Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2022 Dec 16;51(6):716–723. [Article in Chinese] doi: 10.3724/zdxbyxb-2022-0303

构建晚期肺癌患者继发周围神经病变列线图预测模型

Construction and validation of a nomogram for predicting the risk of secondary peripheral neuropathy in patients with advanced lung cancer

Niu YUAN 1, Zhanghong LYU 1
PMCID: PMC10262003  PMID: 36915978

Abstract

Objective

: To construct and validate a nomogram for predicting the risk of secondary peripheral neuropathy in patients with advanced lung cancer.

Methods

: The sociodemographic and clinical data of 335 patients with advanced lung cancer admitted to Department of Respiratory, the First Affiliated Hospital of Zhejiang University School of Medicine from May 2020 to May 2021 were retrospectively collected. Pearson correlation analysis, univariate and multivariate logistic regression analyses were used to identify the risk factors of secondary peripheral neuropathy in patients with advanced lung cancer. A nomogram was constructed according to the contribution of each risk factor to secondary peripheral neuropathy, and the receiver operating characteristic (ROC) curve, Calibration curve and clinical decision curve were used to evaluate differentiation, calibration, and the clinical utility of the model. The nomogram was further validated with data from 64 patients with advanced lung cancer admitted between June 2021 and August 2021.

Results

: The incidences of secondary peripheral neuropathy in two series of patients were 34.93% (117/335) and 40.63% (26/64), respectively. The results showed that drinking history ( OR=3.650, 95% CI: 1.523–8.746), comorbid diabetes ( OR=3.753, 95% CI: 1.396–10.086), chemotherapy ( OR=2.887, 95% CI: 1.046–7.970), targeted therapy ( OR=8.671, 95% CI: 4.107–18.306), immunotherapy ( OR=2.603, 95% CI: 1.337–5.065) and abnormal liver and kidney function ( OR=12.409, 95% CI: 4.739–32.489) were independent risk factors for secondary peripheral neuropathy (all P<0.05). A nomogram was constructed based on the above risk factors. The area under the ROC curve (AUC) of the nomogram for predicting the secondary peripheral neuropathy was 0.913 (95% CI: 0.882–0.944); and sensitivity, specificity, positive and negative predictive values were 85.47%, 81.65%, 71.43% and 91.28%, respectively. The Calibration curve and clinical decision curve showed good calibration and clinical utility. External validation results showed that the AUC was 0.764 (95% CI: 0.638–0.869); and sensitivity, specificity, positive and negative predictive values were 79.28%, 85.79%, 73.25% and 85.82%, respectively.

Conclusions

: Advanced lung cancer patients have a high risk of secondary peripheral neuropathy after anticancer therapy. Drinking history, comorbid diabetes, chemotherapy, targeted therapy, immunotherapy, abnormal liver and kidney function are independent risk factors. The nomogram prediction model constructed in the study is effective and may be used for the risk assessment of secondary peripheral neuropathy in patients with advanced lung cancer.

Keywords: Advanced lung cancer, Peripheral neuropathy, Risk factor, Prediction, Nomogram


受试者操作特征曲线(receiver operating characteristic curve,ROC曲线);曲线下面积(area under the curve,AUC);比值比(odds ratio,OR);置信区间(confidence interval,CI);表皮生长因子受体(epidermal growth factor receptor,EGFR);细胞毒性T淋巴细胞相关抗原(cytotoxic T lymphocyte-associated antigen,CTLA);血管内皮生长因子(vascular endothelial growth factor,VEGF);程序性死亡蛋白(programmed death,PD);程序性死亡受体配体(programmed death-ligand,PD-L);

