmunity in susceptible individuals. Epidemiological data and animal studies on multiple ADs suggest that molecular mimicry is one of the likely mechanisms for the loss of peripheral tolerance and the development of clinical disease. Besides molecular mimicry, other mechanisms such as defects in central tolerance, nonspecific bystander activation, epitope-determinant spreading, and/or constant antigenic stimuli, may also contribute for breach of tolerance and to the development of ADs. Linear peptide homology is not the only mechanism by which molecular mimicry is established. Peptide modeling (i.e., 3D structure), molecular docking analyses, and affinity estimation for HLAs are emerging as critical strategies when studying the links of molecular mimicry in the development of autoimmunity. In the current pandemic, several reports have confirmed an influence of SARS-CoV-2 on subsequent autoimmunity. Bioinformatic and experimental evidence support the potential role of molecular mimicry. Peptide dimensional analysis requires more research and will be increasingly important for designing and distributing vaccines and better understanding the role of environmental factors related to autoimmunity.
Keywords: Autoimmune diseases, Autoimmunity, Molecular mimicry, Cross-reactivity, Vaccines, COVID-19, SARS-CoV-2
List of abbreviations
- ABCs
Age‐associated B cells
- ACE2
Angiotensin‐converting enzyme 2
- ADs
Autoimmune diseases
- ANAs
Antinuclear antibodies
- BAFF
B cell-activating factor
- BCR
B cell receptor
- C
Constant
- CMV
Cytomegalovirus
- COMPASS-31
Composite Autonomic Symptom Score 31
- COVID-19
Coronavirus disease 2019
- DN2
Double negative
- Dsg
Desmoglein
- EAE
Experimental autoimmune encephalomyelitis
- EAU
Experimental autoimmune uveitis
- EBV
Epstein-Barr virus
- EFB
Extrafollicular B cells
- ES
Epitope spreading
- FS
Fogo Selvagem
- GBS
Guillain-Barré syndrome
- GM-CSF
Granulocyte‐macrophage colony‐stimulating factor
- HBV
Hepatitis B virus
- HCRTR2
Hypocretin Receptor 2
- HDM
House dust mites
- HLA
Human leukocyte antigen
- HPV
Human papillomavirus
- HSV-1
Herpes simplex virus-1
- IFN
Interferon
- IL
Interleukin
- ITP
Immune thrombocytopenia
- J
Joining
- KD
Kawasaki disease
- MBP
Myelin basic protein
- ME/CFS
Myalgic encephalomyelitis/chronic fatigue syndrome
- MERS-CoV
Middle East respiratory syndrome coronavirus
- MHC
Major histocompatibility complex
- MIP‐1α
Macrophage inflammatory protein‐1α
- MIS‐C
Multisystem inflammatory syndrome in children
- MS
Multiple sclerosis
- NETs
Neutrophil extracellular traps
- NF-κB
Nuclear factor-κB
- NS
Non-structural protein
- PCS
Post-COVID syndrome
- PF
Pemphigus foliaceus
- PolyA
Polyautoimmunity
- PR3
Proteinase 3
- PRR
Pattern recognition receptor
- RA
Rheumatoid arthritis
- RBD
Receptor binding protein
- RF
Rheumatoid factor
- S
Protein spike
- SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
- SLE
Systemic lupus erythematosus
- SS
Sjögren's syndrome
- SSc
Systemic sclerosis
- ssRNA
Single-stranded RNA
- T1D
Type 1 diabetes
- TCR
T cell receptor
- Tg
Thyroglobulin
- TMEV
Theiler's murine encephalomyelitis virus
- TPO
Thyroid peroxidase
- V
Variable
- β2GP1
β2-Glycoprotein 1
1. Introduction
Autoimmune diseases (ADs) are a chronic and clinically heterogeneous group of diseases that affect approximately one in ten individuals [1], with a steadily increasing incidence throughout westernized societies [2]. Although clinically diverse, autoimmune disorders share common immunopathogenic mechanisms and risk factors, a phenomenon coined as autoimmune tautology (i.e., ADs are similar to each other) [3]. Molecular mimicry, defined as similarities between foreign and self-peptides that favor activation of autoreactive T or B cells in susceptible individuals [4], is often considered a primary mechanism for autoimmunity development following environmental exposure.
The first description in the late 60s of molecular mimicry was by Zabriskie and Freimer [5], and it has been widely discussed as a mechanism for the loss of peripheral tolerance [4,[6], [7], [8], [9]]. Natural infection is commonly considered the leading pathway for this phenomenon. Other environmental factors, such as chemicals, drugs, and vaccines, also have the potential to lead to autoimmunity not only via molecular mimicry but also by bystander activation, epitope-determinant spreading, and/or hapten carrier [[10], [11], [12]].
Despite substantial research on the homology of several microbial peptides/proteins and human tissue peptides/proteins, the intricacies of how microbial proteins are involved in the etiology of ADs remain unknown. Host factors (e.g., defects in central or peripheral tolerance, human leukocyte antigens [HLA], and non-HLA polymorphisms) [[13], [14], [15], [16], [17], [18], [19], [20]], T-cell receptors (TCRs) with diverse heterodimers or homodimers of α and β chains configuration [21], microbiome [22], and immunosenescence [23], also play a critical role in ADs susceptibility when molecular mimicry is present in genetically susceptible individuals.
Four types of molecular mimicry have been previously proposed [[24], [25], [26], [27], [28], [29]]; 1) Type 1: “complete identity at the protein level between a microorganism and its host” (e.g., A human protein hijacked by the virus, and later presented as antigen by antigen presenting cells); 2) Type 2: “homology at the protein level between a microorganism and its host, of a protein encoded by the microorganism”; 3) Type 3: “common or similar native or glycosylated amino acid sequences or epitopes shared between the microorganisms or environmental agents and its host”; and 4) Type 4: “structural similarities between the microbe or environmental agents and its host”. In theory, any type could induce diverse inmune responses; however, type 3 is the most commonly linked to autoimmunity (similar but not exactly the same protein sequence). Recent analyses suggest that structural homology (Type 4), besides linear peptide homology, is a differential factor for the emergence of autoreactivity, especially in situations of hidden or cryptic epitopes defined in secondary, tertiary, or quaternary protein structure [30].
There are four well-defined criteria for considering molecular mimicry as a mechanism for autoimmunity [25,31]: 1) “evidence of similarity between a host epitope and an epitope of a microorganism or environmental agent”; 2) “detection of antibodies or T-cells that cross-react with both epitopes in patients with ADs”; 3) “epidemiological link between exposure to the environmental agent or microbe and development of ADs”; and 4) “the reproducibility of autoimmunity in an animal model following sensitization with the appropriate epitopes either following infection with the microbe or exposure to the environmental agent.” However, most pathogens associated with autoimmunity do not fulfill these criteria and could be considered an epiphenomenon (as previously described) [4]. Thus, it raises the question of whether the current approaches to studying autoimmunity associated with molecular mimicry are enough to uncover the intricate pathways related to this complex phenomenon, as several diseases with different peptide homologies have been reported (Table 1 ) [29,[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84]]. In addition, these hypotheses are difficult to prove in an outbred population like humans, particularly for rare events/diseases.
Table 1.
Infections, autoimmune diseases, and molecular mimicry.
| Infectious agent | Autoimmune disease | Structural homology | References |
|---|---|---|---|
| Viruses | |||
| Adenovirus | AIH | Mimicry between viral proteins and the CYP2D6. | [32] |
| CMV | AIH | Molecular similarities between the CYP2D6 and viral proteins. | [33] |
| AITD | Homology between viral and TPO structure. | [34] | |
| GBS | MOESIN, a cytoskeletal protein, and the gangliosides GM2, GalNAc-GD1a, and GD2 exhibit molecular similarity with CMV structures. | [29] | |
| PBC | Mimicry between the human PDC‐E2 and the microbial PDC‐E2 and induction of PDC‐E2‐ specific AMAs. | [35] | |
| SLE | Molecular mimicry between the virus's pp65 and TAF9 and between the virus's non-structural intranuclear protein UL44 and the SLE nuclear antigens dsDNA, ku70, and nucleolin. | [36] | |
| SSc | Mimicry between the CMV UL94 protein and human immunodominant peptide (i.e., GGIGGAGIWLVV). Topoisomerase I amino acids 121–126 share homology with the CMV late protein UL70. |
[37,38] | |
| T1DM | Mimicry of the human CMV major DNA-binding protein with the glutamic acid decarboxylase 65. | [39] | |
| EBV | AITD | To produce TRAbs and send co-stimulatory signals to autoreactive T cells, EBV-produced LMP-1 enables EBV-infected autoreactive B cells. | [40,41] |
| MS | The similarity between the MBP and the EBNA1. Homology between the DRB1*15:01-restricted MBP and the DRB5*01:01-restricted EBV peptide. |
[42,43,84] | |
| PBC | Specifically, PDC-E2 mimicry between humans and microbes and the induction of PDC-E2-specific AMAs. | [35] | |
| SS | Homology between viral EBER1 and EBER2 proteins and La antigen, as well as between viral EBVNA2 protein and Ro60 antigen. | [44] | |
| SLE | Cross-reaction between PPPGRRP of EBVNA-1 that cross-reacted with PPPGMRPP of Sm, amino acids 35–58 of EBVNA-1 that cross-reacted with amino acids 95–119 of Sm, and amino acids 58–72 of EBVNA-1 that cross-reacted with amino acids 169–180 of Ro. | [[45], [46], [47], [48]] | |
| Enteroviruses | T1DM | Homology between the viral protein 1 (PALTAVETGA/HT) of enterovirus and the β-cell antigen tyrosine phosphatase IA-2. | [49] |
| HBV | AU | Molecular mimicry between HBV structures and self-antigens (retina 5-Ag). | [50] |
| GBS | Cross-reaction between HBV polymerase and MBP. | [29] | |
| MS | Cross-reaction between HBV-DNA polymerase and MBP. | [50] | |
| SS | Sequence similarities to SSB/La decapeptides with HBV. | [51] | |
| HCV | AIH | Mimicry between the CYP2D6 and viral proteins. | [52] |
| AITD | Homologous epitopes of the HCV with anti-LKM-1 Ab, TPO, Tg, NIS, TSHR and pendrin. | [34,53] | |
| CV | Molecular mimicry between HCV antigens and liver-derived human autoantigens (PAFAH1B3). | [54] | |
| HBRV | PBC | Homologous epitopes of the microbial PDC-E2 and the human PDC-E2 and therefore, induction of PDC-E2-specific AMAs. | [35] |
| HEV | GBS | Cross-react between HEV structures and GM1 and GM2. | [29] |
| HIV | SLE | The polyclonal proliferation of B cells is associated with hyper‐gamma globulinemia and the development of neutralizing antibodies against Env epitopes (CH98) that cross‐react with ds‐DNA. | [36] |
| HHV-6 | MS | Homology between U24 peptide of the virus and MBP. | [55] |
| HPV | SLE | Cross-reaction between complement proteins, viral proteins, NK receptors, La autoantigen, methyl-CpGbinding protein 2, proteins P0 and P1, Sm protein B/B0, and Sm protein D. | [56] |
| HSV-1 | GBS | Sequence similarities between HSV-1 structures and GQ1b ganglioside, altered ganglioside-related gene expression. | [29] |
| AIH | Mimicry between the CYP2D6 and viral proteins. | [57] | |
| MG | The HuAChR α-subunit 160–167 peptide in MG patients shared a homologous domain with herpes simplex virus glycoprotein D residues 286–293. | [58] | |
| HSV-2 | GBS | Enhancing ganglioside-related gene expression (β3‐galactosyltransferase‐IV, α2,8‐sialyltransferase‐I). | [29] |
| HTLV-1 | SLE | Homology between HRES-1/p28 protein and HTLV-1 gag p24 protein. Molecular mimicry between antiviral HRES-1/p28 antibodies and 70 K U1snRNP SLE autoantigen. |
[36] |
| PVB19 | AIH | The similarity between VP2 of the virus and ssDNA. | [59] |
| APS | Cross-reactivity between VP2 of the virus and cardiolipin. | [59] | |
| ITP | Cross-reactivity between NS1 of the virus and platelet membrane GPIIb/IIIa. | [59] | |
| MS | Structural similarities between the virus and MBP. | [59] | |
| Myositis | Molecular mimicry between viral VP2 and ssDNA. | [59] | |
| RA | Molecular mimicry between viral VP2 and collagen II and ssDNA. | [59] | |
| SLE | Homology between viral VP2 and ssDNA, keratin and cardiolipin. VP-1 might play a role in viral entry into the cell and expanding phospholipids epitopes that will ultimately lead to aPL antibodies. |
[59,60] | |
| Rotavirus | AU | Shares amino acid homologies between viral VP4 protein and retinal S-antigen peptide. | [61] |
| Coeliac disease | Molecular mimicry between viral VP7 and human Transglutaminase. | [61] | |
| Pemphigus vulgaris | Sequence homology between viral VP6 and human Desmoglein-3. | [61] | |
| T1DM | Potentially cross-reactivity between viral VP7 and pancreatic islet autoantigens (IA-2 and GAD65). | [61] | |
| TTV | SLE | Molecular mimicry between TTV peptide ORF2a and HRES-1/p28, which acts as a nuclear autoantigen and with EBV antigens (EBV-LF3 and EBVNA-3C). | [36] |
| ZIKV | GBS | Sequence homology between ZIKV structures GA1, GM2, GD1a, and GB1b gangliosides. | [62] |
| Bacteria | |||
| B. burgdorferi | AITD | The similarity between residues 112–205, 127–150, 141–260, 299–383, and 620–697 of TSHR, and the flagellar motor rotation protein A, outer surface protein A, and DNA recombinase/ATP dependent helicase of B. burgdorferi. | [34] |
| C. jejuni | GBS | Carbohydrate mimicry (Galβ1–3GalNAcβ1–4(NeuAcα2–3)Galβ1-) between the bacterial lipooligosaccharide and human GM1 ganglioside. | [63,64] |
| E. coli | PBC | Mimicry between the human PDC-E2 and the E. coli PDC-E2. | [65,66] |
| RA | Heat shock protein (i.e., DnaJ) contains a QKRAA motif present in the HLA-DRB1 shared epitope. | [67] | |
| P. gingivalis | RA | The P. gingivalis enolase and the human α-enolase at the 17-amino acid immunodominant regions are similar. P. gingivalis may activate the citrullination of proteins through the bacterial peptidylarginine deiminase. |
[68] |
| P. mirabilis | RA | Cross-reactivity between the hemolysin, urease C, urease F enzymes, and the human proteome. | [69] |
| Y. enterocolitica | AITD | Mimicry between the TSH-R (residues 22–272, 186–330, 319–363, and 684–749) and the envelope proteins of Y. enterocolitica (YopM, Ysp, exopolygalacturonase, and SpyA). | [34,70,71] |
| Y. pseudotuberculosis | AITD | Cross-reactivity between OmpF porin from Y. pseudotuberculosis and TSH-R. | [72] |
| Parasites | |||
| Leishmania sp. | SLE | Molecular mimicry between Glucose-6-phosphate isomerase, Histone deacetylase 3, Triosephosphate isomerase, Small nuclear ribonucleoprotein G and Small ribonucleoprotein associated proteins B and autoantigen present in SLE. | [73] |
| Trypanosoma sp. | SLE | The similarity between more than thirty-six parasite antigens and autoantigens involved in SLE. The majority of proteins belonged to the ribonucleoprotein family. | [74] |
| Vaccines | |||
| Influenza vaccine | Homology between the surface-exposed influenza nucleoprotein A and the extracellular domain of hypocretin 2 receptor in narcolepsy. Suspected homology between influenza proteins and peripheral nerve structures in GBS (unknown exactly homology). |
[75,76] | |
| HPV vaccine | Peptide homology between HPV with lupus Ku autoantigen proteins (i.e., p86, p70), lupus brain antigen 1 homolog, natural killer cell IgG-like receptors, complement and complement receptor CD19 in SLE. Thirty-four pentamers from the viral capsid protein are shared with human proteins that are associated with cardiovascular diseases (i.e., the PSEA sequence of the HPV16 shares homology with the human Q99959 protein). Likely associated with POTS. |
[77,78] | |
| HBV vaccine | The HBV polymerase could act as an autoantigen and induce autoimmune demyelination in multiple sclerosis. HBV vaccination can induce anti-β2GPI antibodies as a result of β2GPI binding to recombinant hepatitis B surface antigen (rHBsAg). Furthermore, rHBsAg targets the fifth domain on the phospholipid binding site of β2GPI. |
[[79], [80], [81]] | |
| Others | |||
| Sand fly | Brazilian pemphigus foliaceus | Cross-reactivity between LMJ11 (a sand fly saliva protein) and desmoglein 1 and anti-desmoglein 1 monoclonal antibodies. | [82] |
| House dust mites | Vasculitis | Cross-reactivity between proteinase 3 (PR3) expressed on the neutrophil surface that will ultimately lead to tissue damage in small vessels | [83] |
AIH: autoimmune hepatitis: AITD: autoimmune thyroid disease; AMA: anti‐mitochondrial antibodies; APS: antiphospholipid syndrome; aPL: antiphospholipid; AU: autoimmune uveitis; B. burgdorgeri: Borrelia burgdorferi; CMV: cytomegalovirus; CV: cryoglobulinemia vasculitis; C. jejuni: Campylobacter jejuni; EBER: EBV‐encoded small RNA; EBV: Epstein‐ Barr virus; EBVNA: EBV nuclear antigen; EBNA1: EBV nuclear antigen 1; E. coli: Escherichia coli; GAD65: glutamic acid decarboxylase 65; GBS: Guillain‐Barré syndrome; Gp: glycoprotein; HAM/TSP: HTLV‐1 associated myelopathy/tropical spastic paraparesis; HBRV: human Betaretrovirus; HBV: hepatitis B virus; HCV: hepatitis C virus; HERV: human endogenous retroviruses; HEV: hepatitis E virus: HHV‐6A: human herpesvirus 6A; HPV: human papilloma virus; HRES‐1: HTLV‐1‐related endogenous sequence; HSP: heat shock proteins; HSV: herpes simplex virus; HTLV: human T‐cell lymphotropic virus; HIV: human immunodeficiency virus; IL, interleukin; ITP, immune thrombocytopenia; LKM‐1 Ab: liver/kidney Microsomal Antibody type 1; LMP: latent membrane protein; MBP: myelin basic protein; MG: myasthenia gravis; MOESIN: membrane‐organising extension spike protein; NAG: neuroblastoma‐amplified gene; NIS: Sodium Iodide Symporter; NS: non‐structural protein; ORF: open reading frame; PBC: primary biliary cholangitis; PDC: pyruvate dehydrogenase; pp65: phosphoprotein 65; P. gingivalis: Porphyromonas gingivalis; P. mirabilis: Proteus mirabilis; POTS: Postural orthostatic tachycardia syndrome; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus; SS: sjogren's syndrome; SSc: systemic sclerosis; T1DM: type 1 diabetes mellitus; Tg: thyroglobulin; TAF9: TATA‐box binding protein associated factor 9; TPO: thyroid peroxidase; TSHR: thyroid stimulating hormone receptor; TTV: torque teno virus; VZV: varicella zoster virus; Y. enterocolitica: Yersinia enterocolitica; Y. pseudotuberculosis: Yersinia pseudotuberculosis; ZIKV: zika virus. COVID-19 vaccines may also induce autoimmunity (see text).
The coronavirus disease 2019 (COVID-19) pandemic has emphasized the potential role of viral infections in developing autoimmunity. New-onset autoantibodies are commonly found in acute COVID-19 [85], latent polyautoimmunity (PolyA) influences the outcomes in hospitalized patients [86], and anti-interferon (IFN) antibodies have been implicated in mortality in male patients [87]. Interestingly, this phenomenon of latent autoimmunity persists in patients with post-COVID syndrome (PCS), and in about 12% of patients the incidence of latent autoimmunity increases over time [88]. Intriguingly, many reports have shown the appearance of overt ADs during PCS, including organ-specific and systemic conditions [88,89], indicating that autoimmunity after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is common [90].
In rare cases, several autoimmune and inflammatory diseases have been reported following vaccination against SARS-CoV-2 [90]. There have also been reports of flare-ups of ADs after vaccination [90]. These data indicate that susceptible individuals with or without prior evidence of autoimmunity can develop overt ADs associated with natural infections or vaccination. Herein, we present an updated review of the new evidence on molecular mimicry and autoimmunity, the new approaches to studying this mechanism, and its likely role in ADs following vaccination.
2. Antigenic mimicry, mimotopes, and autoreactivity
Peptide binding by major histocompatibility complex (MHC) molecules presented to T cells is based on the sequence of 8–10 amino acids presented by MHC class I, and 14–18 amino acids presented by MHC class II to CD8+ and CD4+ T cells, respectively. TCRs have specificity for the specific MHC-bound peptide, a phenomenon known as MHC restriction [[91], [92], [93]]. The process of TCR production requires recombination of the variable (V), joining (J), and the constant (C) regions that produce the diversity of T-cell responses [94]. VJC genes coding the TCRs can produce up to 1013 TCR clonotypes [95]. In addition, the TCR may only recognize a specific region of a presented peptide (not all the amino acids are scanned – discontinuous epitopes), altering T cell recognition and activation [96,97]. Thus, the TCR can recognize multiple epitopes (self and non-self), a phenomenon known as “polyspecificity” [98,99]. This also applies to antibodies, in which despite affinity maturation, it has been illustrated that mature antibodies tend to exhibit promiscuity (i.e., polyspecificity), despite the acquisition of a relatively rigid binding pocket [[100], [101], [102]].
Presumably, any given T cell receptor must react to many different epitopes to react with all or most antigens from environmental pathogens [98]. Mimotopes, which are macromolecules with a similar structure to antigen epitopes, can lead to antigenic mimicry, where similar antigens activate immune receptors causing the immune system to target both the primary antigen and the similar antigen [99]. However, why are only some individuals susceptible to ADs? According to Cusick et al. [103], three pathways of autoreactivity by molecular mimicry can occur: 1) “TCR, given the polyspecificity of this receptor, could recognize the microbe and self-antigens,” 2) “some T cells exhibit the presence of double TCRs on their surface. One TCR distinguishes the viral/bacteria peptides, and the other is reactive to self-peptides”, and 3) “the TCR is a chimera having two β chains and one α chain, or two α chains and one β chain, which, in different mixtures, may result in recognition of self-antigens or foreign peptides inducing the development of autoimmunity” (Fig. 1 ) [4,104].