肺癌是一种最为常见的呼吸系统恶性肿瘤,其发病率呈逐年上升趋势,且仍为癌症死因之 首 [1] 。 随着靶向治疗和免疫治疗药物研究的不断发展,晚期肺癌患者的预后有了极大的改善,但抗癌治疗可能引起包括周围神经病变在内的不良反应不同程度地影响了存活者的机体功能和生活质量 [ 2- 3] 。周围神经病变是指由于各种原因导致周围神经系统结构异常或功能损害,从而引发不同程度的神经传导功能障碍、神经轴索中断或神经断裂 等 [4] , 以躯体感觉减退、运动功能降低或自主神经功能障碍为主要临床表现,通常主要是感觉(麻木、刺痛、疼痛)、运动(虚弱、痉挛)和自主神经(低血压、肠或膀胱功能障碍)等临床症状的组合 [5] ,可能造成患者跌倒坠床损伤、烫伤、生活自理能力下降等,不仅严重影响患者的机体功能,导致其生活质量下降,甚至会中断患者的治疗,错过抗肿瘤治疗的最佳时机,最终降低其存活率。

目前,国内外学者对化疗引起的周围神经病变的发病率、危险因素和发生机制虽已有较多研究 [6] ,但尚缺乏对晚期肺癌患者内科治疗过程中继发周围神经病变的预测模型构建的探讨。本研究旨在构建晚期肺癌患者继发周围神经病变列线图预测模型,并对模型进行内外部验证以评估其应用价值,以期提供晚期肺癌患者继发周围神经病变的筛查工具,从源头上采取积极的预防措施,降低晚期肺癌患者周围神经病变发病率,改善患者的生活质量。

资料与方法

研究对象

回顾性收集浙江大学医学院附属第一医院呼吸内科2020年5月至2021年5月收治的335例晚期肺癌患者作为模型组,前瞻性选取该科室2021年6月至8月收治的64例晚期肺癌患者作为验证组。纳入标准:①经细胞学或组织病理学确诊为晚期肺癌且预计生存期6个月及以上者;②年龄18岁及以上者;③既往无周围神经病变史者;④临床资料完整者;⑤意识清晰、具有良好的沟通能力者。排除标准:①既往有周围神经病变史或合并其他神经系统疾病者;②存在意识或精神障碍者;③因脑转移或肢体转移出现神经压迫症状者;④病历资料不完整者。本研究方案通过浙江大学医学院附属第一医院伦理委员会审查(IIT20220568A),豁免患者知情同意。

诊断标准

参照美国国家癌症研究所常见不良反应事件评价标准5.0版诊断周围神经病变 [7] ,并以出现感觉麻木或缺失、刺痛感、灼烧感等感觉功能障碍以及肌无力等运动功能障碍为依据对病变程度进行分析:①0级为无神经症状;②Ⅰ级为出现感觉或运动障碍神经症状,但不影响功能;③Ⅱ级为影响感觉或运动神经功能,但不影响日常活动;④Ⅲ级为不仅影响感觉或运动神经功能,而且影响日常活动;⑤Ⅳ级为感觉或运动神经功能及日常活动长期受到严重影响。

资料收集

通过门诊或电话方式进行随访,了解晚期肺癌患者接受规范治疗后3个月内是否继发周围神经病变,通过调查问卷和查阅病历获取研究对象的社会人口统计学资料(性别、年龄)和临床特征资料(肿瘤分型、吸烟史、饮酒史、合并甲亢、合并糖尿病、肝肾功能、化疗、靶向治疗、免疫治疗)。其中,肝肾功能异常是指血清谷氨酸转氨酶、天冬氨酸转氨酶、碱性磷酸酶、肌酐或尿氮素中至少一项异常。使用自制调查问卷收集验证组的独立预测因子资料进行列线图的外部验证。

统计学方法

运用SPSS 25.0软件进行统计分析。计数资料以例数(百分比)[ n(%)]表示,组间比较采用 χ 2检验;正态分布的计量资料以均数±标准差( x¯±s )表示,组间比较采用 t检验。通过Pearson相关性分析、单因素和多因素logistic回归分析确定晚期肺癌患者继发周围神经病变的独立危险因素,以 P<0.05为差异有统计学意义。将所得独立危险因素引入R4.1.3软件,构建列线图模型。绘制ROC曲线、Calibration校准曲线和临床决策曲线,评价列线图预测模型的区分度、校准度和临床效用。采用Hosmer-Lemeshow拟合优度检验评估列线图预测模型的准确度。

结果

晚期肺癌患者继发周围神经病变情况

模型组335例患者中,117例继发周围神经病变,发病率为34.93%,其中Ⅰ级46例、Ⅱ级 59例、Ⅲ级11例、Ⅳ级1例;验证组64例患者中,26例于药物治疗干预后3个月内继发周围神经病变,发病率为40.63%,其中Ⅰ级9例、Ⅱ级15例、Ⅲ级2例。

晚期肺癌患者继发周围神经病变的危险因素

Pearson相关性分析和单因素分析结果显示,模型组继发周围神经病变的患者中男性、饮酒史、合并糖尿病、化疗、靶向治疗、免疫治疗和肝肾功能异常者的比例较高(均 P<0.05),提示这些因素可能与患者是否继发周围神经病变相关,见 表1。根据Pearson相关性分析和单因素分析结果,纳入性别(0=女,1=男)、饮酒史(0=否,1=是)、合并糖尿病(0=否,1=是)、化疗(0=否,1=是)、靶向治疗(0=否,1=是)、免疫治疗(0=否,1=是)和肝肾功能异常(0=否,1=是)等指标进行多因素logistic回归分析,结果显示饮酒史、合并糖尿病、化疗、靶向治疗、免疫治疗和肝肾功能异常是影响晚期肺癌患者继发周围神经病变的独立危险因素,见 表2

表1 晚期肺癌患者继发周围神经病变影响因素的单因素分析和Pearson相关性分析结果

Table1 Results of univariate analysis and Pearson correlation analysis of risk factors for secondary peripheral neuropathy in patients with advanced lung cancer

[ x¯±s n(%)]

变量

继发周围神经病变 ( n=117)

未继发周围神经病变 ( n=218)

t/ χ 2

r/ r s

年龄(岁)

68.82±8.06

64.47±10.53

–0.316

–0.010

男性 **

92(78.6)

136(62.4)

9.245

–0.166

肿瘤分型

 

腺癌

61(52.1)

110(50.5)

1.095

0.021

鳞癌

38(32.5)

67(30.7)

大细胞癌

6(5.1)

10(4.6)

小细胞肺癌

12(10.3)

31(14.2)

吸烟史

53(45.3)

81(37.2)

2.104

0.034

饮酒史 **

108(92.3)

136(62.4)

34.455

0.321

合并甲状腺功能亢进

1(0.9)

2(0.9)

0.003

0.002

合并糖尿病 *

21(17.9)

19(8.7)

6.173

0.136

化疗 **

110(94.0)

134(61.5)

40.770

0.349

靶向治疗 **

102(87.2)

59(27.1)

110.225

0.541

免疫治疗 **

77(65.8)

52(23.9)

56.608

0.411

肝肾功能异常 **

57(48.7)

9(4.1)

95.688

0.534

Pearson相关性分析与单因素logistic回归分析结果 P值一致, * P<0.05, ** P<0.01.

表2 晚期肺癌患者继发周围神经病变的多因素logistic回归分析结果

Table2 Results of multivariate logistic regression analysis of risk factors for secondary peripheral neuropathy in patients with advanced lung cancer

变量

B

SE

Wald χ 2

P

OR

95% CI

男性

0.388

0.421

0.849

>0.05

1.474

0.646~3.366

饮酒史

1.295

0.446

8.429

<0.01

3.650

1.523~8.746

合并糖尿病

1.322

0.504

6.873

<0.01

3.753

1.396~10.086

化疗

1.060

0.518

4.189

<0.05

2.887

1.046~7.970

靶向治疗

2.160

0.381

32.098

<0.01

8.671

4.107~18.306

免疫治疗

0.957

0.340

7.927

<0.01

2.603

1.337~5.065

肝肾功能异常

2.518

0.491

26.299

<0.01

12.409

4.739~32.489

常数项

–4.891

0.665

54.135

<0.01

0.008

—:无相关数据.

晚期肺癌患者继发周围神经病变列线图预测模型的构建

根据多因素logistic回归分析结果,将饮酒史、合并糖尿病、化疗、靶向治疗、免疫治疗和肝肾功能异常等因素引入R4.1.3软件,构建晚期肺癌患者继发周围神经病变的列线图,见 图1。列线图评分饮酒史为51分、合并糖尿病为52分、化疗为 42分、靶向治疗为84分、免疫治疗为37分、肝肾功能异常为98分。以上6个危险因素得分总分对应继发周围神经病变预测概率。

图1 .