Fig. 1.
Proposed mechanism for evasion of central and peripheral tolerance, and development of autoimmunity secondary to molecular mimicry (Taken and adapted from Refs. [4,104]). T-cells derived from the bone marrow may have a single or double TCR with various chain arrangements. This situation might help avoid central tolerance, which ultimately might help T-cells triggered by foreign or self-antigens presented by APCs to become activated. T-cell activation in this process may boost the formation of autoantibodies, or vice versa, since B-cells may present antigens to autoreactive T-cells, which may increase cytokine production and directly injure tissues through cytotoxicity. Activated B and T cells are implicated in the reactivity to self and foreign epitopes. Inter- and intramolecular epitope spreading diversifies the immune response and expands the production of autoantibodies against the initial antigen and other related proteins. SARS-CoV-2 harbors several mimotopes in the S protein. Such mimotopes could induce cross-reactivity and activation of B and T cells after APC antigen presentation. However, docking and affinity to TCR and HMC receptors may define further downstream activation of immune cells. Regarding immune receptors and antibodies, linear and non-linear epitopes defined by 3D structure could be implicated in affinity and avidity of interactions. APC: antigen-presenting cell; BCR: B-cell receptor; DN: Doble negative; MHC: major histocompatibility complex; S: Spike; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; TCR: T-cell receptor.
In humans, about 30% of T-cells have two functional TCR α chains, while in mice up to 15% of T-cells express more than one TCR α chain [105,106]. Additionally, 1% of T-cells in humans and mice express more than one TCR β chain [107,108]. Although the processes behind the existence of dual TCRs is not fully understood, defects in allelic exclusion in some T cells can confer them a survival advantage by enabling them to recognize a wider range of antigens, but it can also lead to autoimmunity [109,110]. In this context, the first evidence of the potential of double receptors in the development of autoimmunity following infection was provided by Libbey et al. [111], who demonstrated that a dual TCR was present on the surface of T-cells following infection by Theiler's murine encephalomyelitis virus (TMEV) in SJL/J mice which developed experimental autoimmune encephalomyelitis (EAE).
Homologous peptide structures (3D peptide conformation) rather than similar amino acid sequences are also implicated in T cell activation [112]. It was confirmed in experimental autoimmune uveitis (EAU) and EAE models that peptides with less than 50% similarity could induce T cell activation [113,114]. However, truncated peptides did not induce T-cell proliferation and could block the MHC II binding groove [115]. This data suggested that the peptide 3D structure and its fit into the binding groove of MHC and TCR are also critical for analyzing mimotopes.
The role of 3D structure in TCR recognition may be similar to antibodies, which recognize conformational and discontinuous epitopes rather than linear peptides (Fig. 1) [116]. Peng et al. [82] reported that anti-desmoglein (Dsg) antibodies in pemphigus foliaceus (PF) did not recognize linearized peptides in Dsg1 [117]. Interestingly, antigenic mimicry for Dsg1 was related to an antigen within the LMJ11 protein (a sand fly salivary gland antigen) [82]. The link between LMJ11 and endemic PF, also known as Fogo Selvagem (FS), has been identified in affected areas. The precise mechanisms by which this sand fly protein may enter the immune system and elicit antigenic responses remain unclear. Nevertheless, this model has yielded compelling evidence for its involvement in autoimmune processes [82].
In this model (i.e., FS), molecular mimicry resulted in intermolecular epitope spreading (ES), resulting in an initial autoimmune response against a cross-reactive epitope on Dsg1. Following ES in Dsg1, PF patients develop pathogenic anti-Dsg1 antibodies directed against the EC1 or EC2 domains, whereas autoantibodies arising from ES directed against the epitopes on the EC3, EC4, and EC5 domains of Dsg1 were not pathogenic [82]. This confirms that the initial humoral response might not be pathogenic despite the evidence of molecular mimicry, but it also implies that ES propagates humoral response in this condition (Fig. 1).
Antibody promiscuity refers to the ability of an antibody to bind to multiple different antigens or epitopes, rather than being specific to just one [[100], [101], [102]]. This means that a single antibody can recognize and bind to a variety of different molecules or structures. Antibody promiscuity is thought to be an important factor in the ability of the immune system to defend against a wide range of pathogens. By being able to recognize many different antigens, antibodies can help the immune system to mount a more effective response to a diverse array of threats [[100], [101], [102]]. However, promiscuous antibodies can also have drawbacks. For example, if an antibody is too promiscuous, it may not be able to distinguish between harmful and harmless antigens, which could lead to autoimmune reactions or other unintended consequences [[100], [101], [102]]. Additional research is necessary to determine whether this phenomenon occurs in acute COVID-19 and PCS.
3. SARS-CoV-2 and autoimmunity
New-onset autoantibodies have been found in acute COVID-19 [85]. These autoantibodies are related to multiple ADs such as systemic sclerosis (SSc), myositis, systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), gastrointestinal, rheumatic, thyroid, and phospholipid autoimmunity [85,86]. In addition, analysis for other reactivities in acute COVID-19 demonstrated that patients exhibit IgG autoantibodies involved in the immune response, comprising effector function, lymphocyte activation, IFN response, and leukocyte trafficking [118]. Antibodies against Hypocretin Receptor 2 (HCRTR2) are the most relevant autoantibodies associated with the severity of disease during acute COVID-19 [118]. This receptor is located in the hypothalamus, and high levels of this autoantibody were correlated with lower Glasgow coma scale scores, suggesting a pathogenic role in the arousal state in infected patients.
In addition, latent autoimmunity (i.e., the presence of autoantibodies without the fulfillment of validated classification criteria for ADs [119]), including antinuclear antibodies (ANAs), thyroid peroxidase (TPO), rheumatoid factor (RF), and β2-Glycoprotein 1 (β2GP1) antibodies, influence the outcomes in hospitalized patients [86]. Autoimmunity to type I IFNs has also been implicated in mortality, possibly contributing to death in about 20% of COVID-19 deaths [87,120,121]. Auto-antibodies neutralizing type I IFNs predate SARS-CoV-2 infection [87]. Positivity for such autoantibodies has been associated with increased risk for herpes virus disease in critical COVID-19 [122]. Other anti-cytokine antibodies for IL‐1, IL‐6, IL‐10, IL-12p70, IL‐15, IL‐17A, IL‐22, IL‐33, granulocyte‐macrophage colony‐stimulating factor (GM-CSF), and macrophage inflammatory protein‐1α (MIP‐1α) have also been described [118]. This is similar to other infectious disease such ad mucocutaneous candidiasis and staphylococcal diseases which are associated with the prescence of autoantibodies against IL-17A/F and IL-6, respectively [123].
In addition to type I IFNs antibodies, Fonseca et al. [124] demonstrated that patients with acute COVID-19 exhibit an age-associated increase in autoantibody levels against 16 antigens (i.e., Amyloid β Peptide, β Catenin, Cardiolipin, Claudin 5, Enteric Nerve, Epithelial Cell Antigen, Fibulin, Glutamic Acid Decarboxylase, Human Epidermal Keratin, Insulin Receptor, Islet Cell Antigen, Liver Microsomal Antigen, Platelet Glycoprotein, Transglutaminase 3, Transglutaminase 6, and Zonulin), and the autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein were associated with the stratification of severe COVID-19 in elderly patients [124]. These results correlate with the initial reports of coagulopathy associated with antiphospholipid antibodies in critically ill patients with COVID-19 [86,125,126]. Other autoantibodies related to disease severity include those against angiotensin‐converting enzyme 2 (ACE2) [127].
As a result of SARS-CoV-2 infection in children, a multisystem inflammatory syndrome in children (MIS-C) has been reported. The clinical manifestations of MIS-C include mucocutaneous manifestations resembling Kawasaki disease (KD), rash, edema, lymphadenopathy, and conjunctivitis [128,129]. Despite the clinical similarities between MIS-C and KD, Consiglio et al. [128] noted that MIS-C exhibits unique cytokine and lymphocyte phenotypes that differentiate both conditions. In addition, autoantibodies against MAP2K2, CSNK1A1, CSNK2A1, and CSNK1E1 may help to differentiate MIS-C from KD, thus suggesting that SARS-CoV-2 induced a differential immune response with the production of autoantibodies with diverse specificities.
3.1. Molecular mimicry and SARS-CoV-2: antigenic sin?
Immune imprinting, also known as original antigenic sin, is the immune system's inclination to rely upon existing memory cells rather than initiate a de novo response when it encounters a novel but closely comparable antigen [130,131]. Preexisting-immunity, i.e., that has already developed, could boost crossreactive antibody responses to epitopes shared by the current and previously encountered antigens [130,132,133]. In a recent analysis, patients with severe COVID-19 exhibited a shift in antibody response to the respiratory syncytial virus, cytomegalovirus (CMV), and herpes simplex virus-1 (HSV-1), thus suggesting a crossreactivity with the SARS-CoV-2 proteome [134]. Clinical trials for polio, influenza, measles-mumps-rubella, and Bacillus Calmette-Guérin vaccinations are testing the cross-protective effects of non-COVID-19 vaccines against SARS-CoV-2 with promising pre-publication findings [135].
As many autoantibodies in COVID-19 and PCS have a high pre-existing population prevalence, a question remains on defining the epitopes/mechanism within the SARS-CoV-2 proteome that leads to such emergence. A recent study by Jaago et al. [136] using a high throughput random peptide phage display method found 15 highly antigenic epitopes; ten on the S region 1 (S1) and five on S2 (Fig. 1). Epitopes between regions S1.4 to S1.7 correspond to receptor binding protein (RBD) which are commolnly targeted by neutralizing antibodies during acute infection or those induced by vaccination [136].
In addition, IgG reactivity to the 15 S protein epitopes was found in pre-pandemic and acute COVID-19 sera. This is in line with the study by Quiros-Fernandez et al. [137], which found that multiple SARS-CoV-2 epitopes in S1 and S2 regions could induce activation of CD8+ T cells of healthy pre-pandemic donors, including naïve, memory, and effector subsets. The finding that individuals have pre-existing immunity to some of the identified epitopes and that these epitopes can activate CD8+ T cells of healthy unexposed donors suggests that prior exposure to related viruses or vaccination (i.e., immune printing) may contribute to the development of autoimmunity.
Further analysis confirmed that several S1 and S2 epitopes shared reactivity for common cold coronaviruses (e.g., SARS-CoV, OC43, and HKU) and other viral antigens from CMV, HSV-1, and Epstein-Barr virus (EBV) [136]. In addition, 63 human proteins with highly similar antigenic determinants to those within the 15 epitopes were identified in naïve (i.e., pre-pandemic) and COVID-19 patients. Those proteins were related to neuronal and cardiovascular development, Parkinson's disease, inflammatory bowel disease, synaptogenesis, chronic pulmonary disease, cancer, and periodontitis [136]. It demonstrates the molecular mimicry between SARS-CoV-2 and the human proteome, and evidenced IgG crossreactivity to previously recognized pathogenic targets in chronic conditions. Furthermore, the authors have shown that the existence of prior seroresponse to three specific epitopes of protein S (namely, S1.6, S1.8, and S2.1) could serve as an indicator for predicting the likelihood of exacerbated immunopathology associated with acute or chronic COVID-19 conditions [136].
3.2. Predicted homologous peptides between human proteome and SARS-CoV-2 and predicted binding to adaptive immune receptors
In addition to the peptide homology between the human proteome and the SARS-CoV-2, it is important to define their binding affinity to adaptive immune receptors (i.e., TCR, B cell receptor [BCR], or MHC). In the study by Karami Fath et al. [30], using a bioinformatic approach, the SARS-CoV-2 proteome was used to generate all 8- to 12-mer possible peptides, yielding a total of 48,530 peptides. The choice of peptide length was influenced by the need to balance sensitivity and specificity in their analysis. Longer peptides may be more specific to a particular antigen, but they may also miss other potential targets, while shorter peptides may be more sensitive but less specific. The choice of 8- to 12-mers allows for a balance between sensitivity and specificity, while also enabling the identification of potential targets for both MHC class I and class II molecules.
From the studied peptides, 23 SARS-CoV-2 peptides exhibit exact matches in the human proteome (18 in the ORF1ab polyprotein region, one in the non-structural protein 7a [NS7a], two in the surface glycoprotein, and two in the envelope protein), and all the matching peptides were from the octamer library [30]. Most of these peptides are ubiquitous and expressed in most tissues. However, some exhibit high specificity for the brain, heart, skeletal muscle, liver, pancreas, placenta, kidney, lungs, colon, peripheral blood, testis, endometrium, and hair follicles [30].
Next, from these SARS-CoV-2 peptides, only the ESGLKTIL (binds to HLA-B*08:01), EVLLAPLL (binds to HLA-B*51:07), NVAITRAK (binds to HLA-A*34:02), RYPANSIV (binds to HLA-A*24:02, HLA-A*24:03, HLA-A*24:07, HLA-C*14:02, and HLA-C*14:03), RRSFYVYA (binds to HLA-B*27:02, HLA-B*27:03, HLA-B*27:04, and HLA-B*27:05), and RFNVAITR (binds to HLA-A*33:03 and HLA-A*74:01) were predicted to bind to HLA proteins. Based on previous studies, they might induce immunogenic activity [30]. These results are similar to those from Adiguzel et al. [138], who found, by bioinformatic analysis, that mimicry between SARS-CoV-2 NSP6 with the CRB1 isoform I precursor could be associated with autoimmunity via the interaction with HLA*A02:01 and HLA*A24:02.
Both studies may have only identified binding peptides for MHC class I molecules because of the length of the peptides they used. It is possible that longer peptides, more representative of MHC class II binders, may reveal additional potential targets for T cell responses. However, it is also possible that the SARS-CoV-2 virus has a greater potential to induce autoimmune responses through MHC class I pathways, or that the MHC class I binders identified by the studies are the most relevant targets for T cell responses against the virus. Additional studies would be needed to investigate this further and to determine the extent to which the identified peptides could induce autoimmune responses (e.g., animal models, tetramer assays, or antibody cross reactivity studies).
Interestingly, when examining the Omicron variants (i.e., 21 K and 21 L), the molecular mimicry-associated risk appeared to be associated with HLA-A*24:02 and HLA-B*27:05 upon infection with Omicron 21 L. In addition, other Omicron peptides were possible binders to the HLA-B*27:05 and HLA-A*01:01 haplotypes, whereas the binding to HLA-B*07:02 could have been lost or diminished [138]. It is important to note that the authors of such study used bioinformatic methods to analyze the SARS-CoV-2 proteome and predict the potential binding of viral peptides to MCH molecules. This suggests that the emergence of new SARS-CoV-2 variants could shift the risk for autoreactivity to different HLA alleles associated with different ADs. Nevertheless, further experimental, and epidemiological evidence is required to confirm these results.
3.3. Peptide modeling, molecular docking, and affinity of homologous peptides
In addition to predicted HLA binding, peptide modeling and molecular docking (i.e., affinity and orientation) are critical for determining truly immunogenic peptides associated with molecular mimicry. Using HLA 3D structures and matching the corresponding binding peptides, Karami Fath et al. [30] found four SARS-CoV-2 candidate homologous peptide sequences for peptide modeling (i.e., ESGLKTIL, RYPANSIV, NVAITRAK, and RRARSVAS). These peptides are binders for HLA-B*08:01, HLA-A*024:02, HLAA*11:01, and HLA-B*27:05, respectively.
Bioinformatic docking analysis demonstrated that all the peptides strongly interacted with the experimentally confirmed HLA molecules. This confirmed that besides their sequence homology to human proteome, the peptides would also be able to strongly interact with their matching HLAs. These HLAs have been previously associated with rheumatoid arthritis (RA), rheumatic carditis, Crohn's disease, ankylosing spondylitis, type 1 diabetes (T1D), and multiple sclerosis (MS) [30].
The frequency of expression of particular HLA alleles varies considerably across different ethnic groups [139]. Estimating the frequency of optimal peptide binding to different sets of HLA alleles (i.e., population coverage analysis) helps to define the probability of immunogenic response in different geographic regions [140,141]. In the analysis of population coverage for selected SARS-CoV-2 peptides, RYPANSIV (world coverage 25.74%), NVAITRAK (world coverage 15.53%), ESGLKTIL (world coverage 10.55%), RRSFYVYA (world coverage 7.33%), and RFNVAITR (world coverage 6.91%) were the top covered peptides [30]. In addition, over 57% of the world's population was calculated to be covered by all peptides with anticipated HLA binding. The regions with the most prominent population coverage were Oceania (80.72%), East Asia (83.78%), and Southeast Asia (84.12%) [30].
3.4. Animal models, SARS-CoV-2, and autoimmunity
The research conducted by Shen et al. [142] involved the inoculation of SARS-CoV-2 into K18-hACE2 mice, resulting in a significant decrease in saliva flow rate, augmented levels of ANAs against SS-B/La, and notable lymphocyte infiltration in both the lacrimal and salivary glands resembling a SS-like phenotype. In the context of COVID-19 patients, the analysis of serum samples indicated a notable elevation in ANAs, anti-SSA/Ro52, and anti-SSB/La. Examination of minor salivary gland biopsies obtained from convalescent COVID-19 patients revealed the presence of focal lymphocytic infiltrates focus scores >2 [142]. This is the first experimental evidence of an autoimmune-like phenotype induced by SARS-CoV-2 in vivo and correlates with pathology in humans.
This study adds to the growing consensus that molecular mimicry drives SARS-CoV-2-induced autoimmunity: 1) there is evidence of homology between the human proteome and the SARS-CoV-2.2) studies confirm that patients with COVID-19 exhibit autoantibodies against both epitopes in humans and the infectious agent, and crossreactivity was noted in samples from pre-pandemic acute infected patients. 3) An epidemiological association exists between SARS-CoV-2 and the development of autoimmunity, including its role in mortality. 4) Inoculation with SARS-CoV-2 into K18-hACE2 mice is associated with SS-like phenotype. However, further studies providing evidence on additional animal models, as well as longitudinal cohorts in humans, could provide definitive evidence of molecular mimicry in the development of autoimmunity by SARS-CoV-2.
3.5. Immunological mechanisms of autoimmunity in acute COVID-19
Similar to SLE, extrafollicular B cell (EFB) activation is evident in patients with COVID-19, and this causes an expansion of the B cell repertoire's antibody-producing cells [143]. In critically ill COVID-19 patients, the IgD−CD27− (double negative [DN2]) population of effector B cells expands and is one of the main causes of an inappropriate humoral response (i.e., high production of anti-SARS-CoV-2 antibodies but worse clinical outcomes and a stronger pro-inflammatory state) [143]. In inflammatory disorders like COVID-19 and SLE, the DN2 B cells, which mostly evolve in the EF pathway, tend to move to inflammatory tissues and produce autoantibodies [143,144].
The immune response to SARS‐CoV‐2 is associated with TLR3 and TLR7 RNA sensor pathways [145], and this pattern recognition receptor (PRR) has a similar role in the pathogenesis of SLE and COVID‐19‐associated autoimmunity through the induction of DN2 autoreactive or age‐associated B cells (ABCs) [143,146]. TLR7 is critical for recognizing single-stranded RNA (ssRNA) from both viral and non-viral sources in the endosomes and induces the production of IFNs. In SLE, it was found that theTLR7 Y264H variant confers an increased risk for the development of autoimmunity through a gain of function mutation [147]. Given that SARS-CoV-2 has the potential to activate DN2 autoreactive cells, potentially via a TLR7 mechanism (analogous to SLE) [143,146], it is probable that this may result in the generation of autoantibodies with varying specificities. This could be counterintuitive to the fact that 10% of patients with critical COVID-19 exhibit anti-IFN antibodies (wich are associated with a impaired response to the virus). However, such autoantibodies are only present in a small number of patients; thus, the activation of DN2 cells by this stimulus is possible in most infected patients.
In addition, another potential source of autoantibodies includes neutrophil extracellular traps (NETs). The inflammatory response to gram-positive and gram-negative bacteria is mediated by NETs, an interconnected network of granule proteins and chromatin produced by neutrophils [148]. Notably, while NETs are known to be generated in response to non-viral stimuli, it is worth mentioning that viral infections can also trigger the formation of NETs albeit to a lesser degree [149]. These NETs constitute a significant source of cryptic antigens that promote the formation of antibodies, especially against nuclear antigens (Fig. 1).
In COVID-19, NETs are recognized to play a critical role in inflammation and thrombosis, and they induce the production of antiphospholipid antibodies [150,151], and circulating NETs correlate with disease severity [[152], [153], [154], [155]]. In this line, anti-NET antibodies likely impair NET clearance and may potentiate SARS-CoV-2–mediated thromboinflammation [151]. Additional hypotheses suggest that antiphospholipid antibodies could potentiate NETs formation, by promoting the interaction between platelets and neutrophils with the consequent neutrophilic activation and B cell activating factor (BAFF) production, a release that could perpetuate and potentiate autoantibody production by autoreactive B cells [126].
Epitope spreading is the diversification of the immune response from the initial dominant epitope-specific immune response to subdominant epitopes on the same protein (intramolecular ES) or other autoantigens (intermolecular ES) (Fig. 1) [156,157]. This phenomenon has been extensively studied in MS, T1D, and myasthenia gravis [158]. In MS, immunization with a proteolipid protein (PLP)139–151 peptide in SJL mice induces the development of EAE within three days. However, new antigenic epitopes emerge during the subsequent relapses, such as PLP178–191, and for other proteins, such as myelin basic protein (MBP)84-104 [159]. This exemplified the role of mimotopes in autoimmunity and the diversification of the immune response with pathogenic potential. A recent bioinformatic analysis found that predicted epitopes from SARS-CoV-2 and crossreactive with PARP14 could be a source of intermolecular ES. This protein had the second-largest number of projected cross-reactive MHC-II ligands, the most expected cross-reactive MHC-I, and the highest number of predicted cross-reactive conformational B-cell epitopes [160].