图1

晚期肺癌患者继发周围神经病变的列线图预测模型

晚期肺癌患者继发周围神经病变列线图预测模型的验证

ROC曲线分析结果显示,列线图预测模型组继发周围神经病变的曲线下面积为0.913(95% CI:0.882~0.944),敏感度为85.47%,特异度为81.65%,阳性和阴性预测值分别为71.43%和91.28%,表明该列线图预测模型有良好的区分度,见 图2A;Calibration校准曲线示列线图预测继发周围神经病变概率与实际概率接近( 图2B),Hosmer-Lemeshow检验结果 χ 2=7.2864( P>0.05),表明该列线图模型预测的继发周围神经病变风险与实际发生风险一致性良好,提示该列线图模型有良好的校准度;采用选择性剔除饮酒史构建对照列线图,并与本研究构建的列线图进行性能比较,临床决策曲线分析结果本研究构建的列线图优于对照列线图( 图2C),表明本研究列线图模型有良好的临床效用。外部验证结果显示,用列线图预测验证组继发周围神经病变的曲线下面积为0.764(95% CI:0.638~0.869),敏感度为79.28%,特异度为85.79%,阳性和阴性预测值分别为73.25%和85.82%,Calibration校准曲线示预测概率与实际概率接近,见 图3。提示该预测模型有良好的区分度和校准度。

图2 .


图2

晚期肺癌患者继发周围神经病变列线图预测模型的内部验证结果

A:受试者操作特征曲线;B:Calibration校准曲线;C:临床决策曲线.

图3 .


图3

晚期肺癌患者继发周围神经病变列线图预测模型的外部验证结果

A:受试者操作特征曲线;B:Calibration校准曲线

讨论

癌症患者在恶性肿瘤发展的各个阶段均有可能继发周围神经病变,可能与肿瘤特性和治疗方式相关 [ 8- 9] 。Nurgalieva等 [10] 对老年乳腺癌、卵巢癌和肺癌患者化疗致周围神经病变的发生率开展大型人群队列研究发现,老年肺癌患者化疗致周围神经病变的人年发病率为18.3‰;Shah等 [11] 通过一项队列研究发现癌症患者化疗致周围神经病变的发病率为52.7%。本文资料显示,晚期肺癌患者抗癌治疗期间继发周围神经病变的实际概率分别为34.93%和40.63%,发生率较高,临床应引起重视,并积极做好预防措施。

正确认识并有效控制晚期肺癌继发周围神经病变的危险因素有助于临床提前预防和干预。本文资料显示,饮酒史、合并糖尿病、化疗、靶向治疗、免疫治疗和肝肾功能异常是影响晚期肺癌患者继发周围神经病变的独立危险因素。Julian等 [12] 通过荟萃分析探究了长期酗酒者中周围神经病变的发生率,结果显示酒精性周围神经病变的发生率为46.3%。长期饮酒增加周围神经病变发生风险的原因可能是,长期酒精摄入影响维生素B1的胃肠道吸收以及组织利用,导致周围神经脱髓鞘病变及轴索变性 [ 13- 14] ,还可能与氧化应激和促炎性细胞因子的释放有关 [15] 。此外,有饮酒史的患者肝功能异常的比例更高,而本文资料显示肝功能异常是晚期肺癌患者继发周围神经病变的又一独立危险因素。Williams等 [16] 通过队列研究发现,非酒精性脂肪肝纤维化与下肢振动感觉阈值升高相关,表明肝功能异常可能与周围神经功能障碍相关。除肝功能外,肾功能异常也可能与周围神经病变相关,如Moorthi等 [17] 研究结果显示,慢性肾功能不全与感觉和自主神经功能改变有关。Zhao等 [18] 的动物研究结果显示,肝肾功能异常导致神经病变风险增加的原因可能是肝肾脏器中的 D-氨基酸氧化酶会引起神经性疼痛。

糖尿病会引发包括周围神经病变在内的多种慢性并发症。研究显示,成人糖尿病患者周围神经病变的发生率为6%~51%,发病机制主要为血糖代谢紊乱、血管舒缩障碍及神经营养不良等 [ 19- 20] 。鉴于糖尿病与周围神经病变密切相关,临床上对于糖尿病继发周围神经病变的患者须仔细排查病因,如Yao等 [21] 报道了一例糖尿病患者继发痛性周围神经病变的真实病因在于肺癌。

除上述因素外,本文资料提示晚期肺癌患者继发周围神经病变的其他独立危险因素与抗癌治疗均相关。化疗极易导致周围神经病变,国内学者进行现况调查发现化疗相关周围神经病变的发生率为74.02% [22] 。化疗导致周围神经病变的发生主要与铂类药物、紫杉烷类、长春花生物碱、硼替佐米和沙利度胺的使用有关 [23] ,机制错综复杂,可能与氧化应激、凋亡机制、钙稳态改变、轴突变性以及神经炎症等有关 [ 24- 25] 。除化疗药物外,靶向治疗和免疫治疗均可引发神经毒性副反应,继发周围神经病变概率与使用的药物类别相关,其中CD30单克隆抗体抗癌治疗后继发周围神经病变概率最高(57%),其次为Her-2靶向药物(33%)、EGFR靶向药物(16%)、CD20单抗(11%)、CD52单抗(5%~15%)、CTLA4单抗(1.5%)、VEGF靶向药物(1.3%~2.2%)和免疫抑制剂PD1/PD-L1单抗(1%) [ 26- 27] 。靶向治疗或免疫治疗致周围神经病变发生机制可能与BMP-Smad 1/5/8信号转导通路及神经炎症相关 [ 28- 29] 。此外,一项系统评价结果显示,与单独化疗比较,免疫治疗联合化疗可增加患者继发周围神经病变的风险 [30]

本研究根据以上分析结果构建风险预测模型,内部验证与外部验证结果均表明模型具有良好的区分度和准确度。研究模型纳入危险因素均为便于获取的患者临床特征,相较于以往研究采用的预测方法更易于临床推广使用 [31] 。但本研究仍存在一定的局限性:首先,本研究构建的列线图预测模型基于单中心回顾性队列研究设计,样本量偏少;其次,受资料完整性的影响,本研究未能对放疗和给药途径这两个潜在危险因素进行分析,也未就肝肾功能异常指标展开分析;最后,列线图预测模型的外部时段验证样本量较小。因此,未来需要更大的样本量以多中心前瞻性队列设计验证列线图预测模型的临床效用。

综上,晚期肺癌患者抗癌治疗后继发周围神经病变的风险较高,饮酒史、合并糖尿病、化疗、靶向治疗、免疫治疗和肝肾功能异常是晚期肺癌患者继发周围神经病变的独立危险因素,以此构建的列线图预测模型效果良好,可为临床个体化评估晚期肺癌患者继发周围神经病变风险提供工具。

COMPETING INTERESTS

所有作者均声明不存在利益冲突

Funding Statement

浙江省教育厅一般科研项目(Y202249955)