Overall, evidence suggests that autoimmunity induced by COVID-19 could be associated with molecular mimicry to epitopes in the S1 and S2 SARS-CoV-2 regions, the production of autoantibodies secondary to increased NETosis, expansion, and activation of effector B cells, or epitope spreading leading to the production of autoantibodies with diverse specificity. In addition, the cytokine storm induced in the early stages of the infection also promotes the activation of inflammatory pathways that could be associated with a non-specific immune response giving it a higher potential to induce autoimmunity over other viruses. This evidence may explain the plethora of autoantibodies found during acute COVID-19 and PCS, in which patients present positivity for autoantibodies but lack, most of the time, the fulfillment of classification criteria for new-onset ADs. However, the evidence of thrombosis, rheumatological manifestations, and organ compromise associated with autoantibodies during acute COVID-19 suggest their pathogenic role in the acute disease and highlight the possibility of the development of overt autoimmunity during PCS and beyond.
Compared to Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-1, SARS-CoV-2 appears to have a higher incidence of autoimmune phenomena, but the exact reasons for this difference are not yet fully understood. The structural similarities between some of the SARS-CoV-2 proteins and human proteins may contribute to the development of autoimmunity to a greater extent compared to MERS-CoV and SARS-CoV-1. Additionally, SARS-CoV-2 may be able to evade the immune system more effectively than the other two viruses, leading to a more sustained and robust inflammatory response that could contribute to the development of autoimmune phenomena. However, further studies are needed to fully understand the mechanisms underlying the increased incidence of autoimmunity in COVID-19 compared to other coronaviruses.
4. Post-COVID syndrome, autoinflammation, and autoimmunity
Kastner et al. coined the term “autoinflammatory” in 1999 to describe two entities with episodes of recurring inflammation defined by fever but no indication of infectious diseases [161]. The conditions were familial Mediterranean fever and TNF receptor-associated periodic syndrome [162,163]. Since then, more than 30 autoinflammatory entities with various pathophysiological mechanisms have been described. Overactivation of inflammation (mainly related to type I IFNs) and lack of inhibition in several signaling pathways, notably nuclear factor-κB (NF-κB), are the fundamental causes of these disorders [163,164].
The difference between ADs and those considered “autoinflammatory” lies in the type of immune response. T and B cells are autoreactive against specific antigens in autoimmune conditions. In contrast, in autoinflammatory diseases, there is no specific adaptive autoreactivity, rather over-activation of innate immune pathways. The predominance of the immune response is determined by the activation of signaling pathways mainly related to the production of IL-1β and IFN-α [161,165].
PCS's most notable clinical manifestations include musculoskeletal, respiratory, digestive, and neurological manifestations (e.g., depression, myalgic encephalomyelitis/chronic fatigue syndrome – ME/CFS) [166]. One out of three patients may present with these four clinical components. Noteworthy, PCS is not associated with the severity of acute illness [166]. The mechanisms underlying PCS are enigmatic. Evidence for endotheliopathy [167], viral persistence [168], endocrine dysregulation [169], autoimmune response [170], and chronic inflammatory state [171] has been provided. Nevertheless, there is evidence that PCS occurs between two main spectrums: autoimmune and autoinflammatory. Patients with PCS exhibited abundant DN2 B cells, CD8+ T cells, Th1, and Th17 cytokines after 3–6 months of recovery, indicating a hyperinflammatory milieu. Furthermore, patients had decreased B cell response due to IL-6/IL-10 imbalance [172] and elevated TNF and IL-1 [173].
Longer follow-ups (up to 11 months) suggest that this inflammatory phenotype persisted over time. We and others observed an increase of pro-inflammatory cytokines in PCS (i.e., IFN-α, TNF- α, G-CSF, IL17A, IL-6, IL1-β, and IL-13) [88,174,175]. Furthermore, in terms of the cellular immune response, significant components of cellular immunity in PCS patients did not return to normal baseline 7–9 months after SARS-CoV-2 infection [88]. There were an increase in CD4+ effector memory T cells, CD8+ effector T cells, Th9 cells, and naïve B cells [88]. Similar findings were reported by Phetsouphanh et al. [175] who assert that SARS-CoV-2 infection has long-lasting impacts on the innate and adaptive immune systems (8 months after infection). It led to an inflammatory state characterized by elevated levels of type I IFN (IFN- β) and type III IFN (IFN- λ1) and elevated levels of activated and exhausted immune cells.
Additionally, PCS has been linked to long-lasting changes in innate (NK cells, LD neutrophils, and CXCR3+ monocytes) and adaptive (helper T cells, follicular T cells, and regulatory T cells) immune responses [176]. In a longer follow-up (24 months), Schultheiß et al. [177] found that 60% of patients with mild COVID-19 reported PCS, and they exhibited increased levels of IL-1β, IL-6, and TNFα, which may be released by overactive monocytes and/or macrophages. In conclusion, individuals with PCS have defective innate and adaptive immune responses, which suggests that the clinical symptoms of this condition are at the crossroad of autoinflammation and autoimmunity [90].
It is important to note that SARS-CoV-2 is not unique in its ability to produce post-viral symptomatology after acute infection. Musculoskeletal symptoms are a frequent manifestation following the resolution of acute viral infections and have been reported with other viral infections as well. Notably, hepatitis C and endemic alphaviruses, such as Ross River, Barmah Sindbis, Chikungunya, Forest, Mayaro, and O'nyong-nyong viruses have been implicated in the development of chronic arthritis. In contrast, coronaviruses (i.e., MERS-CoV and SARS-CoV-1) typically result in arthralgia and myalgias, rather than chronic arthritis [178].
In addition, it has been observed that post-viral syndromes typically last for a duration of approximately six months [179]. However, in some cases, patients continue to experience persistent symptoms beyond this timeframe. This is particularly true in the case of PCS, which has been documented to persist for longer than one year in some patients [166]. The persistence of sequelae following COVID-19 infection appears to differentiate it from other viral infections, where symptoms tend to be transitory. In some cases, the prolonged presence of symptoms associated with COVID-19 can even give rise to overt autoimmune disorders. These observations underscore the unique nature of COVID-19 in its ability to trigger a protracted and potentially chronic disease course and emphasize the importance of continued research into the pathophysiological mechanisms underlying this condition.
The management of PCS focus on the treatment of coexisting conditions, as well as the optimization of organ-specific compromise [180,181]. However, similar to ADs, the administration of short-term glucocorticoids may ameliorate and reverse PCS [182]. In the former study, Utrero-Rico et al. [182] found that patients with PCS treated with a 4-day course of corticosteroids (prednisone, 30 mg/day) exhibited a reversal of Th1-predominance, augmentation in naïve and regulatory T cells, and decrease of the PD-1 exhaustion marker, and it was maintained after 4-month follow-up. On the other hand, given the evidence of persistent elevated levels of cytokines during PCS (e.g., TNF-α, IL-6, and IL-1β) [88], the study of anti-cytokine therapy warrant further attention. Such teraphies may have a significant effect on the persistent inflammatory state of PCS that is associated with clinical phenotypes.
4.1. Persistent latent autoimmunity following acute COVID-19
Autoantibodies persist after acute COVID-19, and latent PolyA increased over time in PCS (i.e., new-onset autoantibodies after infection) [88]. We demonstrated that latent autoimmunity (at least one positive autoantibody) and PolyA (more than one positive autoantibody) are found in 83% and 62% of PCS patients, respectively [183]. The most prevalent IgG autoantibodies (>10% for each antigen) were those against IL-2, CD8B, and thyroglobulin (Tg), with anti-IFNs being identified in 5–10% of individuals [183]. Moody et al. [184] confirmed our results in patients with PCS using a similar technique in a distinct cohort. They found that after eight months of recovery, the most prevalent IgG autoantibodies were against Calprotectin, CD4, β2GP1, IFN-α2, RNP/Sm, CENP-B, U1-snRNP-68, IFN- α, PM/Scl75, Vitronectin, Histone, IFN-β1, and SmD (>10% for each antigen). Interestingly, the positivity for Calprotectin was associated with better clinical outcomes in PCS.
In the same line, Lingel et al. [185] demonstrated that PCS patients exhibit persistence of latent autoantibodies for cyclic citrullinated peptides and anti-tissue transglutaminase up to 4–8 months of recovery. Antiphospholipid antibodies have also been described in patients with PCS [186,187]. Liu et al. [188] demonstrated a correlation between autoantibodies and the IgG immune response to SARS-CoV-2. This is consistent with our results in which autoantibodies highly correlated with anti-SARS-CoV-2 S1, S2, and RBD antibodies [183]. As explained above, Jaago et al. [136] found immune imprinting to S1 and S2 epitopes. In this line, the findings that levels of autoantibodies correlate with SARS-CoV-2 antibodies for S and RBD suggest that this phenomenon also takes place during the convalescent phase of the disease, supporting a persistent immune activation with repercussions on autoimmunity.
The spectrum of PCS includes neurological manifestations such as ME/CFS. Patients with mild to moderate acute COVID-19 who developed PCS exhibited high levels of antibodies targeting G-protein coupled receptors, and antibodies for ADRB2, STAB1, and ADRA2A were the strongest classifiers for PCS outcomes [189]. These autoantibodies correlate with the severity of symptoms and autonomic dysfunction measured by the Composite Autonomic Symptom Score 31 (COMPASS-31). These results resemble our previous results on autonomic function measured by COMPASS-31 as a classifier of the severity of PCS [166]. In addition, it suggests the role of autoantibodies in clinical phenotypes, likely through the production of de novo autoantibodies or the immune imprinting to previously recognized peptides via molecular mimicry.
Other autoantibodies have also been associated with symptom persistence after acute COVID-19. Son et al. [190], found that patients with PCS exhibited higher detectable ANAs three months after recovery (43% of total reactivities), with U1-snRNP and anti-SS-B/La antibodies associated with fatigue and dyspnea. Other autoantibodies were also found against ACE2, MDA5, CD255, SS-B/La, and PM/Scl-75. Interestingly, up to 30% of patients with reactivity to SmD1, PCNA, SSA/Ro60, SS-B/La, U1-snRNP, PMScl, Ku, and DFS70 remained positive after 12 months post-recovery. In addition, there were 12% of de novo reactivities after recovery, suggesting the formation of new-onset autoantibodies during this time [190].
The main drawback to confirming the relationship between SARS-CoV-2 and autoimmunity (i.e., causality) is the lack of individual patient data before the pandemic and may hinder the evaluation of latent autoimmunity following SARS-CoV-2 infeccion (See below section 4.2). Su et al. [191] suggested that many autoantibodies may be present before the onset of the disease, and such autoantibodies could be associated with the emergence of PCS. However, the clinical implication of such autoantibodies is unclear. Evidence indicates that latent autoimmunity may precede the appearance of ADs several years before clinical manifestations (i.e., overt autoimmunity), and several random factors are required for its emergence (e.g., environmental and genetics) [192]. It highlights the critical role of longitudinal studies in PCS to confirm the development or not of overt autoimmunity in the incoming years.
4.2. Overt autoimmunity following acute COVID-19
We have reported that 3% of patients clinically develop overt autoimmunity after eight months of follow-up [183]. Overt autoimmunity was characterized by SLE, Hashimoto's thyroiditis, and polymyositis. Additional case reports on autoimmune encephalitis [193], SLE [194,195], giant cell arteritis [196], Graves’ disease [197], vasculitis [198,199], transverse myelitis [200], idiopathic inflammatory myopathies [89], SSc [201], and adult-onset Still's disease [89] have also been reported. A summary of possible autoimmunity and autoinflammation following acute COVID-19 is found in Table 2 [194,195,197,[201], [202], [203], [204], [205], [206], [207], [208], [209], [210], [211], [212], [213], [214], [215], [216], [217], [218], [219], [220], [221], [222], [223], [224], [225], [226], [227], [228], [229], [230], [231], [232], [233], [234], [235], [236], [237], [238], [239], [240], [241], [242], [243]] [244].
Table 2.
Autoimmune diseases possibly triggered by SARS-CoV-2.
| Autoimmune/Autoinflammatory Diseases | References |
|---|---|
| Alopecia areata | [202,203] |
| Ankylosing spondylitis | [204] |
| Antiphospholipid syndrome | [[205], [206], [207]] |
| Autoimmune encephalitis | [208] |
| Autoimmune hemolytic anemia | [[209], [210], [211]] |
| Autoimmune limbic encephalitis | [212] |
| Autoimmune thyroid disease | [213,214,219] |
| Coeliac disease | [215] |
| Graves' disease | [197] |
| Guillain-Barré syndrome | [[216], [217], [218]] |
| Immune thrombocytopenic purpura | [220,221] |
| Inflammatory bowel disease | [222] |
| Miller-Fisher syndrome | [[223], [224], [225]] |
| Multiple sclerosis | [[226], [227], [228]] |
| Myasthenia gravis | [229] |
| Dermatomyositis | [230] |
| Polyneuritis cranialis | [224] |
| Polymyalgia rheumatica | [245] |
| Postural orthostatic tachycardia syndrome | [231,232] |
| Psoriatic arthritis | [233] |
| Psoriasis | [245] |
| Rheumatoid arthritis | [234,235] |
| Systemic lupus erythematosus | [194,195,236] |
| Systemic sclerosis | [201] |
| Type 1 diabetes mellitus | [[237], [238], [239]] |
| Vasculitis (i.e., Behcet's and Kawasaki) | [240,241] |
| Viral arthritis | [242,243] |
| Reactive arthritis | [244] |
A retrospective cohort study including around 4 million patients in the United States (888,463 cases and 2,926,016 controls) demonstrated that COVID-19 patients have higher odds of developing RA, SLE, ankylosing spondylitis, dermatopolymyositis, SSc, SS, mixed connective tissue disease, Behçet's disease, polymyalgia rheumatica, vasculitis, psoriasis, inflammatory bowel disease, celiac disease, and T1D [245]. It is tempting to speculate that patients who exhibit overt autoimmunity already had autoantibodies before acute COVID-19 since it may take many years for latent autoimmunity to become overt autoimmunity. Two additional matched cohort studies (still published as preprints) reported that SARS-CoV-2 infection is associated with an increased risk of developing new-onset autoimmune diseases after the acute phase of infection when compared with non-infected patients [246,247]. Thus, SARS-CoV-2 could accelerate the onset of autoimmunity. However, at the same time, acute COVID-19 could play a critical role in developing new-onset autoantibodies [85] and PCS [88].
5. Vaccination, SARS-CoV-2, and autoimmunity
Individuals receiving vaccines may rarely develop ADs. However, there is controversy about whether this is truly caused by vaccination or simply appears after vaccination as a coincidence [248]. Nearly 30.5 million doses of the AS03-adjuvanted A (H1N1) vaccine were distributed after a pandemic linked to the H1N1 strain [249]. This high number of doses distributed in a short time allowed the study of several adverse events associated with autoimmunity (e.g., narcolepsy, Guillain-Barré syndrome-GBS). There was an approximately 3-fold increased risk for GBS after vaccination following immunization with the H1N1 Influenza vaccine [250]. This has been attributed to the similarity between some influenza virus structural proteins and those found in myelin sheaths [29].
Narcolepsy is characterized by an excessive daytime sleepiness accompanied by impaired nocturnal sleep and hallucinations [251]. Although the pathogenesis of this disease is not clear, susceptibility with the inheritance of the MHC class II DQB1*06:02 gene, and the appearance of narcolepsy in mice injected with antibodies of narcoleptic patients, argue for a role of autoimmunity [252,253]. There was a significant increase in narcolepsy diagnosis after systematic vaccination with the AS03 vaccine in a population of Beijing, China. In 2015, Ahmed et al. [75] identified homology between the surface-exposed influenza nucleoprotein A and the extracellular domain of human HCRTR2, which are considered targets in the development of narcolepsy. In addition, antibodies derived from patients vaccinated with the pandemic Flu-vaccine demonstrated crossreactivity with these two structures. Thus, molecular mimicry appears to be one key factor in the development of narcolepsy secondary to the administration of the vaccine. These are just a few examples of vaccines associated with the development of overt ADs; other vaccines include those for hepatitis B virus (HBV) [[254], [255], [256], [257], [258], [259], [260]] and human papillomaviruses (HPV) [77,78,[261], [262], [263], [264]] (Table 1).
We conducted a meta-analysis of 928 case reports on the new onset and relapsing ADs following COVID-19 vaccination [90]. The majority were women (53.6%), with a median age of 48. The most common event was new-onset conditions in 81.5% of the cases. Myocarditis, immune thrombocytopenia, and GBS were the three most prevalent illnesses linked to new-onset events after vaccination. On the other hand, immune thrombocytopenia, psoriasis, IgA nephropathy, and SLE were the most prevalent conditions linked to relapse episodes. Interestingly, the first dosage was linked with new-onset events, whereas the second dose was related to the relapsing disease, and the events were presented after seven days of inoculation. Both new onset and relapsing ADs occurrences were linked to the mRNA-1273 SARS-CoV-2 vaccine, followed by Sinovac-CoronaVac and ChAdOx1 nCoV-19 vaccine (AZD1222) [90]. Whilst it is not possible to draw epidemiological causation from individual case reports, the findings of this meta-analysis may offer novel insights into the potential association between vaccination and autoimmunity. To establish a more conclusive relationship, further observational cohort studies are warranted.
As previously specified, the crossreactivity between SARS-CoV-2 proteome and other viruses could be related to vaccine efficacy but also implicated in developing new-onset autoimmunity or boosting pre-existing latent autoimmunity. The latter was demonstrated by Jaago et al. [136], in which pre-existing IgG reactivity to human proteins was associated with crossreactivity to S1 and S2 SARS-CoV-2 epitopes (See section 3.1). It has implications for vaccine development since crossreactive epitopes in naïve individuals should be considered in their design [136]. These regions are essential since they contain the RBD, the vaccine target for viral neutralization.
The BNT162b2 and mRNA-1273 vaccines have the same sequence for S protein. Some regions in their sequences differ from the native S SARS-CoV-2 protein to enhance the ability to induce protein production, but most of them correspond to synonymous changes [265]. When examining the S sequence, both vaccines contain the RRARSVAS peptide, which strongly binds to the HLA-B*27:05 allele, an HLA associated with autoimmunity, with a population coverage below 6% [30]. This suggest that vaccines harbour peptides that could induce autoreactivity in susceptible individuals, but the risk is low.
A neutralizing B-cell epitope of the SARS-CoV-2 surface glycoprotein contains the RRARSVAS peptide [266]. This peptide is close to the motif that gives the S protein its superantigenicity. The S SARS-CoV-2 T-cell epitopes contain this peptide sequence as well. These T-cell epitopes have been shown to bind to various HLAs, including those HLA-B*08:01 and HLA-B*07:02 linked to ADs [267]. It is also known that the DEDDSEPV binds to several HLAs, including those linked to ADs (i.e., HLA-B*27:05 and HLA-C*08:01) [268]. In addition, the S1 and S2 subunits discovered by Jaago and collaborators [136] are conserved in these vaccines (i.e., BNT162b2 and mRNA-1273), thus suggesting that these regions could be related to the emergence of latent autoimmunity or acceleration of overt autoimmunity onset after vaccination via molecular mimicry. This evidence is homologous to Sinovac-CoronaVac and AZD1222 vaccines, which harbor the highest reported frequency of overt autoimmunity following vaccination and exhibit the same S peptide sequence [90].
Although there have been sporadic reports of ADs developing following COVID-19 vaccination, it should be emphasized that such occurrences are infrequent and that the benefits of vaccination substantially outweigh any risks. Nevertheless, continuous monitoring of the vaccine's safety and the identification of any potential side effects is crucial. This is of particular importance, given the intricate web of environmental factors associated with ADs development, which renders the determination of causation complex. Consequently, more research is needed to better understand the relationship between COVID-19 vaccination and the development of ADs.
6. Conclusions
Molecular mimicry is the most suspicious culprit incriminated into the pathophysiology of autoimmunity in the time of COVID. Further studies confirming evidence on animal models, as well as confirmation of longitudinal cohorts in humans, will provide definitive evidence of molecular mimicry in the development of autoimmunity by SARS-CoV-2. The mechanisms underlying molecular mimicry-based cross-reactivity are intricate and incorporate both genetic and environmental factors. Tridimensional structure, molecular docking, and affinity for pathogenic HLA peptides are new factors in the study of molecular mimicry. These new approaches and techniques will provide further information for optimal vaccine development in the current pandemic and those to come.
Author contributions
MR, MH, CRS, PSCL, JMA, WMR, and MEG wrote, reviewed, and revised the manuscript. All authors contributed to the article and approved the submitted version.
References
- 1.Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol. 2023 Feb;80:102266. doi: 10.1016/j.coi.2022.102266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Lerner A., Jeremias P., Matthias T. The world incidence and prevalence of autoimmune diseases is increasing. Int. J. Celiac Dis. 2015;3:51–155. doi: 10.12691/ijcd-3-4-8. [DOI] [Google Scholar]
- 3.Anaya J.M. The autoimmune tautology. Arthritis Res. Ther. 2010;12:147. doi: 10.1186/ar3175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Rojas M., Restrepo-Jiménez P., Monsalve D.M., Pacheco Y., Acosta-Ampudia Y., Ramírez-Santana C., Leung P.S.C., Ansari A.A., Gershwin M.E., Anaya J.-M. Molecular mimicry and autoimmunity. J. Autoimmun. 2018;95:100–123. doi: 10.1016/j.jaut.2018.10.012. [DOI] [PubMed] [Google Scholar]
- 5.Zabriskie J.B., Freimer E.H. An immunological relationship between the group. A streptococcus and mammalian muscle. J. Exp. Med. 1966;124:661–678. doi: 10.1084/jem.124.4.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Trost B., Lucchese G., Stufano A., Bickis M., Kusalik A., Kanduc D. No human protein is exempt from bacterial motifs, not even one. Self Nonself. 2010;1:328–334. doi: 10.4161/self.1.4.13315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Kohm A.P., Fuller K.G., Miller S.D. Mimicking the way to autoimmunity: an evolving theory of sequence and structural homology. Trends Microbiol. 2003;11:101–105. doi: 10.1016/s0966-842x(03)00006-4. [DOI] [PubMed] [Google Scholar]
- 8.Lule S., Colpak A.I., Balci-Peynircioglu B., Gursoy-Ozdemir Y., Peker S., Kalyoncu U., Can A., Tekin N., Demiralp D., Dalkara T. Behcet Disease serum is immunoreactive to neurofilament medium which share common epitopes to bacterial HSP-65, a putative trigger. J. Autoimmun. 2017;84:87–96. doi: 10.1016/j.jaut.2017.08.002. [DOI] [PubMed] [Google Scholar]
- 9.Negi S., Singh H., Mukhopadhyay A. Gut bacterial peptides with autoimmunity potential as environmental trigger for late onset complex diseases: in-silico study. PLoS One. 2017;12 doi: 10.1371/journal.pone.0180518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Kanduc D. Peptide cross-reactivity: the original sin of vaccines. Front. Biosci. 2012;4:1393–1401. doi: 10.2741/s341. [DOI] [PubMed] [Google Scholar]
- 11.Pacheco Y., Acosta-Ampudia Y., Monsalve D.M., Chang C., Gershwin M.E., Anaya J.-M. Bystander activation and autoimmunity. J. Autoimmun. 2019;103 doi: 10.1016/j.jaut.2019.06.012. [DOI] [PubMed] [Google Scholar]
- 12.Auger I., Balandraud N., Massy E., Hemon M.F., Peen E., Arnoux F., Mariot C., Martin M., Lafforgue P., Busnel J.M., Roudier J. Peptidylarginine deiminase autoimmunity and the development of anti-citrullinated protein antibody in rheumatoid arthritis: the hapten-carrier model. Arthritis Rheumatol. 2020;72:903–911. doi: 10.1002/ART.41189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Choi J., Selmi C., Leung P.S., Kenny T.P., Roskams T., Gershwin M.E. Chemokine and chemokine receptors in autoimmunity: the case of primary biliary cholangitis. Expet Rev. Clin. Immunol. 2016;12:661–672. doi: 10.1586/1744666X.2016.1147956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Doherty D.G. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J. Autoimmun. 2016;66:60–75. doi: 10.1016/j.jaut.2015.08.020. [DOI] [PubMed] [Google Scholar]
- 15.Kerkar N., Yanni G. “De novo” and “recurrent” autoimmune hepatitis after liver transplantation: a comprehensive review. J. Autoimmun. 2016;66:17–24. doi: 10.1016/j.jaut.2015.08.017. [DOI] [PubMed] [Google Scholar]
- 16.Kuhn C., Besancon A., Lemoine S., You S., Marquet C., Candon S., Chatenoud L. Regulatory mechanisms of immune tolerance in type 1 diabetes and their failures. J. Autoimmun. 2016;71:69–77. doi: 10.1016/j.jaut.2016.05.002. [DOI] [PubMed] [Google Scholar]
- 17.Morell M., Varela N., Maranon C. Myeloid populations in systemic autoimmune diseases. Clin. Rev. Allergy Immunol. 2017;53:198–218. doi: 10.1007/s12016-017-8606-7. [DOI] [PubMed] [Google Scholar]
- 18.Riemann M., Andreas N., Fedoseeva M., Meier E., Weih D., Freytag H., Schmidt-Ullrich R., Klein U., Wang Z.Q., Weih F. Central immune tolerance depends on crosstalk between the classical and alternative NF-kappaB pathways in medullary thymic epithelial cells. J. Autoimmun. 2017;81:56–67. doi: 10.1016/j.jaut.2017.03.007. [DOI] [PubMed] [Google Scholar]
- 19.Webb G.J., Hirschfield G.M., Lane P.J. OX40, OX40L and autoimmunity: a comprehensive review. Clin. Rev. Allergy Immunol. 2016;50:312–332. doi: 10.1007/s12016-015-8498-3. [DOI] [PubMed] [Google Scholar]
- 20.Xie Y.Q., Ma H.D., Lian Z.X. Epigenetics and primary biliary cirrhosis: a comprehensive review and implications for autoimmunity. Clin. Rev. Allergy Immunol. 2016;50:390–403. doi: 10.1007/s12016-015-8502-y. [DOI] [PubMed] [Google Scholar]
- 21.Cusick M.F., Libbey J.E., Fujinami R.S. Molecular mimicry as a mechanism of autoimmune disease. Clin. Rev. Allergy Immunol. 2012;42:102–111. doi: 10.1007/S12016-011-8294-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Yamamoto E.A., Jørgensen T.N. Relationships between vitamin D, gut microbiome, and systemic autoimmunity. Front. Immunol. 2020;10 doi: 10.3389/FIMMU.2019.03141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Ray D., Yung R. Immune senescence, epigenetics and autoimmunity. Clin. Immunol. 2018;196:59–63. doi: 10.1016/J.CLIM.2018.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Yuki N. Ganglioside mimicry and peripheral nerve disease. Muscle Nerve. 2007;35:691–711. doi: 10.1002/mus.20762. [DOI] [PubMed] [Google Scholar]
- 25.Peterson L.K., Fujijami R.S. In: Autoantibodies. Shoenfeld M.E., Gershwin M.E., editors. Elsevier; Burlington: 2007. Molecular mimicry. [Google Scholar]
- 26.Guarneri F., Guarneri C., Benvenga S. Helicobacter pylori and autoimmune pancreatitis: role of carbonic anhydrase via molecular mimicry? J. Cell Mol. Med. 2005;9:741–744. doi: 10.1111/j.1582-4934.2005.tb00506.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Lang H.L., Jacobsen H., Ikemizu S., Andersson C., Harlos K., Madsen L., Hjorth P., Sondergaard L., Svejgaard A., Wucherpfennig K., Stuart D.I., Bell J.I., Jones E.Y., Fugger L. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 2002;3:940–943. doi: 10.1038/ni835. [DOI] [PubMed] [Google Scholar]
- 28.Soderberg C., Larsson S., Rozell B.L., Sumitran-Karuppan S., Ljungman P., Moller E. Cytomegalovirus-induced CD13-specific autoimmunity--a possible cause of chronic graft-vs-host disease. Transplantation. 1996;61:600–609. doi: 10.1097/00007890-199602270-00015. [DOI] [PubMed] [Google Scholar]
- 29.Rodríguez Y., Rojas M., Pacheco Y., Acosta-Ampudia Y., Ramírez-Santana C., Monsalve D.M., Gershwin M.E., Anaya J.-M. Guillain-Barré syndrome, transverse myelitis and infectious diseases. Cell. Mol. Immunol. 2018;15:547–562. doi: 10.1038/cmi.2017.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Karami Fath M., Jahangiri A., Ganji M., Sefid F., Payandeh Z., Hashemi Z.S., Pourzardosht N., Hessami A., Mard-Soltani M., Zakeri A., Rahbar M.R., Khalili S. SARS-CoV-2 proteome harbors peptides which are able to trigger autoimmunity responses: implications for infection, vaccination, and population coverage. Front. Immunol. 2021;12 doi: 10.3389/FIMMU.2021.705772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Tam C.C., O'Brien S.J., Petersen I., Islam A., Hayward A., Rodrigues L.C. Guillain-Barre syndrome and preceding infection with campylobacter, influenza and Epstein-Barr virus in the general practice research database. PLoS One. 2007;2:e344. doi: 10.1371/journal.pone.0000344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Ehser J., Holdener M., Christen S., Bayer M., Pfeilschifter J.M., Hintermann E., Bogdanos D., Christen U. Molecular mimicry rather than identity breaks T-cell tolerance in the CYP2D6 mouse model for human autoimmune hepatitis. J. Autoimmun. 2013;42:39–49. doi: 10.1016/J.JAUT.2012.11.001. [DOI] [PubMed] [Google Scholar]
- 33.Kerkar N., Choudhuri K., Ma Y., Mahmoud A., Bogdanos D.P., Muratori L., Bianchi F., Williams R., Mieli-Vergani G., Vergani D. Cytochrome P4502D6(193-212): a new immunodominant epitope and target of virus/self cross-reactivity in liver kidney microsomal autoantibody type 1-positive liver disease. J. Immunol. 2003;170:1481–1489. doi: 10.4049/JIMMUNOL.170.3.1481. [DOI] [PubMed] [Google Scholar]
- 34.Benvenga S., Guarneri F. Molecular mimicry and autoimmune thyroid disease. Rev. Endocr. Metab. Disord. 2016;17:485–498. doi: 10.1007/S11154-016-9363-2. [DOI] [PubMed] [Google Scholar]
- 35.Gulamhusein A.F., Hirschfield G.M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat. Rev. Gastroenterol. Hepatol. 2020;17:93–110. doi: 10.1038/S41575-019-0226-7. [DOI] [PubMed] [Google Scholar]
- 36.Quaglia M., Merlotti G., de Andrea M., Borgogna C., Cantaluppi V. Viral infections and systemic lupus erythematosus: new players in an old story. Viruses. 2021;13 doi: 10.3390/V13020277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Lunardi C., Bason C., Navone R., Millo E., Damonte G., Corrocher R., Puccetti A. Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat. Med. 2000;6:1183–1186. doi: 10.1038/80533. [DOI] [PubMed] [Google Scholar]
- 38.Pastano R., Dell’agnola C., Bason C., Gigli F., Rabascio C., Puccetti A., Tinazzi E., Cetto G., Peccatori F., Martinelli G., Lunardi C. Antibodies against human cytomegalovirus late protein UL94 in the pathogenesis of scleroderma-like skin lesions in chronic graft-versus-host disease. Int. Immunol. 2012;24:583–591. doi: 10.1093/INTIMM/DXS061. [DOI] [PubMed] [Google Scholar]
- 39.Hiemstra H.S., Schloot N.C., van Veelen P.A., Willemen S.J.M., Franken K.L.M.C., van Rood J.J., de Vries R.R.P., Chaudhuri A., Behan P.O., Drijfhout J.W., Roep B.O. Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase. Proc. Natl. Acad. Sci. U. S. A. 2001;98:3988–3991. doi: 10.1073/PNAS.071050898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Dittfeld A., Gwizdek K., Michalski M., Wojnicz R. A possible link between the Epstein-Barr virus infection and autoimmune thyroid disorders. Cent. Eur. J. Immunol. 2016;41:297–301. doi: 10.5114/CEJI.2016.63130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Nagata K., Kumata K., Nakayama Y., Satoh Y., Sugihara H., Hara S., Matsushita M., Kuwamoto S., Kato M., Murakami I., Hayashi K. Epstein-barr virus lytic reactivation activates B cells polyclonally and induces activation-induced cytidine deaminase expression: a mechanism underlying autoimmunity and its contribution to Graves' disease. Viral Immunol. 2017;30:240–249. doi: 10.1089/VIM.2016.0179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Wucherpfennig K.W., Strominger J.L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995;80:695–705. doi: 10.1016/0092-8674(95)90348-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Cao Y., Goods B.A., Raddassi K., Nepom G.T., Kwok W.W., Love J.C., Hafler D.A. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci. Transl. Med. 2015;7 doi: 10.1126/SCITRANSLMED.AAA8038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Liu Z., Chu A. Sjögren’s syndrome and viral infections. Rheumatol Ther. 2021;8:1051–1059. doi: 10.1007/S40744-021-00334-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Barzilai O., Ram M., Shoenfeld Y. Viral infection can induce the production of autoantibodies. Curr. Opin. Rheumatol. 2007;19:636–643. doi: 10.1097/BOR.0B013E3282F0AD25. [DOI] [PubMed] [Google Scholar]
- 46.James J.A., Kaufman K.M., Farris A.D., Taylor-Albert E., Lehman T.J.A., Harley J.B. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J. Clin. Invest. 1997;100:3019–3026. doi: 10.1172/JCI119856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Poole B.D., Gross T., Maier S., Harley J.B., James J.A. Lupus-like autoantibody development in rabbits and mice after immunization with EBNA-1 fragments. J. Autoimmun. 2008;31:362–371. doi: 10.1016/J.JAUT.2008.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.James J.A., Harley J.B. Linear epitope mapping of an Sm B/B’ polypeptide. J. Immunol. 1992;148:2074. –9. [PubMed] [Google Scholar]
- 49.Hrknen T., Lankinen H., Davydova B., Hovi T., Roivainen M. Enterovirus infection can induce immune responses that cross-react with beta-cell autoantigen tyrosine phosphatase IA-2/IAR. J. Med. Virol. 2002;66:340–350. doi: 10.1002/JMV.2151. [DOI] [PubMed] [Google Scholar]
- 50.Maya R., Gershwin M.E., Shoenfeld Y. Hepatitis B virus (HBV) and autoimmune disease. Clin. Rev. Allergy Immunol. 2008;34:85–102. doi: 10.1007/S12016-007-8013-6. [DOI] [PubMed] [Google Scholar]
- 51.Haaheim L.R., Halse A.K., Kvakestad R., Stern B., Normann, Jonsson R. Serum antibodies from patients with primary Sjögren’s syndrome and systemic lupus erythematosus recognize multiple epitopes on the La(SS-B) autoantigen resembling viral protein sequences. Scand. J. Immunol. 1996;43:115–121. doi: 10.1046/J.1365-3083.1996.D01-2.X. [DOI] [PubMed] [Google Scholar]
- 52.Marceau G., Lapierre P., Béland K., Soudeyns H., Alvarez F. LKM1 autoantibodies in chronic hepatitis C infection: a case of molecular mimicry? Hepatology. 2005;42:675–682. doi: 10.1002/HEP.20816. [DOI] [PubMed] [Google Scholar]
- 53.Ferri C., Colaci M., Fallahi P., Ferrari S.M., Antonelli A., Giuggioli D. Thyroid involvement in hepatitis C virus-infected patients with/without mixed cryoglobulinemia. Front. Endocrinol. 2017;8 doi: 10.3389/FENDO.2017.00159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Ogishi M., Yotsuyanagi H., Moriya K., Koike K. Delineation of autoantibody repertoire through differential proteogenomics in hepatitis C virus-induced cryoglobulinemia. Sci. Rep. 2016;6 doi: 10.1038/SREP29532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Jakhmola S., Upadhyay A., Jain K., Mishra A., Jha H.C. Herpesviruses and the hidden links to Multiple Sclerosis neuropathology. J. Neuroimmunol. 2021;358 doi: 10.1016/j.jneuroim.2021.577636. [DOI] [PubMed] [Google Scholar]
- 56.Segal Y., Calabrò M., Kanduc D., Shoenfeld Y. Human papilloma virus and lupus: the virus, the vaccine and the disease. Curr. Opin. Rheumatol. 2017;29:331–342. doi: 10.1097/BOR.0000000000000398. [DOI] [PubMed] [Google Scholar]
- 57.Holdener M., Hintermann E., Bayer M., Rhode A., Rodrigo E., Hintereder G., Johnson E.F., Gonzalez F.J., Pfeilschifter J., Manns M.P., Herrath M.V.G., Christen U. Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J. Exp. Med. 2008;205:1409–1422. doi: 10.1084/JEM.20071859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Schwimmbeck P.L., Dyrberg T., Drachman D.B., Oldstone M.B.A. Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J. Clin. Invest. 1989;84:1174–1180. doi: 10.1172/JCI114282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Kerr J.R. The role of parvovirus B19 in the pathogenesis of autoimmunity and autoimmune disease. J. Clin. Pathol. 2016;69:279–291. doi: 10.1136/JCLINPATH-2015-203455. [DOI] [PubMed] [Google Scholar]
- 60.Ribeiro F.M., Gomez V.E., Albuquerque E.M.N., Klumb E.M., Shoenfeld Y. Lupus and leprosy: beyond the coincidence. Immunol. Res. 2015;61:160–163. doi: 10.1007/S12026-014-8596-Y. [DOI] [PubMed] [Google Scholar]
- 61.Gómez-Rial J., Rivero-Calle I., Salas A., Martinón-Torres F. Rotavirus and autoimmunity. J. Infect. 2020;81:183–189. doi: 10.1016/j.jinf.2020.04.041. [DOI] [PubMed] [Google Scholar]
- 62.Lucchese G., Kanduc D. Zika virus and autoimmunity: from microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun. Rev. 2016;15:801–808. doi: 10.1016/J.AUTREV.2016.03.020. [DOI] [PubMed] [Google Scholar]
- 63.Koga M., Gilbert M., Li J., Yuki N. Complex of GM1- and GD1a-like lipo-oligosaccharide mimics GM1b, inducing anti-GM1b antibodies. PLoS One. 2015;10 doi: 10.1371/JOURNAL.PONE.0124004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Ben-Smith A., Goodall J.C., Gaston J.S.H., Winer J.B. Stimulation of peripheral blood lymphocytes with Campylobacter jejuni generates a gammadelta T cell response in patients with Guillain-Barrésyndrome. Clin. Exp. Immunol. 1997;109:121–126. doi: 10.1046/J.1365-2249.1997.4221318.X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Fussey S.P.M., Ali S.T., Guest J.R., James O.F.W., Bassendine M.F., Yeaman S.J. Reactivity of primary biliary cirrhosis sera with Escherichia coli dihydrolipoamide acetyltransferase (E2p): characterization of the main immunogenic region. Proc. Natl. Acad. Sci. U. S. A. 1990;87:3987–3991. doi: 10.1073/PNAS.87.10.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Fussey S.P., Lindsay J.G., Fuller C., Perham R.N., Dale S., James O.F., Bassendine M.F., Yeaman S.J. Autoantibodies in primary biliary cirrhosis: analysis of reactivity against eukaryotic and prokaryotic 2-oxo acid dehydrogenase complexes. Hepatology. 1991;13:467–474. [PubMed] [Google Scholar]
- 67.Albani S., Keystone E.C., Nelson J.L., Ollier W.E.R., la Cava A., Montemayor A.C., Weber D.A., Montecucco C., Martini A., Carson D.A. Positive selection in autoimmunity: abnormal immune responses to a bacterial dnaJ antigenic determinant in patients with early rheumatoid arthritis. Nat. Med. 1995;1:448–452. doi: 10.1038/NM0595-448. [DOI] [PubMed] [Google Scholar]
- 68.Lundberg K., Kinloch A., Fisher B.A., Wegner N., Wait R., Charles P., Mikuls T.R., Venables P.J. Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis Rheum. 2008;58:3009–3019. doi: 10.1002/ART.23936. [DOI] [PubMed] [Google Scholar]
- 69.Christopoulos G., Christopoulou V., Routsias J.G., Babionitakis A., Antoniadis C., Vaiopoulos G. Greek rheumatoid arthritis patients have elevated levels of antibodies against antigens from Proteus mirabilis. Clin. Rheumatol. 2017;36:527–535. doi: 10.1007/S10067-016-3441-4. [DOI] [PubMed] [Google Scholar]
- 70.Heyma P., Harrison L.C. Precipitation of the thyrotropin receptor and identification of thyroid autoantigens using Grave's disease immunoglobulins. J. Clin. Invest. 1984;74:1090–1097. doi: 10.1172/JCI111476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Zhang H., Kaur I., Niesel D.W., Seetharamaiah G.S., Peterson J.W., Justement L.B., Prabhakar B.S., Klimpel G.R. Yersinia enterocolitica envelope proteins that are crossreactive with the thyrotropin receptor (TSHR) also have B-cell mitogenic activity. J. Autoimmun. 1996;9:509–516. doi: 10.1006/JAUT.1996.0068. [DOI] [PubMed] [Google Scholar]
- 72.Portnyagina O., Zelepuga E., Khomenko V., Solov’eva E., Solov’eva T., Novikova O. In silico and in vitro analysis of cross-reactivity between Yersinia pseudotuberculosis OmpF porin and thyroid-stimulating hormone receptor. Int. J. Biol. Macromol. 2018;107:2484–2491. doi: 10.1016/J.IJBIOMAC.2017.10.133. [DOI] [PubMed] [Google Scholar]
- 73.Múnera M., Farak J., Pérez M., Rojas J., Villero J., Sánchez A., Sánchez J., Emiliani Y. Prediction of molecular mimicry between antigens from Leishmania sp. and human: implications for autoimmune response in systemic lupus erythematosus. Microb. Pathog. 2020;148 doi: 10.1016/j.micpath.2020.104444. [DOI] [PubMed] [Google Scholar]
- 74.Emiliani Y., Muzi G., Sánchez A., Sánchez J., Munera M. Prediction of molecular mimicry between proteins from Trypanosoma sp. and human antigens associated with systemic lupus erythematosus. Microb. Pathog. 2022;172 doi: 10.1016/J.MICPATH.2022.105760. [DOI] [PubMed] [Google Scholar]
- 75.Ahmed S.S., Volkmuth W., Duca J., Corti L., Pallaoro M., Pezzicoli A., Karle A., Rigat F., Rappuoli R., Narasimhan V., Julkunen I., Vuorela A., Vaarala O., Nohynek H., Pasini F.L., Montomoli E., Trombetta C., Adams C.M., Rothbard J., Steinman L. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci. Transl. Med. 2015;7 doi: 10.1126/SCITRANSLMED.AAB2354. [DOI] [PubMed] [Google Scholar]
- 76.Nachamkin I., Liu J., Li M., Ung H., Moran A.P., Prendergast M.M., Sheikh K. Campylobacter jejuni from patients with Guillain-Barré syndrome preferentially expresses a GD(1a)-like epitope. Infect. Immun. 2002;70:5299–5303. doi: 10.1128/IAI.70.9.5299-5303.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Kanduc D. Potential cross-reactivity between HPV16 L1 protein and sudden death-associated antigens. J. Exp. Therapeut. Oncol. 2011;9:159–165. [PubMed] [Google Scholar]
- 78.Segal Y., Dahan S., Calabrò M., Kanduc D., Shoenfeld Y. HPV and systemic lupus erythematosus: a mosaic of potential crossreactions. Immunol. Res. 2017;65:564–571. doi: 10.1007/S12026-016-8890-Y. [DOI] [PubMed] [Google Scholar]
- 79.Huh J.Y., Yi D.Y., Hwang S.G., Choi J.J., Kang M.S. Characterization of antiphospholipid antibodies in chronic hepatitis B infection. Korean J Hematol. 2011;46:36–40. doi: 10.5045/KJH.2011.46.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Faure E. Multiple sclerosis and hepatitis B vaccination: could minute contamination of the vaccine by partial hepatitis B virus polymerase play a role through molecular mimicry? Med. Hypotheses. 2005;65:509–520. doi: 10.1016/J.MEHY.2005.02.044. [DOI] [PubMed] [Google Scholar]
- 81.Mehdi H., Naqvi A., Kamboh M.I. Recombinant hepatitis B surface antigen and anionic phospholipids share a binding region in the fifth domain of beta2-glycoprotein I (apolipoprotein H) Biochim. Biophys. Acta. 2008;1782:163–168. doi: 10.1016/J.BBADIS.2008.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Peng B., Temple B.R., Yang J., Geng S., Culton D.A., Qian Y. Identification of a primary antigenic target of epitope spreading in endemic pemphigus foliaceus. J. Autoimmun. 2021;116 doi: 10.1016/J.JAUT.2020.102561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Buendía E., Marlon M., Parra O., Sánchez M., Sánchez A., Sánchez J., Viasus D. Human Proteinase 3, an important autoantigen of c-ANCA associated vasculitis. shares cross-reactive epitopes with serine protease allergens from mites: An in silico analysis. 2022:F1000Res. doi: 10.12688/F1000RESEARCH.28225.2/. 10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Lünemann J.D., Jelčić I., Roberts S., Lutterotti A., Tackenberg B., Martin R., Münz C. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J. Exp. Med. 2008;205:1763–1773. doi: 10.1084/JEM.20072397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Chang S.E., Feng A., Meng W., Apostolidis S.A., Mack E., Artandi M., Barman L., Bennett K., Chakraborty S., Chang I., Cheung P., Chinthrajah S., Dhingra S., Do E., Finck A., Gaano A., Geßner R., Giannini H.M., Gonzalez J., Greib S., Gündisch M., Hsu A.R., Kuo A., Manohar M., Mao R., Neeli I., Neubauer A., Oniyide O., Powell A.E., Puri R., Renz H., Schapiro J.M., Weidenbacher P.A., Wittman R., Ahuja N., Chung H.-R., Jagannathan P., James J., Kim P.S., Meyer N.J., Nadeau K., Radic M., Robinson W.H., Singh U., Wang T.T., Wherry E.J., Skevaki C., Prak E.T.L., Utz P.J. New-onset IgG autoantibodies in hospitalized patients with COVID-19. medRxiv. 2021 doi: 10.1101/2021.01.27.21250559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Anaya J.M., Monsalve D.M., Rojas M., Rodríguez Y., Montoya-García N., Mancera-Navarro L.M., Villadiego-Santana A.M., Rodríguez-Leguizamón G., Acosta-Ampudia Y., Ramírez-Santana C. Latent rheumatic, thyroid and phospholipid autoimmunity in hospitalized patients with COVID-19. J Transl Autoimmun. 2021;4 doi: 10.1016/J.JTAUTO.2021.100091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Bastard P., Gervais A., le Voyer T., Rosain J., Philippot Q., Manry J., Michailidis E., Hoffmann H.H., Eto S., Garcia-Prat M., Bizien L., Parra-Martínez A., Yang R., Haljasmägi L., Migaud M., Särekannu K., Maslovskaja J., de Prost N., Tandjaoui-Lambiotte Y., Luyt C.E., Amador-Borrero B., Gaudet A., Poissy J., Morel P., Richard P., Cognasse F., Troya J., Trouillet-Assant S., Belot A., Saker K., Garçon P., Rivière J.G., Lagier J.C., Gentile S., Rosen L.B., Shaw E., Morio T., Tanaka J., Dalmau D., Tharaux P.L., Sene D., Stepanian A., Megarbane B., Triantafyllia V., Fekkar A., Heath J.R., Franco J.L., Anaya J.M., Solé-Violán J., Imberti L., Biondi A., Bonfanti P., Castagnoli R., Delmonte O.M., Zhang Y., Snow A.L., Holland S.M., Biggs C.M., Moncada-Vélez M., Arias A.A., Lorenzo L., Boucherit S., Coulibaly B., Anglicheau D., Planas A.M., Haerynck F., Duvlis S., Nussbaum R.L., Ozcelik T., Keles S., Bousfiha A.A., el Bakkouri J., Ramirez-Santana C., Paul S., Pan-Hammarström Q., Hammarström L., Dupont A., Kurolap A., Metz C.N., Aiuti A., Casari G., Lampasona V., Ciceri F., Barreiros L.A., Dominguez-Garrido E., Vidigal M., Zatz M., van de Beek D., Sahanic S., Tancevski I., Stepanovskyy Y., Boyarchuk O., Nukui Y., Tsumura M., Vidaur L., Tangye S.G., Burrel S., Duffy D., Quintana-Murci L., Klocperk A., Kann N.Y., Shcherbina A., Lau Y.L., Leung D., Coulongeat M., Marlet J., Koning R., Reyes L.F., Chauvineau-Grenier A., Venet F., Monneret G., Nussenzweig M.C., Arrestier R., Boudhabhay I., Baris-Feldman H., Hagin D., Wauters J., Meyts I., Dyer A.H., Kennelly S.P., Bourke N.M., Halwani R., Sharif-Askari N.S., Dorgham K., Sallette J., Sedkaoui S.M., AlKhater S., Rigo-Bonnin R., Morandeira F., Roussel L., Vinh D.C., Ostrowski S.R., Condino-Neto A., Prando C., Bondarenko A., Spaan A.N., Gilardin L., Fellay J., Lyonnet S., Bilguvar K., Lifton R.P., Mane S., Anderson M.S., Boisson B., Béziat V., Zhang S.Y., Andreakos E., Hermine O., Pujol A., Peterson P., Mogensen T.H., Rowen L., Mond J., Debette S., de Lamballerie X., Duval X., Mentré F., Zins M., Soler-Palacin P., Colobran R., Gorochov G., Solanich X., Susen S., Martinez-Picado J., Raoult D., Vasse M., Gregersen P.K., Piemonti L., Rodríguez-Gallego C., Notarangelo L.D., Su H.C., Kisand K., Okada S., Puel A., Jouanguy E., Rice C.M., Tiberghien P., Zhang Q., Cobat A., Abel L., Casanova J.L., Alavoine L., Behillil S., Burdet C., Charpentier C., Dechanet A., Descamps D., Ecobichon J.L., Enouf V., Frezouls W., Houhou N., Kafif O., Lehacaut J., Letrou S., Lina B., Lucet J.C., Manchon P., Nouroudine M., Piquard V., Quintin C., Thy M., Tubiana S., van der Werf S., Vignali V., Visseaux B., Yazdanpanah Y., Chahine A., Waucquier N., Migaud M.C., Deplanque D., Djossou F., Mergeay-Fabre M., Lucarelli A., Demar M., Bruneau L., Gerardin P., Maillot A., Payet C., Laviolle B., Laine F., Paris C., Desille-Dugast M., Fouchard J., Malvy D., Nguyen D., Pistone T., Perreau P., Gissot V., le Goas C., Montagne S., Richard L., Chirouze C., Bouiller K., Desmarets M., Meunier A., Lefevre B., Jeulin H., Legrand K., Lomazzi S., Tardy B., Gagneux-Brunon A., Bertholon F., Botelho-Nevers E., Christelle K., Nicolas L., Roufai L., Amat K., Couffin-Cadiergues S., Esperou H., Hendou S., Townsend L., Cheallaigh C.N., Bergin C., Martin-Loeches I., Dunne J., Conlon N., O'Farrelly C., Abad J., Accordino G., Achille C., Aguilera-Albesa S., Aguilo-Cucurull A., Ozkan E.A., Darazam I.A., Albisures J.A.R., Aldave J.C., Ramos M.A., Khan T.A., Aliberti A., Nadji S.A., Alkan G., AlKhater S.A., Allardet-Servent J., Allende L.M., Alonso-Arias R., Alshahrani M.S., Alsina L., Alyanakian M.A., Amoura Z., Antoli A., Aubart M., Auguet T., Avramenko I., Aytekin G., Azot A., Bahram S., Bajolle F., Baldanti F., Baldolli A., Ballester M., Feldman H.B., Barrou B., Barzaghi F., Basso S., Bayhan G.I., Bezrodnik L., Bilbao A., Blanchard-Rohner G., Blanco I., Blandinieres A., Blazquez-Gamero D., Bleibtreu A., Bloomfield M., Bolivar-Prados M., Borghesi A., Borie R., Botdhlo-Nevers E., Bousquet A., Boutolleau D., Bouvattier C., Bravais J., Briones M.L., Brunner M.E., Bruno R., Bueno M.R.P., Bukhari H., Bustamante J., Agra J.J.C., Capra R., Carapito R., Carrabba M., Casasnovas C., Caseris M., Cassaniti I., Castelle M., Castelli F., de Vera M.C., Castro M.v., Catherinot E., Celik J.B., Ceschi A., Chalumeau M., Charbit B., Cheng M.P., Clave P., Clotet B., Codina A., Cohen Y., Comarmond C., Combes A., Comoli P., Corsico A.G., Coşkuner T., Cvetkovski A., Cyrus C., Danion F., Darley D.R., Das V., Dauby N., Dauger S., de Munter P., de Pontual L., Dehban A., Delplancq G., Demoule A., Desguerre I., di Sabatino A., Diehl J.L., Dobbelaere S., Dubost C., Ekwall O., Bozdemir Ş.E., Elnagdy M.H., Emiroglu M., Endo A., Erdeniz E.H., Aytekin S.E., Lasa M.P.E., Euvrard R., Fabio G., Faivre L., Falck A., Fartoukh M., Faure M., Arquero M.F., Ferrer R., Ferreres J., Flores C., Francois B., Fumado V., Fung K.S.C., Fusco F., Gagro A., Solis B.G., Gaussem P., Gayretli Z., Gil-Herrera J., Gatineau A.G., Girona-Alarcon M., Godinez K.A.C., Goffard J.C., Gonzales N., Gonzalez-Granado L.I., Gonzalez-Montelongo R., Guerder A., Gulhan B., Gumucio V.D., Hanitsch L.G., Gunst J., Gut M., Hadjadj J., Hancerli S., Hariyan T., Hatipoglu N., Heppekcan D., Hernandez-Brito E., Ho P.K., Holanda-Pena M.S., Horcajada J.P., Hraiech S., Humbert L., Hung I.F.N., Iglesias A.D., Inigo-Campos A., Jamme M., Arranz M.J., Jimeno M.T., Jordan I., Kanik-Yuksek S., Kara Y.B., Karahan A., Karbuz A., Yasar K.K., Kasapcopur O., Kashimada K., Demirkol Y.K., Kido Y., Kizil C., Kilic A.O., Koutsoukou A., Krol Z.J., Ksouri H., Kuentz P., Kwan A.M.C., Kwan Y.W.M., Kwok J.S.Y., Lam D.S.Y., Lampropoulou V., Lanternier F., le Bourgeois F., Leo Y.S., Lopez R.L., Levin M., Levy M., Levy R., Li Z., Lilleri D., Lima E.J.A.B., Linglart A., Lopez-Collazo E., Lorenzo-Salazar J.M., Louapre C., Lubetzki C., Lung K.C., Lye D.C., Magnone C., Mansouri D., Marchioni E., Marioli C., Marjani M., Marques L., Pereira J.M., Martin-Nalda A., Pueyo D.M., Marzana I., Mata-Martinez C., Mathian A., Matos L.R.B., Matthews G.v., Mayaux J., McLaughlin-Garcia R., Meersseman P., Mege J.L., Mekontso-Dessap A., Melki I., Meloni F., Meritet J.F., Merlani P., Akcan O.M., Mezidi M., Migeotte I., Millereux M., Million M., Mirault T., Mircher C., Mirsaeidi M., Mizoguchi Y., Modi B.P., Mojoli F., Moncomble E., Melian A.M., Martinez A.M., Morange P.E., Mordacq C., Morelle G., Mouly S.J., Munoz-Barrera A., Nafati C., Nagashima S., Nakagama Y., Neven B., Neves J.F., Ng L.F.P., Ng Y.Y., Nielly H., Medina Y.N., Cuadros E.N., Ocejo-Vinyals J.G., Okamoto K., Oualha M., Ouedrani A., Ozkaya-Parlakay A., Pagani M., Papadaki M., Parizot C., Parola P., Pascreau T., Paz-Artal E., Pedraza S., Pellecer N.C.G., Pellegrini S., de Diego R.P., Perez-Fernandez X.L., Philippe A., Picod A., de Chambrun M.P., Piralla A., Planas-Serra L., Ploin D., Poncelet G., Poulakou G., Pouletty M.S., Pourshahnazari P., Qiu-Chen J.L., Quentric P., Rambaud T., Raoult V., Rebillat A.S., Redin C., Resmini L., Ricart P., Richard J.C., Rivet N., Rocamora-Blanch G., Rodero M.P., Rodrigo C., Rodriguez L.A., Rodriguez-Palmero A., Romero C.S., Rothenbuhler A., Roux D., Rovina N., Rozenberg F., Ruch Y., Ruiz M., del Prado M.Y.R., Ruiz-Rodriguez J.C., Sabater-Riera J., Saks K., Salagianni M., Sanchez O., Sanchez-Montalva A., Sanchez-Ramon S., Schidlowski L., Schluter A., Schmidt J., Schmidt M., Schuetz C., Schweitzer C.E., Scolari F., Sediva A., Seijo L., Seminario A.G., Seng P., Senoglu S., Seppanen M., Llovich A.S., Shahrooei M., Siguret V., Siouti E., Smadja D.M., Smith N., Sobh A., Soler C., Sozeri B., Stella G.M., Stepanovskiy Y., Stoclin A., Taccone F., Taupin J.L., Tavernier S.J., Terrier B., Thiery G., Thorball C., Thorn K., Thumerelle C., Tipu I., Tolstrup M., Tomasoni G., Toubiana J., Alvarez J.T., Tsang O.T.Y., Tserel L., Tso E.Y.K., Tucci A., Oz Ş.K.T., Ursini M.V., Utsumi T., Uzunhan Y., Vabres P., Valencia-Ramos J., van den Rym A.M., Vandernoot I., Velez-Santamaria V., Veliz S.P.Z., Vidigal M.C., Viel S., Vilain C., Vilaire-Meunier M.E., Villar-Garcia J., Vincent A., Vogt G., Voiriot G., Volokha A., Vuotto F., Wauters E., Wu A.K.L., Wu T.C., Yahşi A., Yesilbas O., Yildiz M., Young B.E., Yukselmiş U., Zecca M., Zuccaro V., van Praet J., Lambrecht B.N., van Braeckel E., Bosteels C., Hoste L., Hoste E., Bauters F., de Clercq J., Heijmans C., Slabbynck H., Naesens L., Florkin B., Boulanger C., Vanderlinden D., Allavena C., Andrejak C., Angoulvant F., Azoulay C., Bachelet D., Bartoli M., Basmaci R., Behillill S., Beluze M., Benech N., Benkerrou D., Bhavsar K., Bitker L., Bouadma L., Bouscambert-Duchamp M., Paz P.C., Cervantes-Gonzalez M., Chair A., Coelho A., Cordel H., Couffignal C., D'Ortenzio E., de Montmollin E., Debard A., Debray M.P., Desvallee M., Diallo A., Diouf A., Dorival C., Dubos F., Eloy P., Epaulard O., Esposito-Farase M., Etienne M., Garot D., Gault N., Gaymard A., Ghosn J., Gigante T., Gilg M., Goehringer F., Guedj J., Hoctin A., Hoffmann I., Houas I., Hulot J.S., Jaafoura S., Kaguelidou F., Kali S., Kerroumi Y., Khalil A., Khan C., Kimmoun A., Laouenan C., Laribi S., Le M., le Bris C., le Gac S., le Hingrat Q., le Mestre S., le Nagard H., Lemaignen A., Lemee V., Lescure F.X., Levy Y., Lingas G., Lucet J.C., MacHado M., Mambert M., Manuel A., Meziane A., Mouquet H., Mullaert J., Neant N., Noret M., Papadopoulos A., Paul C., Peiffer-Smadja N., Peigne V., Petrov-Sanchez V., Peytavin G., Pham H., Picone O., Puechal O., Rosa-Calatrava M., Rossignol B., Rossignol P., Roy C., Schneider M., Su R., Tardivon C., Tellier M.C., Teoule F., Terrier O., Timsit J.F., Tual C., Vanel N., Veislinger A., Wiedemann A., Danielson J.J., Dobbs K., Kashyap A., Ding L., Dalgard C.L., Sottini A., Quaresima V., Quiros-Roldan E., Rossi C., Bettini L.R., D'Angio M., Beretta I., Montagna D., Licari A., Marseglia G.L., Storgaard M., Jorgensen S., Al-Muhsen S., Al-Mulla F., Arias A.A., Bogunovic D., Bolze A., Brodin P., Bryceson Y., Bustamante C.D., Butte M.J., Chakravorty S., Christodoulou J., Constantinescu S.N., Cooper M.A., Desai M., Drolet B.A., el Baghdadi J., Espinosa-Padilla S., Froidure A., Henrickson S.E., Hsieh E.W.Y., Husebye E.S., Imai K., Itan Y., Jarvis E.D., Karamitros T., Ku C.L., Ling Y., Lucas C.L., Maniatis T., Marodi L., Milner J.D., Mironska K., Novelli A., Novelli G., Renia L., Resnick I., Sancho-Shimizu V., Seppanen M.R.J., Shahrooei M., Slaby O., Tayoun A.A., Ramaswamy S., Turvey S.E., Furkan Uddin K.M., Uddin M.J., von Bernuth H., Zawadzki P., Bigio B., de La Chapelle A., Chen J., Chrabieh M., Liu D., Nemirowskaya Y., Cruz I.M., Materna M., Pelet S., Seeleuthner Y., Thibault C., Liu Z., Foti G., Bellani G., Citerio G., Contro E., Pesci A., Valsecchi M.G., Cazzaniga M., Batten I., Reddy C., McElheron M., Noonan C., Connolly E., Fallon A., Erikstrup C., Pedersen O.B., Sorensen E., Mikkelsen S., Dinh K.M., Larsen M.A.H., Paulsen I.W., von Stemann J.H., Hansen M.B., Annereau J.P., Briseno-Roa L., Gribouval O., Pelet A., Alcover A., Aschard H., Bousso P., Bruhns P., Cerf-Bensussan N., Cumano A., D'Enfert C., Deriano L., Dillies M.A., di Santo J., Dromer F., Eberl G., Enninga J., Gomperts-Boneca I., Hasan M., Hedestam G.K., Hercberg S., Ingersoll M.A., Lantz O., Kenny R.A., Menager M., Michel F., Patin E., Pellegrini S., Rausell A., Rieux-Laucat F., Rogge L., Fontes M., Sakuntabhai A., Schwartz O., Schwikowski B., Shorte S., Tangy F., Toubert A., Touvier M., Ungeheuer M.N., Zimmer C., Albert M.L., van Agtmael M., Algera A.G., Appelman B., van Baarle F., Bax D., Beudel M., Bogaard H.J., Bomers M., Bonta P., Bos L., Botta M., de Brabander J., de Bree G., de Bruin S., Buis D.T.P., Bugiani M., Bulle E., Chouchane O., Cloherty A., Dijkstra M., Dongelmans D.A., Dujardin R.W.G., Elbers P., Fleuren L., Geerlings S., Geijtenbeek T., Girbes A., Goorhuis B., Grobusch M.P., Hafkamp F., Hagens L., Hamann J., Harris V., Hemke R., Hermans S.M., Heunks L., Hollmann M., Horn J., Hovius J.W., de Jong M.D., Lim E.H.T., van Mourik N., Nellen J., Nossent E.J., Paulus F., Peters E., Pina-Fuentes D.A.I., van der Poll T., Preckel B., Prins J.M., Raasveld J., Reijnders T., de Rotte M.C.F.J., Schinkel M., Schultz M.J., Schrauwen F.A.P., Schuurman A., Schuurmans J., Sigaloff K., Slim M.A., Smeele P., Smit M., Stijnis C.S., Stilma W., Teunissen C., Thoral P., Tsonas A.M., Tuinman P.R., van der Valk M., Veelo D., Volleman C., de Vries H., Vught L.A., van Vugt M., Wouters D., Zwinderman A.H., Brouwer M.C., Joost Wiersinga W., Vlaar A.P.J., Nadif R., Goldberg M., Ozguler A., Henny J., Lemonnier S., Coeuret-Pellicer M., le Got S., Tzourio C., Dufouil C., Soumare A., Lachaize M., Fievet N., Flaig A., Martin F., Bonneaudeau B., Cannet D., Gallian P., Jeanne M., Perroquin M., Hamzeh-Cognasse H. Autoantibodies neutralizing type I IFNs are present in ∼ 4% of uninfected individuals over 70 years old and account for ∼ 20% of COVID-19 deaths. Sci Immunol. 2021;6 doi: 10.1126/SCIIMMUNOL.ABL4340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Acosta-Ampudia Y., Monsalve D.M., Rojas M., Rodriguez Y., Zapata E., Ramirez-Santana C., Anaya J.M. Persistent autoimmune activation and proinflammatory state in post-coronavirus disease 2019 syndrome. J. Infect. Dis. 2022;225:2155–2162. doi: 10.1093/INFDIS/JIAC017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Gracia-Ramos A.E., Martin-Nares E., Hernández-Molina G. New onset of autoimmune diseases following COVID-19 diagnosis. Cells. 2021;10 doi: 10.3390/cells10123592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Rodríguez Y., Rojas M., Beltrán S., Polo F., Camacho-Domínguez L., Morales S.D., Gershwin M.E., Anaya J.M. Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review. J. Autoimmun. 2022;132 doi: 10.1016/J.JAUT.2022.102898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Reay P.A., Kantor R.M., Davis M.M. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93-103) J. Immunol. 1994;8 [PubMed] [Google Scholar]
- 92.Sinigaglia F., Hammer J. Rules for peptide binding to MHC class II molecules. APMIS. 1994;102:241–248. doi: 10.1111/J.1699-0463.1994.TB04871.X. [DOI] [PubMed] [Google Scholar]
- 93.Wucherpfennig K.W., Sette A., Southwood S., Oseroff C., Matsui M., Strominger J.L., Hafler D.A. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J. Exp. Med. 1994;179:279–290. doi: 10.1084/JEM.179.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Nikolich-Žugich J., Slifka M.K., Messaoudi I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 2004;4:123–132. doi: 10.1038/NRI1292. [DOI] [PubMed] [Google Scholar]
- 95.Arstila T.P., Casrouge A., Baron V., Even J., Kanellopoulos J., Kourilsky P. A direct estimate of the human alphabeta T cell receptor diversity. Science. 1999;286:958–961. doi: 10.1126/SCIENCE.286.5441.958. [DOI] [PubMed] [Google Scholar]
- 96.Daniel C., Horvath S., Allen P.M. A basis for alloreactivity: MHC helical residues broaden peptide recognition by the TCR. Immunity. 1998;8:543–552. doi: 10.1016/S1074-7613(00)80559-2. [DOI] [PubMed] [Google Scholar]
- 97.Sundberg E.J., Deng L., Mariuzza R.A. TCR recognition of peptide/MHC class II complexes and superantigens. Semin. Immunol. 2007;19:262–271. doi: 10.1016/J.SMIM.2007.04.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Sewell A.K. Why must T cells be cross-reactive? Nat. Rev. Immunol. 2012;12(9):669–677. doi: 10.1038/nri3279. 12 (2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Wildner G. Antigenic mimicry - the key to autoimmunity in immune privileged organs. J. Autoimmun. 2022 doi: 10.1016/J.JAUT.2022.102942. [DOI] [PubMed] [Google Scholar]
- 100.Kaur H., Salunke D.M. Antibody promiscuity: understanding the paradigm shift in antigen recognition. IUBMB Life. 2015;67:498–505. doi: 10.1002/IUB.1397. [DOI] [PubMed] [Google Scholar]
- 101.James L.C., Tawfik D.S. The specificity of cross-reactivity: promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Sci. 2003;12:2183–2193. doi: 10.1110/PS.03172703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Brinkworth J.F., Babbitt C.C. Immune system promiscuity in human and nonhuman primate evolution. Hum. Biol. 2018;90:251–269. doi: 10.13110/HUMANBIOLOGY.90.4.01. [DOI] [PubMed] [Google Scholar]
- 103.Cusick M.F., Libbey J.E., Fujinami R.S. Multiple sclerosis: autoimmunity and viruses. Curr. Opin. Rheumatol. 2013;25:496–501. doi: 10.1097/BOR.0B013E328362004D. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Jaago M., Rähni A., Pupina N., Pihlak A., Sadam H., Tuvikene J., Avarlaid A., Planken A., Planken M., Haring L., Vasar E., Baćević M., Lambert F., Kalso E., Pussinen P., Tienari P.J., Vaheri A., Lindholm D., Timmusk T., Ghaemmaghami A.M., Palm K. Differential patterns of cross-reactive antibody response against SARS-CoV-2 spike protein detected for chronically ill and healthy COVID-19 naïve individuals. Sci. Rep. 2022;12:1–12. doi: 10.1038/s41598-022-20849-6. (2022) 1–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Heath W.R., Miller J.F.A.P. Expression of two alpha chains on the surface of T cells in T cell receptor transgenic mice. J. Exp. Med. 1993;178:1807–1811. doi: 10.1084/JEM.178.5.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Corthay A., Nandakumar K.S., Holmdahl R. Evaluation of the percentage of peripheral T cells with two different T cell receptor alpha-chains and of their potential role in autoimmunity. J. Autoimmun. 2001;16:423–429. doi: 10.1006/JAUT.2001.0504. [DOI] [PubMed] [Google Scholar]
- 107.Padovan E., Giachino C., Cella M., Valitutti S., Acuto O., Lanzavecchia A. Normal T lymphocytes can express two different T cell receptor beta chains: implications for the mechanism of allelic exclusion. J. Exp. Med. 1995;181:1587–1591. doi: 10.1084/JEM.181.4.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Davodeau F., Peyrat M.A., Romagné F., Necker A., Hallet M.M., Vié H., Bonneville M. Dual T cell receptor beta chain expression on human T lymphocytes. J. Exp. Med. 1995;181:1391–1398. doi: 10.1084/JEM.181.4.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Brady B.L., Steinel N.C., Bassing C.H. Antigen receptor allelic exclusion: an update and reappraisal. J. Immunol. 2010;185:3801. doi: 10.4049/JIMMUNOL.1001158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Auger J.L., Haasken S., Steinert E.M., Binstadt B.A. Incomplete TCRβ allelic exclusion accelerates spontaneous autoimmune arthritis in K/BxN TCR transgenic mice. Eur. J. Immunol. 2012;42:2354. doi: 10.1002/EJI.201242520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Libbey J.E., Cusick M.F., Tsunoda I., Fujinami R.S. Antiviral CD8+ T cells cause an experimental autoimmune encephalomyelitis-like disease in naive mice. J. Neurovirol. 2012;18:45–54. doi: 10.1007/S13365-012-0077-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Quaratino S., Thorpe C.J., Travers P.J., Londei M. Similar antigenic surfaces, rather than sequence homology, dictate T-cell epitope molecular mimicry. Proc. Natl. Acad. Sci. U. S. A. 1995;92:10398–10402. doi: 10.1073/PNAS.92.22.10398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.J L Grogan J.S.-M.T.K., Kramer A., Nogai A., Dong L., Ohde M. Cross-reactivity of myelin basic protein-specific T cells with multiple microbial peptides: experimental autoimmune encephalomyelitis induction in TCR transgenic mice. J. Immunol. 1999;7 [PubMed] [Google Scholar]
- 114.Wildner G., Diedrichs-Möhring M. Autoimmune uveitis induced by molecular mimicry of peptides from rotavirus, bovine casein and retinal S-antigen. Eur. J. Immunol. 2003;33:2577–2587. doi: 10.1002/EJI.200324058. [DOI] [PubMed] [Google Scholar]
- 115.Wildner G., Diedrichs-Möhring M. Differential recognition of a retinal autoantigen peptide and its variants by rat T cells in vitro and in vivo. Int. Immunol. 2003;15:927–935. doi: 10.1093/INTIMM/DXG090. [DOI] [PubMed] [Google Scholar]
- 116.Schreiber A., Humbert M., Benz A. U. Dietrich, 3D-Epitope-Explorer (3DEX): localization of conformational epitopes within three-dimensional structures of proteins. J. Comput. Chem. 2005;26:879–887. doi: 10.1002/JCC.20229. [DOI] [PubMed] [Google Scholar]
- 117.Qian Y., Jeong J.S., Maldonado M., Valenzuela J.G., Gomes R., Teixeira C., Evangelista F., Qaqish B., Aoki V., Hans G., Rivitti E.A., Eaton D., Diaz L.A. Cutting Edge: Brazilian pemphigus foliaceus anti-desmoglein 1 autoantibodies cross-react with sand fly salivary LJM11 antigen. J. Immunol. 2012;189:1535–1539. doi: 10.4049/JIMMUNOL.1200842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Wang E.Y., Mao T., Klein J., Dai Y., Huck J.D., Jaycox J.R., Liu F., Zhou T., Israelow B., Wong P., Coppi A., Lucas C., Silva J., Oh J.E., Song E., Perotti E.S., Zheng N.S., Fischer S., Campbell M., Fournier J.B., Wyllie A.L., Vogels C.B.F., Ott I.M., Kalinich C.C., Petrone M.E., Watkins A.E., Obaid A., Moore A.J., Casanovas-Massana A., Lu-Culligan A., Nelson A., Nunez A., Martin A., Geng B., Odio C.D., Harden C.A., Todeasa C., Jensen C., Kim D., McDonald D., Shepard D., Courchaine E., White E.B., Silva E., Kudo E., DeIuliis G., Rahming H., Park H.J., Matos I., Nouws J., Valdez J., Lim J., Rose K.A., Anastasio K., Brower K., Glick L., Sharma L., Sewanan L., Knaggs L., Minasyan M., Batsu M., Kuang M., Nakahata M., Linehan M., Askenase M.H., Simonov M., Smolgovsky M., Sonnert N., Naushad N., Vijayakumar P., Martinello R., Datta R., Handoko R., Bermejo S., Prophet S., Bickerton S., Velazquez S., Rice T., Khoury-Hanold W., Peng X., Yang Y., Cao Y., Strong Y., dela Cruz C., Farhadian S.F., Schulz W.L., Ma S., Grubaugh N.D., Ko A.I., Iwasaki A., Ring A.M. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595:283–288. doi: 10.1038/S41586-021-03631-Y. [DOI] [PubMed] [Google Scholar]
- 119.Botello A., Herrán M., Salcedo V., Rodríguez Y., Anaya J.M., Rojas M. Prevalence of latent and overt polyautoimmunity in autoimmune thyroid disease: a systematic review and meta-analysis. Clin. Endocrinol. 2020;93:375–389. doi: 10.1111/CEN.14304. [DOI] [PubMed] [Google Scholar]
- 120.Zhang Q., Bastard P., Karbuz A., Gervais A., Tayoun A.A., Aiuti A., Belot A., Bolze A., Gaudet A., Bondarenko A., Liu Z., Spaan A.N., Guennoun A., Arias A.A., Planas A.M., Sediva A., Shcherbina A., Neehus A.L., Puel A., Froidure A., Novelli A., Parlakay A.Ö., Pujol A., Yahşi A., Gülhan B., Bigio B., Boisson B., Drolet B.A., Franco C.A.A., Flores C., Rodríguez-Gallego C., Prando C., Biggs C.M., Luyt C.E., Dalgard C.L., O'Farrelly C., Matuozzo D., Dalmau D., Perlin D.S., Mansouri D., van de Beek D., Vinh D.C., Dominguez-Garrido E., Hsieh E.W.Y., Erdeniz E.H., Jouanguy E., Şevketoglu E., Talouarn E., Quiros-Roldan E., Andreakos E., Husebye E., Alsohime F., Haerynck F., Casari G., Novelli G., Aytekin G., Morelle G., Alkan G., Bayhan G.I., Feldman H.B., Su H.C., von Bernuth H., Resnick I., Bustos I., Meyts I., Migeotte I., Tancevski I., Bustamante J., Fellay J., el Baghdadi J., Martinez-Picado J., Casanova J.L., Rosain J., Manry J., Chen J., Christodoulou J., Bohlen J., Franco J.L., Li J., Anaya J.M., Rojas J., Ye J., Uddin K.M.F., Yasar K.K., Kisand K., Okamoto K., Chaïbi K., Mironska K., Maródi L., Abel L., Renia L., Lorenzo L., Hammarström L., Ng L.F.P., Quintana-Murci L., Erazo L.V., Notarangelo L.D., Reyes L.F., Allende L.M., Imberti L., Renkilaraj M.R.L.M., Moncada-Velez M., Materna M., Anderson M.S., Gut M., Chbihi M., Ogishi M., Emiroglu M., Seppänen M.R.J., Uddin M.J., Shahrooei M., Alexander N., Hatipoglu N., Marr N., Akçay N., Boyarchuk O., Slaby O., Akcan O.M., Zhang P., Soler-Palacín P., Gregersen P.K., Brodin P., Garçon P., Morange P.E., Pan-Hammarström Q., Zhou Q., Philippot Q., Halwani R., de Diego R.P., Levy R., Yang R., Öz Ş.K.T., al Muhsen S., Kanık-Yüksek S., Espinosa-Padilla S., Ramaswamy S., Okada S., Bozdemir S.E., Aytekin S.E., Karabela Ş.N., Keles S., Senoglu S., Zhang S.Y., Duvlis S., Constantinescu S.N., Boisson-Dupuis S., Turvey S.E., Tangye S.G., Asano T., Ozcelik T., le Voyer T., Maniatis T., Morio T., Mogensen T.H., Sancho-Shimizu V., Beziat V., Solanich X., Bryceson Y., Lau Y.L., Itan Y., Cobat A., Casanova J.L. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature. 2022;603:587–598. doi: 10.1038/s41586-022-04447-0. 2022 603:7902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Manry J., Bastard P., Gervais A., le Voyer T., Rosain J., Philippot Q., Michailidis E., Hoffmann H.H., Eto S., Garcia-Prat M., Bizien L., Parra-Martínez A., Yang R., Haljasmägi L., Migaud M., Särekannu K., Maslovskaja J., de Prost N., Tandjaoui-Lambiotte Y., Luyt C.E., Amador-Borrero B., Gaudet A., Poissy J., Morel P., Richard P., Cognasse F., Troya J., Trouillet-Assant S., Belot A., Saker K., Garçpn P., Rivière J.G., Lagier J.C., Gentile S., Rosen L.B., Shaw E., Morio T., Tanaka J., Dalmau D., Tharaux P.L., Sene D., Stepanian A., Mégarbane B., Triantafyllia V., Fekkar A., Heath J.R., Franco J.L., Anaya J.M., Solé-Violán J., Imberti L., Biondi A., Bonfanti P., Castagnoli R., Delmonte O.M., Zhang Y., Snow A.L., Holland S.M., Biggs C.M., Moncada-Vélez M., Arias A.A., Lorenzo L., Boucherit S., Anglicheau D., Planas A.M., Haerynck F., Duvlis S., Ozcelik T., Keles S., Bousfiha A.A., el Bakkouri J., Ramirez-Santana C., Paul S., Pan-Hammarström Q., Hammarström L., Dupont A., Kurolap A., Metz C.N., Aiuti A., Casari G., Lampasona V., Ciceri F., Barreiros L.A., Dominguez-Garrido E., Vidigal M., Zatz M., van de Beek D., Sahanic S., Tancevski I., Stepanovskyy Y., Boyarchuk O., Nukui Y., Tsumura M., Vidaur L., Tangye S.G., Burrel S., Duffy D., Quintana-Murci L., Klocperk A., Kann N.Y., Shcherbina A., Lau Y.L., Leung D., Coulongeat M., Marlet J., Koning R., Reyes L.F., Chauvineau-Grenier A., Venet F., Monneret G., Nussenzweig M.C., Arrestier R., Boudhabhay I., Baris-Feldman H., Hagin D., Wauters J., Meyts I., Dyer A.H., Kennelly S.P., Bourke N.M., Halwani R., Sharif-Askari F.S., Dorgham K., Sallette J., Sedkaoui S.M., AlKhater S., Rigo-Bonnin R., Morandeira F., Roussel L., Vinh D.C., Erikstrup C., Condino-Neto A., Prando C., Bondarenko A., Spaan A.N., Gilardin L., Fellay J., Lyonnet S., Bilguvar K., Lifton R.P., Mane S., Anderson M.S., Boisson B., Béziat V., Zhang S.Y., Andreakos E., Hermine O., Pujol A., Peterson P., Mogensen T.H., Rowen L., Mond J., Debette S., de Lamballerie X., Burdet C., Bouadma L., Zins M., Soler-Palacin P., Colobran R., Gorochov G., Solanich X., Susen S., Martinez-Picado J., Raoult D., Vasse M., Gregersen P.K., Piemonti L., Rodríguez-Gallego C., Notarangelo L.D., Su H.C., Kisand K., Okada S., Puel A., Jouanguy E., Rice C.M., Tiberghien P., Zhang Q., Casanova J.L., Abel L., Cobat A. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc. Natl. Acad. Sci. U. S. A. 2022;119 doi: 10.1073/PNAS.2200413119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Busnadiego I., Abela I.A., Frey P.M., Hofmaenner D.A., Scheier T.C., Schuepbach R.A., Buehler P.K., Brugger S.D., Hale B.G. Critically ill COVID-19 patients with neutralizing autoantibodies against type I interferons have increased risk of herpesvirus disease. PLoS Biol. 2022;20 doi: 10.1371/JOURNAL.PBIO.3001709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Puel A., Bastard P., Bustamante J., Casanova J.-L. Human autoantibodies underlying infectious diseases. J. Exp. Med. 2022;219 doi: 10.1084/jem.20211387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Leandro D., Fonseca M., Salerno Filgueiras I., Marques A.H., Vojdani E., Halpert G., Ostrinski Y., Crispim Baiocchi G., Rodrigues Plaça D., Freire P.P., Pour S.Z., Moll G., Catar R., Lavi Y.B., Silverberg J.I., Zimmerman J., Cabral De Miranda G., Carvalho R.F., Khan A., Heidecke H., Dalmolin R.J., Luchessi A.D., Ochs H.D., Schimke L.F., Amital H., Riemekasten G., Zyskind I., Rosenberg A.Z., Vojdani A., Shoenfeld Y., Cabral-Marques O. SARS-CoV-2 infection induces the production of autoantibodies in severe COVID-19 patients in an age-dependent manner. medRxiv. 2022:2022. doi: 10.1101/2022.12.04.22282902. 12.04.22282902. [DOI] [Google Scholar]
- 125.Wang X., Gkrouzman E., Andrade D.C.O., Andreoli L., Barbhaiya M., Belmont H.M., Branch D.W., de Jesús G.R., Efthymiou M., Ríos-Garcés R., Gerosa M., el Hasbani G., Knight J., Meroni P.L., Pazzola G., Petri M., Rand J., Salmon J., Tektonidou M., Tincani A., Uthman I.W., Zuily S., Zuo Y., Lockshin M., Cohen H., Erkan D. COVID-19 and antiphospholipid antibodies: a position statement and management guidance from AntiPhospholipid syndrome alliance for clinical trials and InternatiOnal networking (APS action) Lupus. 2021;30:2276–2285. doi: 10.1177/09612033211062523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Zuo Y., Estes S.K., Ali R.A., Gandhi A.A., Yalavarthi S., Shi H., Sule G., Gockman K., Madison J.A., Zuo M., Yadav V., Wang J., Woodard W., Lezak S.P., Lugogo N.L., Smith S.A., Morrissey J.H., Kanthi Y., Knight J.S. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 2020;12 doi: 10.1126/SCITRANSLMED.ABD3876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Hallmann E., Sikora D., Poniedziałek B., Szymański K., Kondratiuk K., Żurawski J., Brydak L., Rzymski P. IgG autoantibodies against ACE2 in SARS-CoV-2 infected patients. J. Med. Virol. 2023;95 doi: 10.1002/JMV.28273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Consiglio C.R., Cotugno N., Sardh F., Pou C., Amodio D., Rodriguez L., Tan Z., Zicari S., Ruggiero A., Pascucci G.R., Santilli V., Campbell T., Bryceson Y., Eriksson D., Wang J., Marchesi A., Lakshmikanth T., Campana A., Villani A., Rossi P., Landegren N., Palma P., Brodin P. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell. 2020;183:968–981.e7. doi: 10.1016/J.CELL.2020.09.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Dufort E.M., Koumans E.H., Chow E.J., Rosenthal E.M., Muse A., Rowlands J., Barranco M.A., Maxted A.M., Rosenberg E.S., Easton D., Udo T., Kumar J., Pulver W., Smith L., Hutton B., Blog D., Zucker H. Multisystem inflammatory syndrome in children in New York state. N. Engl. J. Med. 2020;383:347–358. doi: 10.1056/NEJMOA2021756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Vatti A., Monsalve D.M., Pacheco Y., Chang C., Anaya J.M., Gershwin M.E. Original antigenic sin: a comprehensive review. J. Autoimmun. 2017;83:12–21. doi: 10.1016/J.JAUT.2017.04.008. [DOI] [PubMed] [Google Scholar]
- 131.Kelvin A.A., Zambon M. Influenza imprinting in childhood and the influence on vaccine response later in life. Euro Surveill. 2019;24 doi: 10.2807/1560-7917.ES.2019.24.48.1900720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Dugan H.L., Guthmiller J.J., Arevalo P., Huang M., Chen Y.Q., Neu K.E., Henry C., Zheng N.Y., Lan L.Y.L., Tepora M.E., Stovicek O., Bitar D., Palm A.K.E., Stamper C.T., Changrob S., Utset H.A., Coughlan L., Krammer F., Cobey S., Wilson P.C. Preexisting immunity shapes distinct antibody landscapes after influenza virus infection and vaccination in humans. Sci. Transl. Med. 2020;12 doi: 10.1126/SCITRANSLMED.ABD3601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Fonville J.M., Wilks S.H., James S.L., Fox A., Ventresca M., Aban M., Xue L., Jones T.C., Le N.M.H., Pham Q.T., Tran N.D., Wong Y., Mosterin A., Katzelnick L.C., Labonte D., Le T.T., van der Net G., Skepner E., Russell C.A., Kaplan T.D., Rimmelzwaan G.F., Masurel N., de Jong J.C., Palache A., Beyer W.E.P., Le Q.M., Nguyen T.H., Wertheim H.F.L., Hurt A.C., Osterhaus A.D.M.E., Barr I.G., Fouchier R.A.M., Horby P.W., Smith D.J. Antibody landscapes after influenza virus infection or vaccination. Science. 2014;346:996–1000. doi: 10.1126/SCIENCE.1256427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Shrock E., Fujimura E., Kula T., Timms R.T., Lee I.H., Leng Y., Robinson M.L., Sie B.M., Li M.Z., Chen Y., Logue J., Zuiani A., McCulloch D., Lelis F.J.N., Henson S., Monaco D.R., Travers M., Habibi S., Clarke W.A., Caturegli P., Laeyendecker O., Piechocka-Trocha A., Li J.Z., Khatri A., Chu H.Y., Villani A.C., Kays K., Goldberg M.B., Hacohen N., Filbin M.R., Yu X.G., Walker B.D., Wesemann D.R., Larman H.B., Lederer J.A., Elledge S.J. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science. 1979;2020:370. doi: 10.1126/SCIENCE.ABD4250/SUPPL_FILE/ABD4250_TABLE_S8.GZ. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Pawlowski C., Puranik A., Bandi H., Venkatakrishnan A.J., Agarwal V., Kennedy R., O'Horo J.C., Gores G.J., Williams A.W., Halamka J., Badley A.D., Soundararajan V. Exploratory analysis of immunization records highlights decreased SARS-CoV-2 rates in individuals with recent non-COVID-19 vaccinations. Sci. Rep. 2021;11 doi: 10.1038/S41598-021-83641-Y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Jaago M., Rähni A., Pupina N., Pihlak A., Sadam H., Tuvikene J., Avarlaid A., Planken A., Planken M., Haring L., Vasar E., Baćević M., Lambert F., Kalso E., Pussinen P., Tienari P.J., Vaheri A., Lindholm D., Timmusk T., Ghaemmaghami A.M., Palm K. Differential patterns of cross-reactive antibody response against SARS-CoV-2 spike protein detected for chronically ill and healthy COVID-19 naïve individuals. Sci. Rep. 2022;12:1–12. doi: 10.1038/s41598-022-20849-6. 2022) 1–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Quiros-Fernandez I., Poorebrahim M., Fakhr E., Cid-Arregui A. Immunogenic T cell epitopes of SARS-CoV-2 are recognized by circulating memory and naïve CD8 T cells of unexposed individuals. EBioMedicine. 2021;72 doi: 10.1016/J.EBIOM.2021.103610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Adiguzel Y., Shoenfeld Y. Shared 6mer peptides of human and Omicron (21K and 21L) at SARS-CoV-2 mutation sites. Antibodies. 2022;11:68. doi: 10.3390/ANTIB11040068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Buhler S., Sanchez-Mazas A. HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events. PLoS One. 2011;6 doi: 10.1371/JOURNAL.PONE.0014643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Bui H.H., Sidney J., Dinh K., Southwood S., Newman M.J., Sette A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinf. 2006;7:1–5. doi: 10.1186/1471-2105-7-153/METRICS. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Castiblanco J., Anaya J.-M. Genetics and vaccines in the era of personalized medicine. Curr. Genom. 2015;16:47–59. doi: 10.2174/1389202916666141223220551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Shen Y., Voigt A., Goranova L., Abed M., Kleiner D.E., Maldonado J.O., Beach M., Pelayo E., Chiorini J.A., Craft W.F., Ostrov D.A., Ramiya V., Sukumaran S., Tuanyok A., Warner B.M., Nguyen C.Q. MedRxiv; 2022. Evidence of a Sjögren’s Disease-like Phenotype Following COVID-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Woodruff M.C., Ramonell R.P., Nguyen D.C., Cashman K.S., Saini A.S., Haddad N.S., Ley A.M., Kyu S., Howell J.C., Ozturk T., Lee S., Suryadevara N., Case J.B., Bugrovsky R., Chen W., Estrada J., Morrison-Porter A., Derrico A., Anam F.A., Sharma M., Wu H.M., Le S.N., Jenks S.A., Tipton C.M., Staitieh B., Daiss J.L., Ghosn E., Diamond M.S., Carnahan R.H., Crowe J.E., Hu W.T., Lee F.E.H., Sanz I. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 2020;21:1506–1516. doi: 10.1038/S41590-020-00814-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Jenks S.A., Cashman K.S., Zumaquero E., Marigorta U.M., Patel A.v., Wang X., Tomar D., Woodruff M.C., Simon Z., Bugrovsky R., Blalock E.L., Scharer C.D., Tipton C.M., Wei C., Lim S.S., Petri M., Niewold T.B., Anolik J.H., Gibson G., Lee F.E.H., Boss J.M., Lund F.E., Sanz I. Distinct effector B cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity. 2018;49:725–739.e6. doi: 10.1016/J.IMMUNI.2018.08.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Bortolotti D., Gentili V., Rizzo S., Schiuma G., Beltrami S., Strazzabosco G., Fernandez M., Caccuri F., Caruso A., Rizzo R. TLR3 and TLR7 RNA sensor activation during SARS-CoV-2 infection. Microorganisms. 2021;9 doi: 10.3390/microorganisms9091820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Fillatreau S., Manfroi B., Dörner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus. Nat. Rev. Rheumatol. 2021;17:98–108. doi: 10.1038/S41584-020-00544-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Brown G.J., Cañete P.F., Wang H., Medhavy A., Bones J., Roco J.A., He Y., Qin Y., Cappello J., Ellyard J.I., Bassett K., Shen Q., Burgio G., Zhang Y., Turnbull C., Meng X., Wu P., Cho E., Miosge L.A., Andrews T.D., Field M.A., Tvorogov D., Lopez A.F., Babon J.J., López C.A., Gónzalez-Murillo Á., Garulo D.C., Pascual V., Levy T., Mallack E.J., Calame D.G., Lotze T., Lupski J.R., Ding H., Ullah T.R., Walters G.D., Koina M.E., Cook M.C., Shen N., de Lucas Collantes C., Corry B., Gantier M.P., Athanasopoulos V., Vinuesa C.G. TLR7 gain-of-function genetic variation causes human lupus. Nature. 2022;605:349–356. doi: 10.1038/S41586-022-04642-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535. doi: 10.1126/SCIENCE.1092385. [DOI] [PubMed] [Google Scholar]
- 149.Schönrich G., Raftery M.J. Neutrophil extracellular traps go viral. Front. Immunol. 2016;7:366. doi: 10.3389/FIMMU.2016.00366/BIBTEX. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Yalavarthi S., Gould T.J., Rao A.N., Mazza L.F., Morris A.E., Núñez-Álvarez C., Hernández-Ramírez D., Bockenstedt P.L., Liaw P.C., Cabral A.R., Knight J.S. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67:2990–3003. doi: 10.1002/ART.39247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.Zuo Y., Yalavarthi S., Navaz S.A., Hoy C.K., Harbaugh A., Gockman K., Zuo M., Madison J.A., Shi H., Kanthi Y., Knight J.S. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight. 2021;6 doi: 10.1172/JCI.INSIGHT.150111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Skendros P., Mitsios A., Chrysanthopoulou A., Mastellos D.C., Metallidis S., Rafailidis P., Ntinopoulou M., Sertaridou E., Tsironidou V., Tsigalou C., Tektonidou M., Konstantinidis T., Papagoras C., Mitroulis I., Germanidis G., Lambris J.D., Ritis K. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Invest. 2020;130:6151–6157. doi: 10.1172/JCI141374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Nicolai L., Leunig A., Brambs S., Kaiser R., Weinberger T., Weigand M., Muenchhoff M., Hellmuth J.C., Ledderose S., Schulz H., Scherer C., Rudelius M., Zoller M., Höchter D., Keppler O., Teupser D., Zwißler B., von Bergwelt-Baildon M., Kääb S., Massberg S., Pekayvaz K., Stark K. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation. 2020;142:1176–1189. doi: 10.1161/CIRCULATIONAHA.120.048488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Leppkes M., Knopf J., Naschberger E., Lindemann A., Singh J., Herrmann I., Stürzl M., Staats L., Mahajan A., Schauer C., Kremer A.N., Völkl S., Amann K., Evert K., Falkeis C., Wehrfritz A., Rieker R.J., Hartmann A., Kremer A.E., Neurath M.F., Muñoz L.E., Schett G., Herrmann M. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020;58 doi: 10.1016/J.EBIOM.2020.102925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Middleton E.A., He X.Y., Denorme F., Campbell R.A., Ng D., Salvatore S.P., Mostyka M., Baxter-Stoltzfus A., Borczuk A.C., Loda M., Cody M.J., Manne B.K., Portier I., Harris E.S., Petrey A.C., Beswick E.J., Caulin A.F., Iovino A., Abegglen L.M., Weyrich A.S., Rondina M.T., Egeblad M., Schiffman J.D., Yost C.C. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136:1169–1179. doi: 10.1182/BLOOD.2020007008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Lehmann P.v., Forsthuber T., Miller A., Sercarz E.E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992;358:155–157. doi: 10.1038/358155A0. [DOI] [PubMed] [Google Scholar]
- 157.Lehmann P.v., Sercarz E.E., Forsthuber T., Dayan C.M., Gammon G. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol. Today. 1993;14:203–208. doi: 10.1016/0167-5699(93)90163-F. [DOI] [PubMed] [Google Scholar]
- 158.Vanderlugt C.L., Miller S.D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2002;2:85–95. doi: 10.1038/NRI724. [DOI] [PubMed] [Google Scholar]
- 159.McRae B.L., Vanderlugt C.L., Dal Canto M.C., Miller S.D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med. 1995;182:75–85. doi: 10.1084/JEM.182.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.An H., Eun M., Yi J., Park J. CRESSP: a comprehensive pipeline for prediction of immunopathogenic SARS-CoV-2 epitopes using structural properties of proteins. Briefings Bioinf. 2022;23 doi: 10.1093/BIB/BBAC056. [DOI] [PubMed] [Google Scholar]
- 161.Kastner D.L., Aksentijevich I., Goldbach-Mansky R. Autoinflammatory disease reloaded: a clinical perspective. Cell. 2010;140:784–790. doi: 10.1016/j.cell.2010.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.The International FMF Consortium Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium. Cell. 1997;90:797–807. doi: 10.1016/s0092-8674(00)80539-5. [DOI] [PubMed] [Google Scholar]
- 163.McDermott M.T., West S.G., Emlen J.W., Kidd G.S. Antideoxyribonucleic acid antibodies in Graves' disease. J. Clin. Endocrinol. Metab. 1990;71:509–511. doi: 10.1210/jcem-71-2-509. [DOI] [PubMed] [Google Scholar]
- 164.Rodero M.P., Crow Y.J. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J. Exp. Med. 2016;213:2527–2538. doi: 10.1084/jem.20161596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.McGonagle D., McDermott M.F. A proposed classification of the immunological diseases. PLoS Med. 2006;3:e297. doi: 10.1371/journal.pmed.0030297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166.Anaya J.M., Rojas M., Salinas M.L., Rodríguez Y., Roa G., Lozano M., Rodríguez-Jiménez M., Montoya N., Zapata E., Monsalve D.M., Acosta-Ampudia Y., Ramírez-Santana C. Post-COVID syndrome. A case series and comprehensive review. Autoimmun. Rev. 2021;20 doi: 10.1016/J.AUTREV.2021.102947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Fogarty H., Townsend L., Morrin H., Ahmad A., Comerford C., Karampini E., Englert H., Byrne M., Bergin C., O'Sullivan J.M., Martin-Loeches I., Nadarajan P., Bannan C., Mallon P.W., Curley G.F., Preston R.J.S., Rehill A.M., McGonagle D., Ni Cheallaigh C., Baker R.I., Renné T., Ward S.E., O'Donnell J.S. Irish COVID-19 Vasculopathy Study (iCVS) investigators, Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J. Thromb. Haemostasis. 2021;19:2546–2553. doi: 10.1111/jth.15490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Jacobs J.J.L. Persistent SARS-2 infections contribute to long COVID-19. Med. Hypotheses. 2021;149 doi: 10.1016/j.mehy.2021.110538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.Mongioì L.M., Barbagallo F., Condorelli R.A., Cannarella R., Aversa A., La Vignera S., Calogero A.E. Possible long-term endocrine-metabolic complications in COVID-19: lesson from the SARS model. Endocrine. 2020;68:467–470. doi: 10.1007/s12020-020-02349-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 170.Cañas C.A. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals. Med. Hypotheses. 2020;145 doi: 10.1016/j.mehy.2020.110345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Tserel L., Jõgi P., Naaber P., Maslovskaja J., Häling A., Salumets A., Zusinaite E., Soeorg H., Lättekivi F., Ingerainen D., Soots M., Toompere K., Kaarna K., Kisand K., Lutsar I., Peterson P. Long-term elevated inflammatory protein levels in asymptomatic SARS-CoV-2 infected individuals. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.709759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Shuwa H.A., Shaw T.N., Knight S.B., Wemyss K., McClure F.A., Pearmain L., Prise I., Jagger C., Morgan D.J., Khan S., Brand O., Mann E.R., Ustianowski A., Bakerly N.D., Dark P., Brightling C.E., Brij S., CIRCO. Felton T., Simpson A., Grainger J.R., Hussell T., Konkel J.E., Menon M. Alterations in T and B cell function persist in convalescent COVID-19 patients. Méd. 2021;2:720–735.e4. doi: 10.1016/j.medj.2021.03.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 173.Talla A, Vasaikar SV, Szeto GL, Lemos MP, Czartoski JL, MacMillan H, Moodie Z, Cohen KW, Fleming LB, Thomson Z, Okada L, Becker LA, Coffey EM, De Rosa SC, Newell EW, Skene PJ, Li X, Bumol TF, Juliana McElrath M, Torgerson TR. Persistent serum protein signatures define an inflammatory subcategory of long COVID. Nat Commun. 2023 Jun 9;14(1):3417. doi: 10.1038/s41467-023-38682-4. [DOI] [PMC free article] [PubMed]
- 174.Ong S.W.X., Fong S.-W., Young B.E., Chan Y.-H., Lee B., Amrun S.N., Chee R.S.-L., Yeo N.K.-W., Tambyah P., Pada S., Tan S.Y., Ding Y., Renia L., Leo Y.-S., Ng L.F.P., Lye D.C. Persistent symptoms and association with inflammatory cytokine signatures in recovered coronavirus disease 2019 patients. Open Forum Infect. Dis. 2021;8 doi: 10.1093/ofid/ofab156. ofab156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175.Phetsouphanh C., Darley D.R., Wilson D.B., Howe A., Munier C.M.L., Patel S.K., Juno J.A., Burrell L.M., Kent S.J., Dore G.J., Kelleher A.D., v Matthews G. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022;23:210–216. doi: 10.1038/s41590-021-01113-x. [DOI] [PubMed] [Google Scholar]
- 176.Ryan F.J., Hope C.M., Masavuli M.G., Lynn M.A., Mekonnen Z.A., Yeow A.E.L., Garcia-Valtanen P., Al-Delfi Z., Gummow J., Ferguson C., O'Connor S., Reddi B.A.J., Hissaria P., Shaw D., Kok-Lim C., Gleadle J.M., Beard M.R., Barry S.C., Grubor-Bauk B., Lynn D.J. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med. 2022;20:26. doi: 10.1186/s12916-021-02228-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 177.Schultheiß C., Willscher E., Paschold L., Gottschick C., Klee B., Henkes S.S., Bosurgi L., Dutzmann J., Sedding D., Frese T., Girndt M., Höll J.I., Gekle M., Mikolajczyk R., Binder M. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med. 2022;3 doi: 10.1016/J.XCRM.2022.100663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178.Guan W., Ni Z., Hu Y., Liang W., Ou C., He J., Liu L., Shan H., Lei C., Hui D.S.C., Du B., Li L., Zeng G., Yuen K.-Y., Chen R., Tang C., Wang T., Chen P., Xiang J., Li S., Wang J., Liang Z., Peng Y., Wei L., Liu Y., Hu Y., Peng P., Wang J., Liu J., Chen Z., Li G., Zheng Z., Qiu S., Luo J., Ye C., Zhu S., Zhong N. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMOA2002032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179.Hickie I., Davenport T., Wakefield D., Vollmer-Conna U., Cameron B., Vernon S.D., Reeves W.C., Lloyd A. Dubbo Infection Outcomes Study Group, Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ. 2006;333:575. doi: 10.1136/bmj.38933.585764. (AE) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 180.Greenhalgh T., Knight M., A'Court C., Buxton M., Husain L. Management of post-acute covid-19 in primary care. BMJ. 2020;370:m3026. doi: 10.1136/bmj.m3026. [DOI] [PubMed] [Google Scholar]
- 181.Mendelson M., Nel J., Blumberg L., Madhi S.A., Dryden M., Stevens W., Venter F.W.D. Long-COVID: an evolving problem with an extensive impact. S. Afr. Med. J. 2020;111:10–12. doi: 10.7196/SAMJ.2020.v111i11.15433. [DOI] [PubMed] [Google Scholar]
- 182.Utrero-Rico A., Ruiz-Ruigómez M., Laguna-Goya R., Arrieta-Ortubay E., Chivite-Lacaba M., González-Cuadrado C., Lalueza A., Almendro-Vazquez P., Serrano A., Aguado J.M., Lumbreras C., Paz-Artal E. A short corticosteroid course reduces symptoms and immunological alterations underlying long-COVID. Biomedicines. 2021;9 doi: 10.3390/biomedicines9111540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Rojas M, Rodríguez Y, Acosta-Ampudia Y, Monsalve DM, Zhu C, Li QZ, Ramírez-Santana C, Anaya JM. Autoimmunity is a hallmark of post-COVID syndrome. J Transl Med. 2022 Mar 16;20(1):129. doi: 10.1186/s12967-022-03328-4. [DOI] [PMC free article] [PubMed]
- 184.Moody R., Sonda S., Johnston F.H., Smith K.J., Stephens N., McPherson M., Flanagan K.L., Plebanski M. Antibodies against Spike protein correlate with broad autoantigen recognition 8 months post SARS-CoV-2 exposure, and anti-calprotectin autoantibodies associated with better clinical outcomes. Front. Immunol. 2022;13:4405. doi: 10.3389/FIMMU.2022.945021/BIBTEX. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.Lingel H., Meltendorf S., Billing U., Thurm C., Vogel K., Majer C., Prätsch F., Roggenbuck D., Heuft H.-G., Hachenberg T., Feist E., Reinhold D., Brunner-Weinzierl M.C. Unique autoantibody prevalence in long-term recovered SARS-CoV-2-infected individuals. J. Autoimmun. 2021;122 doi: 10.1016/j.jaut.2021.102682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 186.Vollmer O., Tacquard C., Dieudonné Y., Nespola B., Sattler L., Grunebaum L., Gies V., Radosavljevic M., Kaeuffer C., Hansmann Y., Weber J.-C., Martin T., Arnaud L., Morel O., Guffroy A., Collange O., Mertes P.M., Korganow A.-S., Delabranche X., Poindron V. Follow-up of COVID-19 patients: LA is transient but other aPLs are persistent. Autoimmun. Rev. 2021;20 doi: 10.1016/j.autrev.2021.102822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 187.Bertin D., Kaphan E., Weber S., Babacci B., Arcani R., Faucher B., Ménard A., Brodovitch A., Mege J.L., Bardin N. Persistent IgG anticardiolipin autoantibodies are associated with post-COVID syndrome. Int. J. Infect. Dis. 2021;113:23–25. doi: 10.1016/j.ijid.2021.09.079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 188.Liu Y., Ebinger J.E., Mostafa R., Budde P., Gajewski J., Walker B., Joung S., Wu M., Bräutigam M., Hesping F., Rupieper E., Schubert A.-S., Zucht H.-D., Braun J., Melmed G.Y., Sobhani K., Arditi M., Van Eyk J.E., Cheng S., Fert-Bober J. Paradoxical sex-specific patterns of autoantibody response to SARS-CoV-2 infection. J. Transl. Med. 2021;19:524. doi: 10.1186/s12967-021-03184-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189.Sotzny F., Filgueiras I.S., Kedor C., Freitag H., Wittke K., Bauer S., Sepúlveda N., Mathias da Fonseca D.L., Baiocchi G.C., Marques A.H.C., Kim M., Lange T., Plaça D.R., Luebber F., Paulus F.M., de Vito R., Jurisica I., Schulze-Forster K., Paul F., Bellmann-Strobl J., Rust R., Hoppmann U., Shoenfeld Y., Riemekasten G., Heidecke H., Cabral-Marques O., Scheibenbogen C. Dysregulated autoantibodies targeting vaso- and immunoregulatory receptors in Post COVID Syndrome correlate with symptom severity. Front. Immunol. 2022;13:5182. doi: 10.3389/FIMMU.2022.981532/BIBTEX. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 190.Son K., Jamil R., Chowdhury A., Mukherjee M., Venegas C., Miyasaki K., Zhang K., Patel Z., Salter B., Yuen A.C.Y., Lau K.S.-K., Cowbrough B., Radford K., Huang C., Kjarsgaard M., Dvorkin-Gheva A., Smith J., Li Q.-Z., Waserman S., Ryerson C.J., Nair P., Ho T., Balakrishnan N., Nazy I., Bowdish D.M., Svenningsen S., Carlsten C., Mukherjee M. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long-COVID symptoms. Eur. Respir. J. 2022 doi: 10.1183/13993003.00970-2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 191.Su Y., Yuan D., Chen D.G., Ng R.H., Wang K., Choi J., Li S., Hong S., Zhang R., Xie J., Kornilov S.A., Scherler K., Pavlovitch-Bedzyk A.J., Dong S., Lausted C., Lee I., Fallen S., Dai C.L., Baloni P., Smith B., Duvvuri V.R., Anderson K.G., Li J., Yang F., Duncombe C.J., McCulloch D.J., Rostomily C., Troisch P., Zhou J., Mackay S., DeGottardi Q., May D.H., Taniguchi R., Gittelman R.M., Klinger M., Snyder T.M., Roper R., Wojciechowska G., Murray K., Edmark R., Evans S., Jones L., Zhou Y., Rowen L., Liu R., Chour W., Algren H.A., Berrington W.R., Wallick J.A., Cochran R.A., Micikas M.E., ISB-Swedish COVID-19 Biobanking Unit. Wrin T., Petropoulos C.J., Cole H.R., Fischer T.D., Wei W., Hoon D.S.B., Price N.D., Subramanian N., Hill J.A., Hadlock J., Magis A.T., Ribas A., Lanier L.L., Boyd S.D., Bluestone J.A., Chu H., Hood L., Gottardo R., Greenberg P.D., Davis M.M., Goldman J.D., Heath J.R. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185:881–895.e20. doi: 10.1016/j.cell.2022.01.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 192.Tobón G.J., Pers J.-O., Cañas C.A., Rojas-Villarraga A., Youinou P., Anaya J.-M. Are autoimmune diseases predictable? Autoimmun. Rev. 2012;11:259–266. doi: 10.1016/j.autrev.2011.10.004. [DOI] [PubMed] [Google Scholar]
- 193.Valadez-Calderon J., Ordinola Navarro A., Rodriguez-Chavez E., Vera-Lastra O. Co-expression of anti-NMDAR and anti-GAD65 antibodies. A case of autoimmune encephalitis in a post-COVID-19 patient. Neurología. 2021 doi: 10.1016/j.nrl.2021.09.003. In press. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 194.Zamani B., Moeini Taba S.M., Shayestehpour M. Systemic lupus erythematosus manifestation following COVID-19: a case report. J. Med. Case Rep. 2021;15 doi: 10.1186/S13256-020-02582-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 195.Bonometti R., Sacchi M.C., Stobbione P., Lauritano E.C., Tamiazzo S., Marchegiani A., Novara E., Molinaro E., Benedetti I., Massone L., Bellora A., Boverio R. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection. Eur. Rev. Med. Pharmacol. Sci. 2020;24:9695–9697. doi: 10.26355/EURREV_202009_23060. [DOI] [PubMed] [Google Scholar]
- 196.Szydełko-Paśko U., Przeździecka-Dołyk J., Kręcicka J., Małecki R., Misiuk-Hojło M., Turno-Kręcicka A. Arteritic anterior ischemic optic neuropathy in the course of giant cell arteritis after COVID-19. Am J Case Rep. 2022;23 doi: 10.12659/AJCR.933471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 197.Mateu-Salat M., Urgell E., Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves' disease after COVID-19. J. Endocrinol. Invest. 2020;43:1527–1528. doi: 10.1007/S40618-020-01366-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Fireizen Y., Shahriary C., Imperial M.E., Randhawa I., Nianiaris N., Ovunc B. Pediatric P-ANCA vasculitis following COVID-19. Pediatr. Pulmonol. 2021;56:3422–3424. doi: 10.1002/ppul.25612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 199.Selvaraj V., Moustafa A., Dapaah-Afriyie K., Birkenbach M.P. COVID-19-induced granulomatosis with polyangiitis. BMJ Case Rep. 2021;14 doi: 10.1136/bcr-2021-242142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 200.Dias da Costa M., Leal Rato M., Cruz D., Valadas A., Antunes A.P., Albuquerque L. Longitudinally extensive transverse myelitis with anti-myelin oligodendrocyte glycoprotein antibodies following SARS-CoV-2 infection. J. Neuroimmunol. 2021;361 doi: 10.1016/j.jneuroim.2021.577739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 201.Fineschi S. Case report: systemic sclerosis after covid-19 infection. Front. Immunol. 2021;12 doi: 10.3389/FIMMU.2021.686699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 202.Capalbo A., Giordano D., Gagliostro N., Balampanos C.G., Persechino F., Orrù F., Persechino S. Alopecia areata in a COVID-19 patient: a case report. Dermatol. Ther. 2021;34 doi: 10.1111/DTH.14685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Sgubbi P., Savoia F., Calderoni O., Longo R., Stinchi C., Tabanelli M. Alopecia areata in a patient with SARS-Cov-2 infection. Dermatol. Ther. 2020;33 doi: 10.1111/DTH.14295. [DOI] [PubMed] [Google Scholar]
- 204.Rumiantceva D.G., Urumova M.M., Erdes S.F. [New coronavirus infection COVID-19 as a trigger for the development of symptoms of ankylosing spondylitis. Case report] Ter. Arkh. 2021;93:609–612. doi: 10.26442/00403660.2021.05.200793. [DOI] [PubMed] [Google Scholar]
- 205.Xiao M., Zhang Y., Zhang S., Qin X., Xia P., Cao W., Jiang W., Chen H., Ding X., Zhao H., Zhang H., Wang C., Zhao J., Sun X., Tian R., Wu W., Wu D., Ma J., Chen Y., Zhang D., Xie J., Yan X., Zhou X., Liu Z., Wang J., Du B., Qin Y., Gao P., Lu M., Hou X., Wu X., Zhu H., Xu Y., Zhang W., Li T., Zhang F., Zhao Y., Li Y., Zhang S. Antiphospholipid antibodies in critically ill patients with COVID-19. Arthritis Rheumatol. 2020;72:1998–2004. doi: 10.1002/art.41425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 206.Bertin D., Brodovitch A., Beziane A., Hug S., Bouamri A., Mege J.L., Heim X., Bardin N. Anticardiolipin IgG autoantibody level is an independent risk factor for COVID-19 severity. Arthritis Rheumatol. 2020;72:1953–1955. doi: 10.1002/art.41409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 207.Vlachoyiannopoulos P.G., Magira E., Alexopoulos H., Jahaj E., Theophilopoulou K., Kotanidou A., Tzioufas A.G. Autoantibodies related to systemic autoimmune rheumatic diseases in severely ill patients with COVID-19. Ann. Rheum. Dis. 2020;79:1661–1663. doi: 10.1136/annrheumdis-2020-218009. [DOI] [PubMed] [Google Scholar]
- 208.Ayatollahi P., Tarazi A., Wennberg R. Possible autoimmune encephalitis with claustrum sign in case of acute SARS-CoV-2 infection. Can. J. Neurol. Sci. 2021;48:430–432. doi: 10.1017/CJN.2020.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 209.Hindilerden F., Yonal-Hindilerden I., Akar E., Yesilbag Z., Kart-Yasar K. Severe autoimmune hemolytic anemia in COVID-19 infection, safely treated with steroids. Mediterr J Hematol Infect Dis. 2020;12 doi: 10.4084/MJHID.2020.053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 210.Lopez C., Kim J., Pandey A., Huang T., DeLoughery T.G. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br. J. Haematol. 2020;190:31–32. doi: 10.1111/BJH.16786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 211.Lazarian G., Quinquenel A., Bellal M., Siavellis J., Jacquy C., Re D., Merabet F., Mekinian A., Braun T., Damaj G., Delmer A., Cymbalista F. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br. J. Haematol. 2020;190:29–31. doi: 10.1111/BJH.16794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 212.Pizzanelli C., Milano C., Canovetti S., Tagliaferri E., Turco F., Verdenelli S., Nesti L., Franchi M., Bonanni E., Menichetti F., Volterrani D., Cosottini M., Siciliano G. Autoimmune limbic encephalitis related to SARS-CoV-2 infection: case-report and review of the literature. Brain Behav Immun Health. 2021;12 doi: 10.1016/J.BBIH.2021.100210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 213.Lui D.T.W., Lee C.H., Chow W.S., Lee A.C.H., Tam A.R., Fong C.H.Y., Law C.Y., Leung E.K.H., To K.K.W., Tan K.C.B., Woo Y.C., Lam C.W., Hung I.F.N., Lam K.S.L. Thyroid dysfunction in relation to immune profile, disease status, and outcome in 191 patients with COVID-19. J. Clin. Endocrinol. Metab. 2021;106:E926–E935. doi: 10.1210/CLINEM/DGAA813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 214.Muller I., Cannavaro D., Dazzi D., Covelli D., Mantovani G., Muscatello A., Ferrante E., Orsi E., Resi V., Longari V., Cuzzocrea M., Bandera A., Lazzaroni E., Dolci A., Ceriotti F., Re T.E., Gori A., Arosio M., Salvi M. SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol. 2020;8:739–741. doi: 10.1016/S2213-8587(20)30266-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 215.Cakir M., Guven B., Issi F., Ozkaya E. New-onset celiac disease in children during COVID-19 pandemic. Acta Paediatr. 2022;111:383–388. doi: 10.1111/APA.16173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 216.Toscano G., Palmerini F., Ravaglia S., Ruiz L., Invernizzi P., Cuzzoni M.G., Franciotta D., Baldanti F., Daturi R., Postorino P., Cavallini A., Micieli G. Guillain-barré syndrome associated with SARS-CoV-2. N. Engl. J. Med. 2020;382:2574–2576. doi: 10.1056/NEJMC2009191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Arnaud S., Budowski C., Ng Wing Tin S., Degos B. Post SARS-CoV-2 guillain-barré syndrome. Clin. Neurophysiol. 2020;131:1652–1654. doi: 10.1016/J.CLINPH.2020.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 218.Rahimi K. Guillain-Barre syndrome during COVID-19 pandemic: an overview of the reports. Neurol. Sci. 2020;41:3149–3156. doi: 10.1007/S10072-020-04693-Y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 219.Knack R.S., Hanada T., Knack R.S., Mayr K. Hashimoto's thyroiditis following SARS-CoV-2 infection. BMJ Case Rep. 2021;14 doi: 10.1136/BCR-2021-244909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 220.Zulfiqar A.-A., Lorenzo-Villalba N., Hassler P., Andrès E. Immune thrombocytopenic purpura in a patient with covid-19. N. Engl. J. Med. 2020;382:e43. doi: 10.1056/NEJMC2010472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 221.Bomhof G., Mutsaers P.G.N.J., Leebeek F.W.G., te Boekhorst P.A.W., Hofland J., Croles F.N., Jansen A.J.G. COVID-19-associated immune thrombocytopenia. Br. J. Haematol. 2020;190:e61. doi: 10.1111/BJH.16850. –e64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 222.Taxonera C., Fisac J., Alba C. Can COVID-19 trigger de novo inflammatory bowel disease? Gastroenterology. 2021;160:1029–1030. doi: 10.1053/J.GASTRO.2020.11.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 223.Gutiérrez-Ortiz C., Méndez-Guerrero A., Rodrigo-Rey S., San Pedro-Murillo E., Bermejo-Guerrero L., Gordo-Mañas R., de Aragón-Gómez F., Benito-León J. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020;95:E601–E605. doi: 10.1212/WNL.0000000000009619. [DOI] [PubMed] [Google Scholar]
- 224.Lantos J.E., Strauss S.B., Lin E. COVID-19-Associated miller Fisher syndrome: MRI findings. AJNR Am J Neuroradiol. 2020;41:1184–1186. doi: 10.3174/AJNR.A6609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 225.Biswas S., Ghosh R., Mandal A., Pandit A., Roy D., Sengupta S., De K., Swaika B.C., Benito-León J. COVID-19 induced miller Fisher syndrome presenting with autonomic dysfunction: a unique case report and review of literature. Neurohospitalist. 2022;12:111–116. doi: 10.1177/19418744211016709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 226.Barzegar M., Vaheb S., Mirmosayyeb O., Afshari-Safavi A., Nehzat N., Shaygannejad V. Can coronavirus disease 2019 (COVID-19) trigger exacerbation of multiple sclerosis? A retrospective study. Mult Scler Relat Disord. 2021;52 doi: 10.1016/J.MSARD.2021.102947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 227.Palao M., Fernández-Díaz E., Gracia-Gil J., Romero-Sánchez C.M., Díaz-Maroto I., Segura T. Multiple sclerosis following SARS-CoV-2 infection. Mult Scler Relat Disord. 2020;45 doi: 10.1016/J.MSARD.2020.102377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 228.Sarwar S., Rogers S., Mohamed A.S., Ogula E., Ayantayo R.A., Ahmed A., Shahzadi I., Kataria S., Singh R. Multiple sclerosis following SARS-CoV-2 infection: a case report and literature review. Cureus. 2021;13 doi: 10.7759/CUREUS.19036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 229.Muhammed L., Baheerathan A., Cao M., Leite M.I., Viegas S. MuSK antibody-associated myasthenia gravis with SARS-CoV-2 infection: a case report. Ann. Intern. Med. 2021;174:872–873. doi: 10.7326/L20-1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 230.Liquidano-Perez E., García-Romero M.T., Yamazaki-Nakashimada M., Maza-Morales M., Rivas-Calderón M.K., Bayardo-Gutierrez B., Pardo-Díaz E., Scheffler-Mendoza S.C. Juvenile dermatomyositis triggered by SARS-CoV-2. Pediatr. Neurol. 2021;121:26–27. doi: 10.1016/J.PEDIATRNEUROL.2021.05.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 231.Miglis M.G., Prieto T., Shaik R., Muppidi S., Sinn D.I., Jaradeh S. A case report of postural tachycardia syndrome after COVID-19. Clin. Auton. Res. 2020;30:449–451. doi: 10.1007/S10286-020-00727-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 232.Blitshteyn S., Whitelaw S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol. Res. 2021;69:205–211. doi: 10.1007/S12026-021-09185-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 233.Novelli L., Motta F., Ceribelli A., Guidelli G.M., Luciano N., Isailovic N., Vecellio M., Caprioli M., Clementi N., Clementi M., Mancini N., Selmi C., de Santis M. A case of psoriatic arthritis triggered by SARS-CoV-2 infection. Rheumatology. 2021;60:E21–E23. doi: 10.1093/RHEUMATOLOGY/KEAA691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 234.Derksen V.F.A.M., Kissel T., Lamers-Karnebeek F.B.G., van der Bijl A.E., Venhuizen A.C., Huizinga T.W.J., Toes R.E.M., Roukens A.H.E., van der Woude D. Onset of rheumatoid arthritis after COVID-19: coincidence or connected? Ann. Rheum. Dis. 2021;80:1096–1098. doi: 10.1136/ANNRHEUMDIS-2021-219859. [DOI] [PubMed] [Google Scholar]
- 235.wei Gao Z., Wang X., Lin F., Dong K. The correlation between SARS-CoV-2 infection and rheumatic disease. Autoimmun. Rev. 2020;19 doi: 10.1016/J.AUTREV.2020.102557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 236.Mantovani Cardoso E., Hundal J., Feterman D., Magaldi J. Concomitant new diagnosis of systemic lupus erythematosus and COVID-19 with possible antiphospholipid syndrome. Just a coincidence? A case report and review of intertwining pathophysiology. Clin. Rheumatol. 2020;39:2811–2815. doi: 10.1007/S10067-020-05310-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 237.Rubino F., Amiel S.A., Zimmet P., Alberti G., Bornstein S., Eckel R.H., Mingrone G., Boehm B., Cooper M.E., Chai Z., del Prato S., Ji L., Hopkins D., Herman W.H., Khunti K., Mbanya J.-C., Renard E. New-onset diabetes in covid-19. N. Engl. J. Med. 2020;383:789–790. doi: 10.1056/NEJMC2018688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 238.Unsworth R., Wallace S., Oliver N.S., Yeung S., Kshirsagar A., Naidu H., Kwong R.M.W., Kumar P., Logan K.M. New-onset type 1 diabetes in children during COVID-19: multicenter regional findings in the U.K. Diabetes Care. 2020;43:e170–e171. doi: 10.2337/DC20-1551. [DOI] [PubMed] [Google Scholar]
- 239.Marchand L., Pecquet M., Luyton C. Type 1 diabetes onset triggered by COVID-19. Acta Diabetol. 2020;57:1265–1266. doi: 10.1007/S00592-020-01570-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 240.Kumar G., Pillai S., Norwick P., Bukulmez H. Leucocytoclastic vasculitis secondary to COVID-19 infection in a young child. BMJ Case Rep. 2021;14 doi: 10.1136/BCR-2021-242192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 241.Akca U.K., Kesici S., Ozsurekci Y., Aykan H.H., Batu E.D., Atalay E., Demir S., Sag E., Vuralli D., Bayrakci B., Bilginer Y., Ozen S. Kawasaki-like disease in children with COVID-19. Rheumatol. Int. 2020;40:2105–2115. doi: 10.1007/S00296-020-04701-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 242.Talarico R., Stagnaro C., Ferro F., Carli L., Mosca M. Symmetric peripheral polyarthritis developed during SARS-CoV-2 infection. Lancet Rheumatol. 2020;2:e518–e519. doi: 10.1016/S2665-9913(20)30216-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 243.Parisi S., Borrelli R., Bianchi S., Fusaro E. Viral arthritis and COVID-19. Lancet Rheumatol. 2020;2:e655–e657. doi: 10.1016/S2665-9913(20)30348-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 244.Slouma M., Abbes M., Mehmli T., Dhahri R., Metoui L., Gharsallah I., Louzir B. Reactive arthritis occurring after COVID-19 infection: a narrative review. Infection. 2023;51:37. doi: 10.1007/S15010-022-01858-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 245.Chang R., Yen-Ting Chen T., Wang S.I., Hung Y.M., Chen H.Y., Wei C.C.J. Risk of autoimmune diseases in patients with COVID-19: a retrospective cohort study. EClinicalMedicine. 2023;56 doi: 10.1016/J.ECLINM.2022.101783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 246.Syed U., Subramanian A., Wraith D.C., Lord J.M., McGee K., Ghokale K., Nirantharakumar K., Haroon S. The incidence of immune mediated inflammatory diseases following COVID-19: a matched cohort study in UK primary care. medRxiv. 2022:2022. doi: 10.1101/2022.10.06.22280775. 10.06.22280775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 247.Tesch F., Ehm F., Vivirito A., Wende D., Batram M., Loser F., Menzer S., Jacob J., Roessler M., Seifert M., Kind B., König C., Schulte C., Buschmann T., Hertle D., Ballesteros P., Baßler S., Bertele B., Bitterer T., Riederer C., Sobik F., Reitzle L., Scheidt-Nave C., Schmitt J. Incident autoimmune diseases in association with a SARS-CoV-2 infection: a matched cohort study. medRxiv. 2023:2023. doi: 10.1101/2023.01.25.23285014. 01.25.23285014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 248.Agmon-Levin N., Paz Z., Israeli E., Shoenfeld Y. Vaccines and autoimmunity. Nat. Rev. Rheumatol. 2009;5:648–652. doi: 10.1038/nrrheum.2009.196. [DOI] [PubMed] [Google Scholar]
- 249.Ahmed S.S., Schur P.H., MacDonald N.E., Steinman L. Narcolepsy, 2009 A(H1N1) pandemic influenza, and pandemic influenza vaccinations: what is known and unknown about the neurological disorder, the role for autoimmunity, and vaccine adjuvants. J. Autoimmun. 2014;50:1–11. doi: 10.1016/j.jaut.2014.01.033. [DOI] [PubMed] [Google Scholar]
- 250.Salmon D.A., Vellozzi C., Chen R.T., Halsey N.A. Did the influenza A (H1N1) 2009 monovalent inactivated vaccines increase the risk for Guillain-Barre syndrome? Expet Rev. Clin. Immunol. 2013;9:795–797. doi: 10.1586/1744666X.2013.824686. [DOI] [PubMed] [Google Scholar]
- 251.Latorre D., Kallweit U., Armentani E., Foglierini M., Mele F., Cassotta A., Jovic S., Jarrossay D., Mathis J., Zellini F., Becher B., Lanzavecchia A., Khatami R., Manconi M., Tafti M., Bassetti C.L., Sallusto F. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature. 2018;562:63–68. doi: 10.1038/S41586-018-0540-1. [DOI] [PubMed] [Google Scholar]
- 252.Katzav A., Arango M.T., Kivity S., Tanaka S., Givaty G., Agmon-Levin N., Honda M., Anaya J.M., Chapman J., Shoenfeld Y. Passive transfer of narcolepsy: anti-TRIB2 autoantibody positive patient IgG causes hypothalamic orexin neuron loss and sleep attacks in mice. J. Autoimmun. 2013;45:24–30. doi: 10.1016/J.JAUT.2013.06.010. [DOI] [PubMed] [Google Scholar]
- 253.Partinen M., Kornum B.R., Plazzi G., Jennum P., Julkunen I., Vaarala O. Narcolepsy as an autoimmune disease: the role of H1N1 infection and vaccination. Lancet Neurol. 2014;13:600–613. doi: 10.1016/S1474-4422(14)70075-4. [DOI] [PubMed] [Google Scholar]
- 254.Grotto I., Mandel Y., Ephros M., Ashkenazi I., Shemer J. Major adverse reactions to yeast-derived hepatitis B vaccines--a review. Vaccine. 1998;16:329–334. doi: 10.1016/s0264-410x(97)00214-4. [DOI] [PubMed] [Google Scholar]
- 255.Kaplanski G., Retornaz F., Durand J., Soubeyrand J. Central nervous system demyelination after vaccination against hepatitis B and HLA haplotype. J. Neurol. Neurosurg. Psychiatry. 1995;58:758–759. doi: 10.1136/jnnp.58.6.758-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 256.Vital C., Vital A., Gbikpi-Benissan G., Longy-Boursier M., Climas M.T., Castaing Y., Canron M.H., Le Bras M., Petry K. Postvaccinal inflammatory neuropathy: peripheral nerve biopsy in 3 cases. J. Peripher. Nerv. Syst. 2002;7:163–167. doi: 10.1046/j.1529-8027.2002.02010.x. [DOI] [PubMed] [Google Scholar]
- 257.Geier D.A., Geier M.R. A case-control study of serious autoimmune adverse events following hepatitis B immunization. Autoimmunity. 2005;38:295–301. doi: 10.1080/08916930500144484. [DOI] [PubMed] [Google Scholar]
- 258.Hernán M.A., Jick S.S., Olek M.J., Jick H. Recombinant hepatitis B vaccine and the risk of multiple sclerosis: a prospective study. Neurology. 2004;63:838–842. doi: 10.1212/01.WNL.0000138433.61870.82. [DOI] [PubMed] [Google Scholar]
- 259.Bogdanos D.P., Smith H., Ma Y., Baum H., Mieli-Vergani G., Vergani D. A study of molecular mimicry and immunological cross-reactivity between hepatitis B surface antigen and myelin mimics. Clin. Dev. Immunol. 2005;12:217–224. doi: 10.1080/17402520500285247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 260.Ng P.L., Powell L.W., Campbell C.B. Guillain Barré syndrome during the pre-icteric phase of acute type B viral hepatitis. Aust. N. Z. J. Med. 1975;5:367–369. doi: 10.1111/J.1445-5994.1975.TB03274.X. [DOI] [PubMed] [Google Scholar]
- 261.Blitshteyn S. Postural tachycardia syndrome after vaccination with Gardasil. Eur. J. Neurol. 2010;17 doi: 10.1111/J.1468-1331.2010.03021.X. [DOI] [PubMed] [Google Scholar]
- 262.Brinth L., Theibel A.C., Pors K., Mehlsen J. Suspected side effects to the quadrivalent human papilloma vaccine. Dan Med J. 2015;62:A5064. [PubMed] [Google Scholar]
- 263.Brinth L.S., Pors K., Theibel A.C., Mehlsen J. Orthostatic intolerance and postural tachycardia syndrome as suspected adverse effects of vaccination against human papilloma virus. Vaccine. 2015;33:2602–2605. doi: 10.1016/J.VACCINE.2015.03.098. [DOI] [PubMed] [Google Scholar]
- 264.Palmieri B., Poddighe D., Vadalà M., Laurino C., Carnovale C., Clementi E. Severe somatoform and dysautonomic syndromes after HPV vaccination: case series and review of literature. Immunol. Res. 2017;65:106–116. doi: 10.1007/S12026-016-8820-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 265.Xia X. Detailed dissection and critical evaluation of the pfizer/BioNTech and moderna mRNA vaccines. Vaccines. 2021;9 doi: 10.3390/VACCINES9070734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 266.Lu S., xiu Xie X., Zhao L., Wang B., Zhu J., rui Yang T., wen Yang G., Ji M., ping Lv C., Xue J., hei Dai E., ming Fu X., qun Liu D., Zhang L., jie Hou S., lin Yu X., ling Wang Y., xia Gao H., han Shi X., wen Ke C., xia Ke B., guo Jiang C., tian Liu R. The immunodominant and neutralization linear epitopes for SARS-CoV-2. Cell Rep. 2021;34 doi: 10.1016/J.CELREP.2020.108666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 267.Tarke A., Sidney J., Kidd C.K., Dan J.M., Ramirez S.I., Yu E.D., Mateus J., da Silva Antunes R., Moore E., Rubiro P., Methot N., Phillips E., Mallal S., Frazier A., Rawlings S.A., Greenbaum J.A., Peters B., Smith D.M., Crotty S., Weiskopf D., Grifoni A., Sette A. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep Med. 2021;2 doi: 10.1016/J.XCRM.2021.100204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 268.Sarkizova S., Klaeger S., Le P.M., Li L.W., Oliveira G., Keshishian H., Hartigan C.R., Zhang W., Braun D.A., Ligon K.L., Bachireddy P., Zervantonakis I.K., Rosenbluth J.M., Ouspenskaia T., Law T., Justesen S., Stevens J., Lane W.J., Eisenhaure T., Lan Zhang G., Clauser K.R., Hacohen N., Carr S.A., Wu C.J., Keskin D.B. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat. Biotechnol. 2020;38:199–209. doi: 10.1038/S41587-019-0322-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