References

  • 1.BADE B C, DELA CRUZ C S. Lung cancer 2020[J] Clin Chest Med. . 2020;41(1):1–24. doi: 10.1016/j.ccm.2019.10.001. [DOI] [PubMed] [Google Scholar]
  • 2.SŁAWIŃSKI G, WRONA A, DĄBROWSKA-KUGACKA A, et al. Immune checkpoint inhibitors and cardiac toxicity in patients treated for non-small lung cancer: a review[J] Int J Mol Sci. . 2020;21(19):7195. doi: 10.3390/ijms21197195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.HUNG H W, LIU C Y, CHEN H F, et al. Impact of chemotherapy-induced peripheral neuropathy on qua-lity of life in patients with advanced lung cancer receiving platinum-based chemotherapy[J] Int J Environ Res Public Health. . 2021;18(11):5677. doi: 10.3390/ijerph18115677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.HEAD K A. Peripheral neuropathy: pathogenic mechanisms and alternative therapies[J]. Altern Med Rev, 2006, 11(4): 294-329 . [PubMed]
  • 5.KANZAWA-LEE G A. Chemotherapy-induced peripheral neuropathy[J] J Infusion Nurs. . 2020;43(3):155–166. doi: 10.1097/NAN.0000000000000368. [DOI] [PubMed] [Google Scholar]
  • 6.SERETNY M, CURRIE G L, SENA E S, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta- analysis[J] Pain. . 2014;155(12):2461–2470. doi: 10.1016/j.pain.2014.09.020. [DOI] [PubMed] [Google Scholar]
  • 7.National Institutes of Health, National Cancer Institute. Common terminology criteria for adverse events (CTCAE) version 5.0[S/OL]. (2017-12-27)[2022-06-01]. https://academy.myeloma.org.uk/wp-content/uploads/2015/04/CTCAE_v5.pdf
  • 8.MARTÍNEZ B, CANSER E, GREDILLA E, et al. Management of patients with chronic pelvic pain associated with endometriosis refractory to conventional treatment[J] Pain Pract. . 2013;13(1):53–58. doi: 10.1111/j.1533-2500.2012.00559.x. [DOI] [PubMed] [Google Scholar]
  • 9.SAREZKY J, SACHS G, ELINZANO H, et al. Cancer and peripheral nerve disease[J] Clin Geriatric Med. . 2021;37(2):289–300. doi: 10.1016/j.cger.2021.01.003. [DOI] [PubMed] [Google Scholar]
  • 10.NURGALIEVA Z, XIA R, LIU C C, et al. Risk of chemotherapy-induced peripheral neuropathy in large population-based cohorts of elderly patients with breast, ovarian, and lung cancer[J] Am J Ther. . 2010;17(2):148–158. doi: 10.1097/MJT.0b013e3181a3e50b. [DOI] [PubMed] [Google Scholar]
  • 11.SHAH A, HOFFMAN E M, MAUERMANN M L, et al. Incidence and disease burden of chemotherapy-induced peripheral neuropathy in a population-based cohort[J] J Neurol Neurosurg Psychiatry. . 2018;89(6):636–641. doi: 10.1136/jnnp-2017-317215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.JULIAN T, GLASCOW N, SYEED R, et al. Alcohol-related peripheral neuropathy: a systematic review and meta- analysis[J] J Neurol. . 2019;266(12):2907–2919. doi: 10.1007/s00415-018-9123-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.范志荣, 韩彦青, 王 敏, 等. 酒精性周围神经病的治疗新进展及展望[J/CD]. 中华临床医师杂志(电子版), 2016, 10(6): 869-872 ; FAN Zhirong, HAN Yanqing, WANG Min, et al. New progress and future prospects for the treatment of alcoholic peripheral neuropathy[J/CD]. Chinese Journal of Clinicians (Electronic Edition), 2016, 10(6): 869-872. (in Chinese)
  • 14.CASTELLI G, DESAI K M, CANTONE R E. Peripheral neuropathy: evaluation and differential diagnosis[J]. Am Fam Physician, 2020, 102(12): 732-739 . [PubMed]
  • 15.CHOPRA K, TIWARI V. Alcoholic neuropathy: possible mechanisms and future treatment possibilities[J] Br J Clin Pharmacol. . 2012;73(3):348–362. doi: 10.1111/j.1365-2125.2011.04111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.WILLIAMS K H, BURNS K, CONSTANTINO M, et al. An association of large-fibre peripheral nerve dysfunction with non-invasive measures of liver fibrosis secondary to non-alcoholic fatty liver disease in diabetes[J] J Diabetes Complications. . 2015;29(8):1240–1247. doi: 10.1016/j.jdiacomp.2015.06.015. [DOI] [PubMed] [Google Scholar]
  • 17.MOORTHI R N, DOSHI S, FRIED L F, et al. Chronic kidney disease and peripheral nerve function in the Health, Aging and Body Composition Study[J] Nephrol Dial Transplant. . 2019;34(4):625–632. doi: 10.1093/ndt/gfy102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.ZHAO W J, GAO Z Y, WEI H, et al. Spinal D-amino acid oxidase contributes to neuropathic pain in rats[J] . J Pharmacol Exp Ther. . 2010;332(1):248–254. doi: 10.1124/jpet.109.158816. [DOI] [PubMed] [Google Scholar]
  • 19.HICKS C W, SELVIN E. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes[J] Curr Diab Rep. . 2019;19(10):86. doi: 10.1007/s11892-019-1212-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.周海平, 周 君, 杨 涛, 等. 糖尿病周围神经病变的发病机制及相关生物学标志物研究进展[J]. 中华糖尿病杂志, 2021, 13(2): 187-190 ; ZHOU Haiping, ZHOU Jun, YANG Tao, et al. Advances in biomarkers associated with the pathogenesis of diabetic peripheral neuropathy[J]. Chinese Journal of Diabetes Mellitus, 2021, 13(2): 187-190. (in Chinese)
  • 21.YAO H B, CHEN Y N, SHANG J, et al. Painful neuropathy in a diabetic patient resulting from lung cancer and not diabetes: a case report[J] Oncol Lett. . 2015;10(6):3850–3852. doi: 10.3892/ol.2015.3808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.洪悦颖, 徐 晨, 于海燕, 等. 癌症患者化疗所致周围神经病变及影响因素分析[J]. 中华护理教育, 2019, 16(12): 892-896 ; HONG Yueying, XU Chen, YU Haiyan, et al. Prevalence and predictors of chemotherapy-induced peripheral neuropathy in patients with cancer[J]. Chinese Journal of Nursing Education, 2019, 16(12): 892-896. (in Chinese)
  • 23.BURGESS J, FERDOUSI M, GOSAL D, et al. Chemotherapy-induced peripheral neuropathy: epidemiology, pathomechanisms and treatment[J] Oncol Ther. . 2021;9(2):385–450. doi: 10.1007/s40487-021-00168-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.STAROBOVA H, VETTER I. Pathophysiology of chemotherapy-induced peripheral neuropathy[J] Front Mol Neurosci. . 2017;10:174. doi: 10.3389/fnmol.2017.00174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.WASEEM M, KAUSHIK P, TABASSUM H, et al. Role of mitochondrial mechanism in chemotherapy-induced peripheral neuropathy[J] Curr Drug Metab. . 2018;19(1):47–54. doi: 10.2174/1389200219666171207121313. [DOI] [PubMed] [Google Scholar]
  • 26.HORTA E, BONGIORNO C, EZZEDDINE M, et al. Neurotoxicity of antibodies in cancer therapy: a review[J] Clin Neurol Neurosurg. . 2020;188:105566. doi: 10.1016/j.clineuro.2019.105566. [DOI] [PubMed] [Google Scholar]
  • 27.ROTH P, WINKLHOFER S, MÜLLER A M S, et al. Neurological complications of cancer immunotherapy[J] Cancer Treatment Rev. . 2021;97:102189. doi: 10.1016/j.ctrv.2021.102189. [DOI] [PubMed] [Google Scholar]
  • 28.HEGARTY S V, O’KEEFFE G W, SULLIVAN A M. BMP-Smad 1/5/8 signalling in the development of the nervous system[J] Prog Neurobiol. . 2013;109:28–41. doi: 10.1016/j.pneurobio.2013.07.002. [DOI] [PubMed] [Google Scholar]
  • 29.ZHAO Z, ZHANG C, ZHOU L, et al. Immune checkpoint inhibitors and neurotoxicity[J] Curr Neuropharmacol. . 2021;19(8):1246–1263. doi: 10.2174/1570159X19666201230151224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.SI Z, ZHANG S, YANG X, et al. The association between the incidence risk of peripheral neuropathy and PD-1/PD-L1 inhibitors in the treatment for solid tumor patients: a systematic review and meta- analysis[J] Front Oncol. . 2019;9:866. doi: 10.3389/fonc.2019.00866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.WON H H, LEE J, PARK J O, et al. Polymorphic markers associated with severe oxaliplatin-induced, chronic peripheral neuropathy in colon cancer patients[J] Cancer. . 2012;118(11):2828–2836. doi: 10.1002/cncr.26614. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES