Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2023 Feb 14;51(6):738–749. [Article in Chinese] doi: 10.3724/zdxbyxb-2022-0180

成纤维细胞生长因子在中枢神经系统疾病中的作用

Research progress of fibroblast growth factor in nervous system diseases

Wenting HUANG 1, Wanhua QIU 2, Kun CHEN 2, Shasha YE 2, Dongxue WANG 2, Jian HU 2, Huiqin XU 1, Li LIN 2, Xiaokun LI 2
PMCID: PMC10262007  PMID: 36915973

Abstract

Fibroblast growth factors (FGF) are a group of structurally related polypeptides which constitute an elaborate signaling system with their receptors. Evidence accumulated in the years suggests that the FGF family plays a key role in the repair of central nervous system injury. The main protective mechanisms include activating the expression of PI3K-Akt, peroxisome proliferator-activated receptor (PPARγ) and other signals; inhibiting NF-κB-mediated inflammatory response, oxidative stress and apoptosis; regulating neuronal differentiation and neuronal excitability as well as participating in protection of neurovascular units and nerve function repair. This paper comprehensively summarizes the latest research progress in FGF signaling related to diseases of the central nervous system such as cerebral infarction, cerebral hemorrhage, traumatic brain injury, Alzheimer’s disease, Parkinson’s disease, epilepsy and depression, aiming to provide scientific basis and reference for the development of innovative FGF drugs for the prevention and treatment of neurological diseases.

Keywords: Fibroblast growth factor, Cerebral infarction, Cerebral hemorrhage, Traumatic brain injury, Alzheimer’s disease, Parkinson’s disease, Epilepsy, Depressive disorder, Review


阿尔茨海默病(Alzheimer’s disease,AD);成纤维细胞生长因子(fibroblast growth factor,FGF);FGF受体(FGF receptor,FGFR);促分裂原活化的蛋白激酶(mitogen-activated protein kinase,MAPK);磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K);蛋白激酶B(protein kinase B,Akt);过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor,PPARγ);磷脂酶Cγ(phospholipase Cγ,PLCγ);大脑中动脉栓塞(middle cerebral artery occlusion,MCAO);鞘氨醇-1-磷酸(sphingosine-1-phosphate,S1P);AMP活化蛋白激酶(AMP-activated protein kinase,AMPK);血小板衍生生长因子受体(platelet-derived growth factor receptor,PDGFR);S1P受体(S1P receptor,S1PR);B细胞淋巴瘤蛋白(B cell lymphoma protein,Bcl);胱天蛋白酶(cysteine aspartic acid specific protease,caspase);核因子-κB(nuclear factor-κB,NF-κB);胞外信号调节激酶(extracellular signal-regulated kinase,ERK);信使RNA(messenger RNA,mRNA);白介素(interleukin,IL);诱生型一氧化氮合酶(inducible nitric oxide synthase,iNOS);糖原合成酶激酶(glycogen synthase kinase,GSK);β淀粉样蛋白(amyloid β-protein,Aβ);1-甲基-4-苯基-1,2,3,6-四氢吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP);

脑科学研究是当下神经科学的研究前沿,也是解决神经、精神疾病的重要突破口 [1] 。近年来,随着人口老龄化和人类工作、生活压力的日渐增大,神经系统疾病发病率逐年上升,已成为全球人口死亡的主要原因之一 [2] 。目前,神经系统疾病主要包括脑血管疾病、神经退行性疾病和脑肿瘤等,其中脑梗死、脑出血、帕金森病、癫痫和AD已成为世界性卫生保健难题 [3] 。这些神经系统疾病均是一个多因素且复杂的动态病理过程,具体发病机制尚未阐明,也缺乏有效的治疗手段,药物仅可改善其症状 [4] 。因此,寻求更为安全、有效的药物治疗这些神经系统疾病具有重大的临床意义和社会价值。

目前,FGF因其在加速伤口愈合中具有重要作用而在皮肤创伤修复方面广为人知 [5] 。然而,FGF的功能并不局限于促细胞生长,研究发现部分FGF在中枢神经系统中发挥了重要作用,从对大脑结构生长的影响扩展到调节神经发生、轴突生长、神经保护、学习、记忆以及神经元组织的维护和修复等各个方面 [ 6- 9] 。FGF家族由18个分泌蛋白和4个细胞内蛋白组成。FGF与其相应受体(FGFR1~4)、辅因子在细胞外结合,激活FGFR特定的酪氨酸残基从而激活胞质内RAS-MAPK、PI3K-Akt、PPARγ和PLCγ等信号参与早期胚胎发育、器官发生以及成年后组织、器官的修复和再 生 [ 10- 11] 。 本文旨在总结FGF信号在脑梗死、脑出血、创伤性脑损伤、帕金森病、AD、癫痫和抑郁症等中枢神经系统疾病中的研究成果,以期为开发FGF相关神经系统疾病治疗药物提供参考。

FGF在脑梗死中的作用

脑梗死是由于脑血管堵塞导致局部脑组织缺血、缺氧而引发的神经功能损伤。长期以来,静脉注射重组组织纤溶酶原激活剂是脑梗死治疗的唯一药物。然而,狭窄的治疗窗和出血等不良反应限制了其广泛应用。研究发现,FGF在MCAO构建的脑梗死动物模型中具有血管生成和神经营养的特性,可能是治疗脑梗死的有效 药物 [12]

FGF1与神经和血管再生的作用

FGF1是一种具有神经保护和再生作用的营养因子。早在1994年,Hara等 [13] 检测了通过MCAO构建的大鼠脑梗死模型中的内源性FGF1表达,发现脑内神经元和巨噬细胞中均出现FGF1阳性染色,且缺血性损伤可刺激FGF1表达。由于血脑屏障的作用,FGF1通常不能自由进入脑内。鼻内给药方式可以使FGF1绕过血脑屏障直接进入中枢神经系统,而不会产生全身不良反应。研究证实,大鼠在MCAO后通过鼻腔连续 6 d给予FGF1,其运动神经功能得到明显改善,虽然梗死体积未获得有效减少,但缺血边界区血管明显增加,可见FGF1能促进局灶性脑缺血后神经新生和血管新生 [14] 。另有研究表明,纤维蛋白胶混合FGF1可减轻缺血性脑损伤和小胶质细胞浸润,延长FGF1对受损脑组织的保护和再生作用 [15] 。但是,由于FGF1具有强大的促细胞有丝分裂活性,科学界对其临床安全性提出了质疑。近年来,研究人员通过基因工程的方法对FGF1氨基酸序列进行改造与修饰,获得非有丝分裂的FGF1,大大提高了其安全性 [ 16- 17] 。Xu等 [18] 研究发现,鼻腔给予非有丝分裂的FGF1可显著促进脑梗死小鼠的血管生成,其机制主要是通过与FGFR1结合从而激活S1P1相关通路。此外,非有丝分裂的FGF1还能够通过AMPK信号促进血管生成来调节2型糖尿病合并脑梗死小鼠的糖脂代谢 [19]

FGF2与神经元的保护作用

FGF2既是一种有效的神经营养因子,也是一种血管活性肽,对大脑神经元、神经胶质细胞和内皮细胞都具有保护作用。早在1991年,Yamada等 [20] 发现侧脑室注射FGF2 4周(1 μg/周)可抑制大鼠MCAO造成的丘脑神经元萎缩,胶质纤维酸性蛋白阳性星型胶质细胞数增多,但对脑梗死体积无显著影响。另一项临床研究对170例急性脑梗死患者的血清进行分析发现,脑梗死后 2 d血清中FGF2的含量最高,而后逐渐降低,但给予丁苯酞治疗后患者血清中FGF2显著升 高 [21] 。 动物研究证实,MCAO模型可引起星形胶质细胞及神经元中内源性FGF2表达,并与皮层区域缺血损伤的严重程度有关 [22] 。缺血损伤可明显诱导缺血半球中FGF2和FGFR1的表达,FGF2的增加上调了PDGFRβ的表达,同时增强了PDGFRβ介导的周细胞功能 [23] 。Wei等 [24] 发现大鼠局灶性脑缺血后,内源性FGF2表达增加,在纹状体中,星形胶质细胞可能通过FGF2在保护神经元中发挥重要作用;而在皮层中,神经元可能在激活素A的诱导下通过自身表达FGF2来发挥自我保护作用。也有研究发现,FGF2通过促进神经干细胞增殖并向神经元、星形胶质细胞和少突胶质细胞分化,同时降低缺血脑组织的DNA片段化,防止缺血脑中Bcl-2表达下调和细胞凋亡减少,从而有利于缺血脑损伤的修复 [25] 。FGF2通过鼻内给药可直接进入大脑,诱导齿状回室下区和粒下区祖细胞的增殖,促进脑缺血后成年大鼠的神经发生,对脑缺血再灌注有保护作 用 [ 26- 27] 。 此外,脑梗死还可导致血脑屏障的破坏。Lin等 [28] 证实FGF2对血脑屏障的完整性具有很强的保护作用,这种保护作用至少部分与抑制氧糖剥夺再灌注诱导的S1PR1蛋白的下调有关。

FGF10与神经血管单元的保护作用

在氧糖剥夺诱导的小鼠原代皮层神经元模型中,FGF10通过降低乳酸脱氢酶的释放抑制caspase-3、caspase-8和caspase-9活性,同时促进血红素加氧酶-1的表达等作用保护氧糖剥夺后神经元活力 [29] 。在通过MCAO构建的脑梗死小鼠中,神经元可被诱导表达内源性FGF10,而星型胶质细胞中不表达FGF10,同时脑脊液中也可检测到FGF10;外源性补充FGF10可以通过PI3K-Akt和NF-κB信号通路显著减轻脑缺血损伤 [30] 。此外,FGF10对新生大鼠缺氧缺血性脑损伤同样具有神经保护作用,其主要通过抑制神经元凋亡、改善血脑屏障破坏等途径保护神经血管 单元 [31]

FGF21与神经炎症的抑制作用

作为FGF家族的内分泌型成员,外源性重组人FGF21可通过NF-κB和PPARγ信号通路调节小胶质细胞/巨噬细胞介导的神经炎症,促进小鼠MCAO后运动神经功能恢复 [32] 。Ye等 [33] 研究表明,重组人FGF21可通过FGF21-FGFR1-β-klotho复合物激活下游PI3K-Akt信号通路,从而抑制新生大鼠缺氧缺血性脑损伤导致的神经元凋亡。FGF21还通过AMPK依赖的方式改善线粒体的生物发生,抑制P53激活,保护血管紧张素Ⅱ诱导的脑血管衰老 [34] 。近期研究表明,FGF21对糖尿病小鼠的脑缺血表现出较好的治疗作用,主要是通过激活PPARγ减轻糖尿病小鼠脑梗死后血脑屏障的破坏,同时还能减少 14 d后脑白质完整性丧失,缩小梗死体积和改善神经功能的缺陷 [35] 。因此,FGF21可能是一种有效治疗2型糖尿病合并脑梗死的候选药物 [36] 。最近临床研究发现,血浆FGF21水平升高与急性脑梗死患者死亡和严重残疾的风险显著相关。急性脑梗死患者血浆FGF21水平升高与不良预后相关,提示FGF21可能是脑梗死预后的标 志物 [37]

其他FGF

大鼠MCAO后,静脉滴注FGF18可剂量依赖性地缩小梗死体积,改善记忆、运动能力和探索行为 [38] 。此外,静脉注射FGF13也可以缩小大鼠永久性局灶性脑缺血后的梗死面积,改善神经功能缺损 [39]

FGF在脑出血中的作用

脑出血是原发性非外伤性的脑实质出血。目前的治疗方法不能有效治疗脑出血 [ 40- 41] 。FGF因具有神经保护、营养胶质细胞、调节局部血流、促进新生血管形成等功能而备受关注 [12] 。目前,研究发现,脑出血后脑内神经元和非神经元可以上调部分FGF,表明FGF在脑出血后维持神经元存活和修复脑组织损伤中具有重要作用 [42]

FGF2对血脑屏障的保护作用

研究发现,FGF特别是FGF2对脑出血表现出较好的治疗作用。外源性FGF2可减轻注射细菌胶原酶或自体血诱导的脑出血小鼠的脑损伤,主要通过与FGFR结合后激活PI3K-Akt-Rac1信号降低RhoA活性,修复内皮黏附连接,保持血脑屏障的完整性,减少血管源性实验性脑出血小鼠的脑水肿和神经功能缺损 [42] 。截至目前,对脑缺血具有治疗作用的FGF主要为FGF2。

FGF23与脑出血患者的预后相关

FGF23升高与致死性、体积大、功能预后差的脑出血显著相关,但两者是否具有因果关系需要进一步探究 [43]

FGF在创伤性脑损伤中的作用

创伤性脑损伤是指头部因外物剧烈撞击引起的大脑急性损伤。创伤性脑损伤病理机制复杂,原发性损伤导致的病理改变人为无法干预,而继发性损伤是由一系列自损性病理过程所导致,其中包括炎症、细胞凋亡、兴奋性神经毒性、氧化应激等一系列机制引起的血脑屏障破坏、脑水肿、神经炎症、外伤性缺血等 [44] 。因此,开发用于治疗继发性脑损伤的神经保护剂已作为临床干预治疗创伤性脑损伤的主要治疗策略 [45] 。近年来,FGF由于其强大的抗炎作用、促血管新生、神经保护等作用而用于创伤性脑损伤治疗研究中。

FGF1对血脑屏障的保护作用

创伤性脑损伤中继发性损伤的起始环节是血脑屏障的破坏。研究发现,在创伤性脑损伤小鼠模型中给予FGF1可以激活PI3K-Akt-Rac信号通路调控的脑血管内皮细胞紧密连接蛋白的表达,促进血脑屏障损伤修复,进而减少神经元的继发性损伤 [46]

FGF2对脑血管功能和神经元新生的保护作用

创伤性脑损伤发生 4 h后脑内FGF2的表达显著增加,并可持续至第14天,而FGF2表达增加只局限于损伤区域 [47] ,提示FGF2与创伤性脑损伤急性期具有潜在的相关性。外源性FGF2可以保护神经元、促进神经元新生,改善创伤性脑损伤后小鼠的认知功能 [ 48- 49] 。研究证实,外源性FGF2可以通过激活PI3K-Akt-Rac信号通路上调脑内紧密连接蛋白的表达,修复创伤性脑损伤后血脑屏障的损伤,同时促进血管内皮生长因子的表达,诱导血管新生 [ 50- 51] 。体外研究显示,FGF2可通过激活FGFR1-ERK通路和FGFR1-S1PR通路促进内皮细胞紧密连接相关蛋白表达,改善内皮细胞屏障功能 [52] ,表明FGF2在创伤性脑损伤后脑血管功能保护及血管新生方面具有治疗效果。此外,FGF2还能增强移植于脑内的干细胞发挥促进神经发生、神经元及胶质细胞分化的作用,抑制神经元凋亡,改善创伤性脑损伤动物的运动功能 [ 53- 54]

FGF10对神经炎症的抑制作用

作为一种旁分泌生长因子,FGF10对组织发育和再生至关重要。研究发现,小鼠创伤性脑损伤造模 24 h后,神经元和小胶质细胞中FGF10的mRNA和蛋白表达明显升高 [55] 。外源性FGF10可通过调控TLR4-MyD88-NF-κB通路抑制脑内炎症反应,减少神经元凋亡,进而改善小鼠运动功能 [56]

FGF20对脑血管的修复作用

作为旁分泌的FGF,FGF20在大脑和神经元稳定中发挥重要作用。研究表明,创伤性脑损伤发生后FGF20可以通过激活JNK-NF-κB通路抑制促炎性细胞因子IL-6、IL-1β和iNOS的表达,从而减轻创伤性脑损伤后的神经炎症。同时,FGF20还可以通过激活Akt-GSK3β通路抑制创伤性脑损伤引起的紧密连接蛋白降解,从而保护血脑屏障的完整性 [57] 。研究表明,FGF20能促进创伤性脑损伤后脑血管生成以及加速损伤血管修复,这一过程主要与Wnt-β-catenin-GSK3β通路激活相 关 [58] , 上述研究均可证明FGF20对创伤性脑损伤后的血管具有修复作用。

FGF21对神经元的保护作用

FGF21由于与肝素结合能力较弱,其可以进入血液循环。已有研究证实,在人类和啮齿动物的脑脊液中均可检测到FGF21,表明其具有透过血脑屏障的能力 [59] ,因此广泛应用于脑部疾病的治疗。研究发现,脑内神经元可以表达FGF21,并可通过Akt通路抑制谷氨酸神经兴奋毒性,发挥神经保护作用 [60] 。动物研究中也证实了FGF21的血脑屏障保护功能,其可与FGFR1-β-klotho结合上调PPARγ介导的信号通路,减少创伤性脑损伤后血脑屏障的破坏与神经元凋亡 [61] 。此外,FGF21可促进间充质干细胞向创伤性脑损伤部位的归 巢 [62] 。 综上所述,FGF21有望成为治疗创伤性脑损伤后血脑屏障损伤修复的有效药物。

FGF在AD中的作用

AD是一种常见的与年龄相关的神经退行性疾病,其临床特征为进行性认知功能障碍,主要病理学变化为老年斑、细胞内神经元纤维缠结和大量神经元丢失。在AD发病过程中,部分FGF可以调节大脑微环境,保护神经元,促进神经干细胞增殖、分化和迁移 [63]

FGF2减少Aβ沉积

研究表明, FGF2基因在AD转基因小鼠模型中过表达可显著恢复小鼠的空间学习、增加海马 CA1区长时程增强作用和海马齿状回颗粒下区的神经发生功能 [64] 。除神经发生作用外,FGF2还具有抗炎和减少淀粉样变性的作用。在AD小鼠模型中,FGF2过表达可以减少Aβ和斑块负荷,同时增加斑块区域周围的小胶质细胞增生。而在一种基于过表达突变型淀粉样前体蛋白APP23的AD小鼠模型中,给予外源性FGF2可以减轻小鼠空间记忆缺陷以及Aβ沉积,同时降低iNOS的表达,并增加APP23小鼠齿状回中星形胶质细胞数 [ 65- 66]

FGF9调控胆碱乙酰转移酶活性

FGF9主要以自分泌和/或旁分泌方式作用于脑胆碱能神经元,提高乙酰胆碱酯酶阳性神经元的存活率,增加其平均体细胞大小,调控胆碱乙酰转移酶活性。尽管将外源性FGF9有效递送到中枢神经系统是一个亟待解决的问题,但FGF9仍可能是AD治疗药物中最有希望的候选者 [67]

FGF21调控神经元功能

目前,有研究将AD视为脑内的“3型糖尿病”,这种观点强调了脑能量代谢功能障碍在AD中的关键作用 [68] 。FGF21是一种葡萄糖和脂代谢的关键调节因子。已证实给予外源性FGF21可以缓解 APP/ PS1转基因AD小鼠模型的记忆功能障碍、淀粉样斑块和病理性τ蛋白过度磷酸化,这些主要与FGF21可改善单羧酸转运蛋白异常表达有关 [69] 。此外,FGF21还可以通过PP2A-MAPKs-HIF-1α通路保护AD样病变处的神经元 [70]

FGF在帕金森病中的作用

帕金森病作为继AD之后第二常见的神经退行性疾病,患病人群庞大、患病率逐年增高,其发病机制复杂且治疗效果不佳,已成为一大研究热点 [71] 。帕金森病主要是由黑质中多巴胺能神经元丢失并发错误折叠形式α-突触核蛋白聚集所致。目前,左旋多巴替代疗法是治疗帕金森病的主要策略,但其仍无法有效阻止疾病进展,且长期服药除导致耐药外,还伴有严重的并发症,如异动症 等 [72] 。 FGF家族是哺乳动物中功能最多样化的生长因子,主要表现在神经元轴突生长、神经组织的维持和修复方面 [12] 。因此,FGF的研究可为新型抗帕金森病药物的开发提供思路。

FGF20保护多巴胺能神经元

FGF20是一种神经营养因子,主要在黑质致密部中表达。一项基于大型家族临床研究证实 FGF20基因中的3个单核苷酸多态性与帕金森病显著相关,提示FGF20可作为帕金森病的危险因素 [73] 。在帕金森病大鼠模型中,FGF20以旁分泌的形式作用于近端细胞,通过与FGFR1c结合激活MAPK通路,提高多巴胺能神经元的存活率,同时防止多巴胺能神经元丢失 [74] 。此外,神经干细胞和胚胎干细胞是帕金森病恢复性移植策略的细胞群资源。而FGF20可促进这些干细胞分化为多巴胺能神经元,从而减轻帕金森病动物模型中的神经系统症状 [75] 。这些证据表明FGF20对于多巴胺能神经元的分化和存活具有重要作用。

FGF21调控神经元线粒体功能

FGF21一方面通过激活AMPK-PGC-1α轴促进线粒体功能,减弱MPTP诱导帕金森病小鼠中小胶质细胞和星形胶质细胞的激活,从而减轻大脑炎症反应的发生;另一方面,还与阻止黑质致密部和纹状体中酪氨酸羟化酶的缺失有关 [76] 。自噬是一种进化上保守的机制,用以清除或降解错误折叠、突变和受损蛋白质、细胞器。随着机体衰老,自噬的降解能力减慢或消失,从而导致自噬下游的几种转录因子表达增加。研究表明,自噬可能是导致帕金森病的危险因素之一 [77] 。一个经典的例子是转录因子4的激活,目前已知自噬功能障碍将导致细胞内质网应激,而内质网应激将激活转录因子4介导的FGF21表达,但FGF21是否因自噬功能障碍而表现出神经保护作用仍须进一步研究 [78]

其他FGF

FGF2可显著抑制6-羟多巴胺诱导帕金森病大鼠中内质网应激反应,然而特异性抑制PI3K-Akt和ERK1/2通路可部分削弱FGF2的保护作用 [79] 。神经干细胞是一种可分化为所有神经元的自我更新细胞,并作为多巴胺能神经元祖细胞的来源,通过将细胞移植入帕金森病患者损伤的纹状体或黑质中达到治疗目的。研究表明,FGF8过表达可以协调诱导永生多能神经干细胞向多巴胺能神经元的表型和形态进行分化 [80] 。FGF9刺激γ-谷氨酰基半胱氨酸合成酶和血红素加氧酶-1的表达,以保护皮质和多巴胺能神经元免受1-甲基-4-苯基吡啶诱导的氧化损伤 [81]

FGF在癫痫中的作用

癫痫是一种由于脑部神经元异常放电所导致的慢性神经系统疾病,其发病机制复杂,作用机制尚未明确。目前常用的抗癫痫药物虽有一定临床疗效,但不良反应较多。由于FGF高度参与癫痫发生相关脑回路形态、功能的改变,因此FGF可能在癫痫发作中发挥主要作用 [ 82- 89]

FGF2可能对海马神经元有保护作用

早期研究表明,癫痫发作会增加特定脑区FGF2 mRNA和蛋白的表达 [82] 。通过使用FGF2过表达小鼠构建的海人酸癫痫模型发现,癫痫严重程度与FGF2的表达量存在正相关性,这可能与FGF2影响神经母细胞皮质神经元胶质的产生和成熟有关,从而促进急性癫痫的发作 [83] 。但也有研究发现, FGF2转基因鼠在CA1和CA3区的细胞损伤明显降低,减少了癫痫导致的神经元坏死和凋亡。Paradiso等 [84] 在此基础上进一步发现,海马中补充FGF2和脑源性神经营养因子可以减少神经元丢失和苔藓纤维发芽,即减少某些形式的海马回路重组,从而预防癫痫的发生。

FGF7、FGF22与突触前分化的协同作用

研究发现,FGF22和FGF7与癫痫的发生有着密切的关系。FGF22和FGF7主要参与海马CA3区锥体神经元表达和CA3区的突触前分化。 FGF22基因敲除小鼠的兴奋性突触小泡分布更分散、体积更小,而 FGF7基因敲除小鼠的抑制性突触小泡数更少且体积更小,可见FGF22和FGF7分别特异性地参与了CA3兴奋性突触和抑制性突触的突触前分化;进一步研究发现,FGF22和FGF7分别特异性地定位于谷氨酸能突触和γ-氨基丁酸能突触 [85] 。在小鼠戊四氮癫痫模型中, FGF7基因敲除小鼠相比对照小鼠更易发生癫痫,而 FGF22基因敲除小鼠对戊四氮引起的癫痫有抵抗作用。另有研究显示, FGF7基因敲除小鼠在无化学药物诱导的情况下也出现了与癫痫相关的变化,包括苔藓纤维出芽和神经发生增强 [86] 。综上,FGF22和FGF7在癫痫发病过程中的作用相反,即FGF22促进癫痫发生而FGF7抑制癫痫发生。

其他FGF

FGF5既能促进星形胶质细胞增殖,还具有保护血脑屏障的作用,但是否与癫痫相关尚未明 确 [87] 。 γ-氨基丁酸能神经元或在表达少突胶质细胞转录因子1的少突胶质前体细胞中FGF9缺失均会导致癫痫,因此FGF9可能成为癫痫治疗的新靶点 [88] 。海马CA1区特异性敲除 FGF13会使神经元的兴奋性明显降低,动作电位的发放频率下降,诱发放电的阈电流水平升高,从而引起癫痫的发生 [89]

FGF在抑郁症中的作用

目前,抑郁症已成为世界范围内一个主要的公共卫生问题。由于其发病机制非常复杂,至今尚无定论。近年来研究发现,FGF与抑郁症有密切的联系,有望成为治疗抑郁症的潜在新 药 [90]

FGF2促进海马神经元再生

FGF2能抑制嗅球切除术后大鼠神经元死亡,促进海马神经再生,逆转嗅球切除术诱发的类似抑郁的行为 [91] 。在慢性不可预测应激小鼠模型中,FGF2通过与FGFR1结合而增加ERK、Akt蛋白磷酸化水平,同时上调Bcl-2表达、降低caspase-3活化,推测FGF2可能是由于对神经起到保护作用进而产生抗抑郁的效果 [92] 。另外,FGF2增加了大鼠大脑皮层和原代皮层神经元中糖皮质激素受体的表达,并逆转了糖皮质激素引起的糖皮质激素受体表达降低,表明糖皮质激素受体参与了FGF2对抑郁的治疗作用,其中ERK-MAPK通路与糖皮质激素受体的上调相关 [93] 。但FGF2是如何直接发挥抗抑郁作用尚不完全清楚,其机制可能是多方面的。

FGF9与情绪的调控作用

研究发现,在社交失败应激模型大鼠的脑部,海马CA1区、CA2区、CA3区及齿状回处的 FGF9 mRNA表达水平上调。进一步给予外源性FGF9反而加剧了大鼠焦虑和类抑郁的行为,但通过慢病毒抑制海马齿状回处FGF9的表达可减少大鼠焦虑样行为 [94] 。因此,FGF9与FGF2具有相反的药理作用,也提示FGF之间的平衡可能对情绪调节至关重要。

其他FGF

研究发现,外源性重组人FGF21可通过抑制脂多糖诱导的小鼠模型和体外原代小胶质细胞促炎性细胞因子的释放,进而改善小鼠的抑郁样行为 [95] 。另一项研究发现,敲除 FGF22基因的小鼠在强迫游泳、悬尾和蔗糖偏好等实验中显示出更加明显的抑郁样行为,这可能与FGF22-FGFR2之间相互作用的缺失导致海马体中兴奋性突触丧失有关 [96]

结语

在过去的几十年里,我们对FGF-FGFR信号通路在生理和病理条件下调控机制的认识有了长足进步,但还有很多是未知的,如FGF和FGFR各成员在发育和疾病中的分布、时空表达模式、准确作用机制等。尽管FGF在神经系统疾病中的治疗潜力已通过动物实验得到证实,但由于体内用药安全性、血脑屏障透过率以及作用靶点等问题尚未解决,限制了其在临床上的应用。目前欧洲-澳大利亚一项FGF2的Ⅱ/Ⅲ期临床试验表明,急性脑梗死患者静脉注射FGF2 24 h后未显示出显著的神经保护作用,反而导致部分患者出现低血压和高病死率 [97] 。由此可见,FGF的新药研发仍有诸多难点有待解决。

本文综述了FGF-FGFR信号分子在脑梗死、脑出血、创伤性脑损伤、AD、帕金森病、癫痫和抑郁症等中枢神经系统疾病中的作用。由于神经系统疾病中存在各种生理病理变化以及调控网络的复杂性,目前大多临床治疗药物只能在发病和病情严重前进行治疗,对病情后期神经元大量死亡和脑组织严重萎缩显得无能为力,并且存在一定的不良反应,开发新的药物迫在眉睫。作为一种蛋白药物,FGF信号转导的特异性受到多种因素的影响,主要取决于FGF-FGFR的分子结构。随着结构生物学等多学科的交互,更多关于FGF-FGFR的信息,如其结构、辅因子、特异性结合的关键氨基酸和信号通路等也逐渐揭开其神秘的面 纱 [ 98- 100] 。 以下问题仍有待进一步研究:①FGF与各自受体的结合程度为何不同;②FGF及其受体各成员如何在脑内表达和空间分布;③相同的FGF配体在不同条件下为何结合不同的FGFR;④不同浓度的FGF与FGFR结合对下游信号通路激活先后顺序的影响;⑤FGF各家族成员是如何通过协同或异同发挥作用的。因此,仅仅研究单个FGF或FGFR在疾病发病机制中的作用的策略存在一定的局限性。毫无疑问,基于当今先进的研究方法,如组学技术、单细胞分析、体内三维立体成像,以及基因编辑动物模型和时空可调的遗传方法等,在特定类型的细胞中时空删除或过表达FGF或FGFR,将有利于剖析FGF或FGFR在脑内相关细胞的发育和功能调控中的作用。未来,研究者将进一步探讨FGF信号在神经系统中生理和病理条件下更深层次的机制作用,若能够全方位明确上述信息,今后有望通过靶向微调FGF相关信号,在获得更好治疗效果的同时又避免不良反应的产生。

COMPETING INTERESTS

所有作者均声明不存在利益冲突

Funding Statement

国家自然科学基金(82172117,81971180); 温州市重大科技创新攻关医疗卫生项目(ZY2019001)

References

  • 1.BASSETT D S, SPORNS O. Network neuroscience[J] Nat Neurosci. . 2017;20(3):353–364. doi: 10.1038/nn.4502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.KAJI R. Global burden of neurological diseases highlights stroke[J] Nat Rev Neurol. . 2019;15(7):371–372. doi: 10.1038/s41582-019-0208-y. [DOI] [PubMed] [Google Scholar]
  • 3.ANDRZEJEWSKA A, DABROWSKA S, LUKOMSKA B, et al. Mesenchymal stem cells for neurological disorders[J] Adv Sci. . 2021;8(7):2002944. doi: 10.1002/advs.202002944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.PANKEVICH D E, ALTEVOGT B M, DUNLOP J, et al. Improving and accelerating drug development for nervous system disorders[J] Neuron. . 2014;84(3):546–553. doi: 10.1016/j.neuron.2014.10.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.李校堃, 肖 倩, 韩 静, 等. 基因工程药物开发热点——成纤维细胞生长因子家族[J]. 中国医药生物技术, 2010, 5(5): 325-334 ; LI Xiaokun, XIAO Qian, HAN Jing, et al. Gene engineering drug development hotspot—fibroblast growth factor family[J]. Chinese Medicinal Biotechnology, 2010, 5(5): 325-334. (in Chinese)
  • 6.HUANG J Y, LYNN MISKUS M, LU H C. FGF-FGFR mediates the activity-dependent dendritogenesis of layer Ⅳ neurons during barrel formation[J] J Neurosci. . 2017;37(50):12094–12105. doi: 10.1523/JNEUROSCI.1174-17.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.DUONG TAD, HOSHIBA Y, SAITO K, et al. FGF signaling directs the cell fate switch from neurons to astrocytes in the developing mouse cerebral cortex[J] J Neurosci. . 2019;39(31):6081–6094. doi: 10.1523/JNEUROSCI.2195-18.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.KUMAR R, TANG Q, MÜLLER S A, et al. Fibroblast growth factor 2‐mediated regulation of neuronal exosome release depends on VAMP3/cellubrevin in hippocampal neurons[J] Adv Sci. . 2020;7(6):1902372. doi: 10.1002/advs.201902372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.KLIMASCHEWSKI L, CLAUS P. Fibroblast growth factor signalling in the diseased nervous system[J] Mol Neurobiol. . 2021;58(8):3884–3902. doi: 10.1007/s12035-021-02367-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.ORNITZ D M, ITOH N. The fibroblast growth factor signaling pathway[J] Wiley Interdiscip Rev Dev Biol. . 2015;4(3):215–266. doi: 10.1002/wdev.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.TURNER C A, EREN-KOÇAK E, INUI E G, et al. Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders[J] Semin Cell Dev Biol. . 2016;53:136–143. doi: 10.1016/j.semcdb.2015.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.DORDOE C, CHEN K, HUANG W, et al. Roles of fibroblast growth factors and their therapeutic potential in treatment of ischemic stroke[J] Front Pharmacol. . 2021;12:671131. doi: 10.3389/fphar.2021.671131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.HARA Y, TOOYAMA I, YASUHARA O, et al. Acidic fibroblast growth factor-like immunoreactivity in rat brain following cerebral infarction[J] Brain Res. . 1994;664(1-2):101–107. doi: 10.1016/0006-8993(94)91959-3. [DOI] [PubMed] [Google Scholar]
  • 14.CHENG X, WANG Z, YANG J, et al. Acidic fibroblast growth factor delivered intranasally induces neurogenesis and angiogenesis in rats after ischemic stroke[J] Neurol Res. . 2011;33(7):675–680. doi: 10.1179/1743132810Y.0000000004. [DOI] [PubMed] [Google Scholar]
  • 15.TSAI M J, TSAI S K, HUANG M C, et al. Acidic FGF promotes neurite outgrowth of cortical neurons and improves neuroprotective effect in a cerebral ischemic rat model[J] Neuroscience. . 2015;305:238–247. doi: 10.1016/j.neuroscience.2015.07.074. [DOI] [PubMed] [Google Scholar]
  • 16.DORDOE C, WANG X, LIN P, et al. Non-mitogenic fibroblast growth factor 1 protects against ischemic stroke by regulating microglia/macrophage polarization through Nrf2 and NF-κB pathways[J] Neuropharmacology. . 2022;212:109064. doi: 10.1016/j.neuropharm.2022.109064. [DOI] [PubMed] [Google Scholar]
  • 17.ZHAO Y, YE S, LIN J, et al. NmFGF1-regulated glucolipid metabolism and angiogenesis improves functional recovery in a mouse model of diabetic stroke and acts via the AMPK signaling pathway[J] Front Pharmacol. . 2021;12:680351. doi: 10.3389/fphar.2021.680351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.XU H, LI X, ZHENG Q, et al. Protective effects of mutant of acidic fibroblast growth factor against cerebral ischaemia-reperfusion injury in rats[J] Injury. . 2009;40(9):963–967. doi: 10.1016/j.injury.2009.01.110. [DOI] [PubMed] [Google Scholar]
  • 19.ZOU Y, HU J, HUANG W, et al. Non-mitogenic fibroblast growth factor 1 enhanced angiogenesis following ischemic stroke by regulating the sphingosine-1-phosphate 1 pathway[J] Front Pharmacol. . 2020;11:59. doi: 10.3389/fphar.2020.00059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.YAMADA K, KINOSHITA A, KOHMURA E, et al. Basic fibroblast growth factor prevents thalamic degeneration after cortical infarction[J] J Cereb Blood Flow Metab. . 1991;11(3):472–478. doi: 10.1038/jcbfm.1991.90. [DOI] [PubMed] [Google Scholar]
  • 21.TANG S C, LUO C J, ZHANG K H, et al. Effects of dl-3-n-butylphthalide on serum VEGF and bFGF levels in acute cerebral infarction[J]. Eur Rev Med Pharmacol Sci, 2017, 21(19): 4431-4436 . [PubMed]
  • 22.CHEN H H, CHIEN C H, LIU H M. Correlation between angiogenesis and basic fibroblast growth factor expression in experimental brain infarct[J] Stroke. . 1994;25(8):1651–1657. doi: 10.1161/01.STR.25.8.1651. [DOI] [PubMed] [Google Scholar]
  • 23.NAKAMURA K, ARIMURA K, NISHIMURA A, et al. Possible involvement of basic FGF in the upregulation of PDGFRβ in pericytes after ischemic stroke[J] Brain Res. . 2016;1630:98–108. doi: 10.1016/j.brainres.2015.11.003. [DOI] [PubMed] [Google Scholar]
  • 24.WEI O Y, HUANG Y L, DA C D, et al. Alteration of basic fibroblast growth factor expression in rat during cerebral ischemia[J]. Acta Pharmacol Sin, 2000, 21(4): 296-300 . [PubMed]
  • 25.AY I, SUGIMORI H, FINKLESTEIN S P. Intravenous basic fibroblast growth factor (bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats[J] Brain Res Mol Brain Res. . 2001;87(1):71–80. doi: 10.1016/S0169-328X(00)00285-0. [DOI] [PubMed] [Google Scholar]
  • 26.WANG Z L, CHENG S M, MA M M, et al. Intranasally delivered bFGF enhances neurogenesis in adult rats following cerebral ischemia[J] Neurosci Lett. . 2008;446(1):30–35. doi: 10.1016/j.neulet.2008.09.030. [DOI] [PubMed] [Google Scholar]
  • 27.WANG Z, ZHANG H, XU X, et al. bFGF inhibits ER stress induced by ischemic oxidative injury via activation of the PI3K/Akt and ERK1/2 pathways[J] Toxicol Lett. . 2012;212(2):137–146. doi: 10.1016/j.toxlet.2012.05.006. [DOI] [PubMed] [Google Scholar]
  • 28.LIN L, WANG Q, QIAN K, et al. bFGF protects against oxygen glucose deprivation/reoxygenation-induced endothelial monolayer permeability via S1PR1-dependent mechanisms[J] Mol Neurobiol. . 2018;55(4):3131–3142. doi: 10.1007/s12035-017-0544-0. [DOI] [PubMed] [Google Scholar]
  • 29.LI Y H, YANG L Y, CHEN W, et al. Fibroblast growth factor 10 protects neuron against oxygen-glucose deprivation injury through inducing heme oxygenase-1[J] Biochem Biophys Res Commun. . 2015;456(1):225–231. doi: 10.1016/j.bbrc.2014.11.063. [DOI] [PubMed] [Google Scholar]
  • 30.LI Y H, FU H L, TIAN M L, et al. Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice[J] Sci Rep. . 2016;6(1):19869. doi: 10.1038/srep19869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.FANG M, JIANG S, ZHU J, et al. Protective effects of FGF10 on neurovascular unit in a rat model of neonatal hypoxic-ischemic brain injury[J] Exp Neurol. . 2020;332:113393. doi: 10.1016/j.expneurol.2020.113393. [DOI] [PubMed] [Google Scholar]
  • 32.WANG D, LIU F, ZHU L, et al. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/ macrophages[J] J Neuroinflammation. . 2020;17(1):257. doi: 10.1186/s12974-020-01921-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.YE L, WANG X, CAI C, et al. FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/Akt signaling pathway via FGFR1/β- klotho[J] Exp Neurol. . 2019;317:34–50. doi: 10.1016/j.expneurol.2019.02.013. [DOI] [PubMed] [Google Scholar]
  • 34.WANG X M, XIAO H, LIU L L, et al. FGF21 represses cerebrovascular aging via improving mitochondrial biogenesis and inhibiting p53 signaling pathway in an AMPK-dependent manner[J] Exp Cell Res. . 2016;346(2):147–156. doi: 10.1016/j.yexcr.2016.06.020. [DOI] [PubMed] [Google Scholar]
  • 35.JIANG Y, LIU N, WANG Q, et al. Endocrine regulator rFGF21 (recombinant human fibroblast growth factor 21) improves neurological outcomes following focal ischemic stroke of type 2 diabetes mellitus male mice[J] Stroke. . 2018;49(12):3039–3049. doi: 10.1161/STROKEAHA.118.022119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.YU Z, LIN L, JIANG Y, et al. Recombinant FGF21 protects against blood-brain barrier leakage through Nrf2 upregulation in type 2 diabetes mice[J] Mol Neurobiol. . 2019;56(4):2314–2327. doi: 10.1007/s12035-018-1234-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.ZHENG X, ZHU Z, GUO D, et al. Prognostic value of plasma fibroblast growth factor 21 among patients with acute ischemic stroke[J] Eur J Neurol. . 2021;28(3):844–851. doi: 10.1111/ene.14683. [DOI] [PubMed] [Google Scholar]
  • 38.ELLSWORTH J L, GARCIA R, YU J, et al. Fibroblast growth factor-18 reduced infarct volumes and behavioral deficits after transient occlusion of the middle cerebral artery in rats[J] Stroke. . 2003;34(6):1507–1512. doi: 10.1161/01.STR.0000071760.66720.5F. [DOI] [PubMed] [Google Scholar]
  • 39.YAO D L, MASONIC K, PETULLO D, et al. Pretreatment with intravenous FGF-13 reduces infarct volume and ameliorates neurological deficits following focal cerebral ischemia in rats[J] Brain Res. . 1999;818(1):140–146. doi: 10.1016/S0006-8993(98)01118-4. [DOI] [PubMed] [Google Scholar]
  • 40.KIM J Y, BAE H J. Spontaneous intracerebral hemorrhage: management[J] J Stroke. . 2017;19(1):28–39. doi: 10.5853/jos.2016.01935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.LAN X, HAN X, LI Q, et al. Modulators of microglial activation and polarization after intracerebral haemorrhage[J] Nat Rev Neurol. . 2017;13(7):420–433. doi: 10.1038/nrneurol.2017.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.HUANG B, KRAFFT P R, MA Q, et al. Fibroblast growth factors preserve blood-brain barrier integrity through RhoA inhibition after intracerebral hemorrhage in mice[J] Neurobiol Dis. . 2012;46(1):204–214. doi: 10.1016/j.nbd.2012.01.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.SVENSSON E H, SÖDERHOLM M. Fibroblast growth factor 23 is associated with risk of intracerebral hemorrhage[J] Euro J Neurol. . 2022;29(1):114–120. doi: 10.1111/ene.15060. [DOI] [PubMed] [Google Scholar]
  • 44.YANG T, KONG B, GU J W, et al. Anti-apoptotic and anti-oxidative roles of quercetin after traumatic brain injury[J] Cell Mol Neurobiol. . 2014;34(6):797–804. doi: 10.1007/s10571-014-0070-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.ZHANG L, WANG H. Targeting the NF-E2-related factor 2 pathway: a novel strategy for traumatic brain injury[J] Mol Neurobiol. . 2018;55(2):1773–1785. doi: 10.1007/s12035-017-0456-z. [DOI] [PubMed] [Google Scholar]
  • 46.WU F, CHEN Z, TANG C, et al. Acid fibroblast growth factor preserves blood-brain barrier integrity by activating the PI3K-Akt-Rac1 pathway and inhibiting RhoA following traumatic brain injury[J]. Am J Transl Res, 2017, 9(3): 910-925 . [PMC free article] [PubMed]
  • 47.ADDINGTON C P, ROUSSAS A, DUTTA D, et al. Endogenous repair signaling after brain injury and complementary bioengineering approaches to enhance neural regeneration[J] Biomark Insights. . 2015;10(Suppl1):43–60. doi: 10.4137/BMI.S20062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.SUN D, BULLOCK M R, MCGINN M J, et al. Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury[J] Exp Neurol. . 2009;216(1):56–65. doi: 10.1016/j.expneurol.2008.11.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.YOSHIMURA S, TERAMOTO T, WHALEN M J, et al. FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice[J] J Clin Invest. . 2003;112(8):1202–1210. doi: 10.1172/JCI16618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.WANG Z G, CHENG Y, YU X C, et al. bFGF protects against blood-brain barrier damage through junction protein regulation via PI3K-Akt-Rac1 pathway following traumatic brain injury[J] Mol Neurobiol. . 2016;53(10):7298–7311. doi: 10.1007/s12035-015-9583-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.SHAO X, HU Q, CHEN S, et al. Ghrelin ameliorates traumatic brain injury by down-regulating bFGF and FGF- BP[J] Front Neurosci. . 2018;12:445. doi: 10.3389/fnins.2018.00445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.CHEN P, ZHANG H, ZHANG Q, et al. Basic fibroblast growth factor reduces permeability and apoptosis of human brain microvascular endothelial cells in response to oxygen and glucose deprivation followed by reoxygenation via the fibroblast growth factor receptor 1 (FGFR1)/ERK pathway[J] Med Sci Monit. . 2019;25:7191–7201. doi: 10.12659/MSM.918626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.LIU Y, YI X C, GUO G, et al. Basic fibroblast growth factor increases the transplantation-mediated therapeutic effect of bone mesenchymal stem cells following traumatic brain injury[J] Mol Med Rep. . 2014;9(1):333–339. doi: 10.3892/mmr.2013.1803. [DOI] [PubMed] [Google Scholar]
  • 54.BHANG S H, LEE Y E, CHO S W, et al. Basic fibroblast growth factor promotes bone marrow stromal cell transplantation-mediated neural regeneration in traumatic brain injury[J] Biochem Biophys Res Commun. . 2007;359(1):40–45. doi: 10.1016/j.bbrc.2007.05.046. [DOI] [PubMed] [Google Scholar]
  • 55.CHEN J, WANG Z, ZHENG Z M, et al. Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury[J/OL] Cell Death Dis. . 2017;8(10):e3090. doi: 10.1038/cddis.2017.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.HOU Q, CHEN H, LIU Q, et al. FGF10 attenuates experimental traumatic brain injury through TLR4/MyD88/NF-κB pathway[J] Cells Tissues Organs. . 2020;209(4-6):248–256. doi: 10.1159/000511381. [DOI] [PubMed] [Google Scholar]
  • 57.CHEN J, WANG X, HU J, et al. FGF20 protected against BBB disruption after traumatic brain injury by upregulating junction protein expression and inhibiting the inflammatory response[J] Front Pharmacol. . 2020;11:590669. doi: 10.3389/fphar.2020.590669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.GUO R, WANG X, FANG Y, et al. rhFGF20 promotes angiogenesis and vascular repair following traumatic brain injury by regulating Wnt/β-catenin pathway[J] Biomed Pharmacother. . 2021;143:112200. doi: 10.1016/j.biopha.2021.112200. [DOI] [PubMed] [Google Scholar]
  • 59.OWEN B M, DING X, MORGAN D A, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss[J] Cell Metab. . 2014;20(4):670–677. doi: 10.1016/j.cmet.2014.07.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.LENG Y, WANG Z, TSAI L K, et al. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers[J] Mol Psychiatry. . 2015;20(2):215–223. doi: 10.1038/mp.2013.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.CHEN J, HU J, LIU H, et al. FGF21 protects the blood–brain barrier by upregulating PPARγ via FGFR1/β-klotho after traumatic brain injury[J] J Neurotrauma. . 2018;35(17):2091–2103. doi: 10.1089/neu.2017.5271. [DOI] [PubMed] [Google Scholar]
  • 62.SHAHROR R A, ALI A A A, WU C C, et al. Enhanced homing of mesenchymal stem cells overexpressing fibroblast growth factor 21 to injury site in a mouse model of traumatic brain injury[J] Int J Mol Sci. . 2019;20(11):2624. doi: 10.3390/ijms20112624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.ALAM R, MRAD Y, HAMMOUD H, et al. New insights into the role of fibroblast growth factors in Alzheimer’s disease[J] Mol Biol Rep. . 2022;49(2):1413–1427. doi: 10.1007/s11033-021-06890-0. [DOI] [PubMed] [Google Scholar]
  • 64.KIYOTA T, INGRAHAM K L, JACOBSEN M T, et al. FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer’s disease and has therapeutic implications for neurocognitive disorders[J/OL] Proc Natl Acad Sci U S A. . 2011;108(49):E1339–E1348. doi: 10.1073/pnas.1102349108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.KATSOURI L, ASHRAF A, BIRCH A M, et al. Systemic administration of fibroblast growth factor-2 (FGF2) reduces BACE1 expression and amyloid pathology in APP23 mice[J] Neurobiol Aging. . 2015;36(2):821–831. doi: 10.1016/j.neurobiolaging.2014.10.004. [DOI] [PubMed] [Google Scholar]
  • 66.CHEN X, LI Z, CHENG Y, et al. Low and high molecular weight FGF-2 have differential effects on astrocyte proliferation, but are both protective against Aβ-induced cytotoxicity[J] Front Mol Neurosci. . 2020;12:328. doi: 10.3389/fnmol.2019.00328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.KANDA T, IWASAKI T, NAKAMURA S, et al. Self-secretion of fibroblast growth factor-9 supports basal forebrain cholinergic neurons in an autocrine/paracrine manner[J] Brain Res. . 2000;876(1-2):22–30. doi: 10.1016/S0006-8993(00)02563-4. [DOI] [PubMed] [Google Scholar]
  • 68.DE LA MONTE S M, WANDS J R. Alzheimer’s disease is type 3 diabetes—evidence reviewed[J] J Diabetes Sci Technol. . 2008;2(6):1101–1113. doi: 10.1177/193229680800200619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.SUN Y, WANG Y, CHEN S T, et al. Modulation of the astrocyte-neuron lactate shuttle system contributes to neuroprotective action of fibroblast growth factor 21[J] Theranostics. . 2020;10(18):8430–8445. doi: 10.7150/thno.44370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.CHEN S, CHEN S T, SUN Y, et al. Fibroblast growth factor 21 ameliorates neurodegeneration in rat and cellular models of Alzheimer’s disease[J] Redox Biol. . 2019;22:101133. doi: 10.1016/j.redox.2019.101133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.OLUBODUN-OBADUN T G, ISHOLA I O, ADEYEMI O O. Potentials of autophagy enhancing natural products in the treatment of Parkinson disease[J] Drug Metab Personalized Ther. . 2021;37(2):99–110. doi: 10.1515/dmpt-2021-0128. [DOI] [PubMed] [Google Scholar]
  • 72.AARSLAND D, BATZU L, HALLIDAY G M, et al. Parkinson disease-associated cognitive impairment[J] Nat Rev Dis Primers. . 2021;7(1):47. doi: 10.1038/s41572-021-00280-3. [DOI] [PubMed] [Google Scholar]
  • 73.VAN DER WALT J M, NOUREDDINE M A, KITTAPPA R, et al. Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease[J] Am J Hum Genet. . 2004;74(6):1121–1127. doi: 10.1086/421052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.BOSHOFF E L, FLETCHER E J R, DUTY S. Fibroblast growth factor 20 is protective towards dopaminergic neurons in vivo in a paracrine manner[J] . Neuropharmacology. . 2018;137:156–163. doi: 10.1016/j.neuropharm.2018.04.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.ITOH N, OHTA H. Roles of FGF20 in dopaminergic neurons and Parkinson’s disease[J] Front Mol Neurosci. . 2013;6:15. doi: 10.3389/fnmol.2013.00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.FANG X, MA J, MU D, et al. FGF21 protects dopaminergic neurons in Parkinson’s disease models via repression of neuroinflammation[J] Neurotox Res. . 2020;37(3):616–627. doi: 10.1007/s12640-019-00151-6. [DOI] [PubMed] [Google Scholar]
  • 77.STATHAKOS P, JIMÉNEZ-MORENO N, CROMPTON L A, et al. A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons[J] Autophagy. . 2021;17(4):855–871. doi: 10.1080/15548627.2020.1739441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.KAKOTY V, K C S, TANG R D, et al. Fibroblast growth factor 21 and autophagy: a complex interplay in Parkinson disease[J] Biomed Pharmacother. . 2020;127:110145. doi: 10.1016/j.biopha.2020.110145. [DOI] [PubMed] [Google Scholar]
  • 79.CAI P, YE J, ZHU J, et al. Inhibition of endoplasmic reticulum stress is involved in the neuroprotective effect of bFGF in the 6-OHDA-induced Parkinson’s disease model[J] Aging Dis. . 2016;7(4):336–449. doi: 10.14336/AD.2016.0117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.KIM T E, LEE H S, LEE Y B, et al. Sonic hedgehog and FGF8 collaborate to induce dopaminergic phenotypes in the Nurr1-overexpressing neural stem cell[J] Biochem Biophys Res Commun. . 2003;305(4):1040–1048. doi: 10.1016/S0006-291X(03)00879-9. [DOI] [PubMed] [Google Scholar]
  • 81.HUANG J Y, CHUANG J I. Fibroblast growth factor 9 upregulates heme oxygenase-1 and γ-glutamylcysteine synthetase expression to protect neurons from 1-methyl-4-phenylpyridinium toxicity[J] Free Radical Biol Med. . 2010;49(6):1099–1108. doi: 10.1016/j.freeradbiomed.2010.06.026. [DOI] [PubMed] [Google Scholar]
  • 82.KONDRATYEV A, VED R, GALE K. The effects of repeated minimal electroconvulsive shock exposure on levels of mRNA encoding fibroblast growth factor-2 and nerve growth factor in limbic regions[J] Neuroscience. . 2002;114(2):411–416. doi: 10.1016/S0306-4522(02)00266-X. [DOI] [PubMed] [Google Scholar]
  • 83.YOSHIMURA S, TAKAGI Y, HARADA J, et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury[J] Proc Natl Acad Sci U S A. . 2001;98(10):5874–5879. doi: 10.1073/pnas.101034998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.PARADISO B, ZUCCHINI S, SU T, et al. Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus[J] Epilepsia. . 2011;52(3):572–578. doi: 10.1111/j.1528-1167.2010.02930.x. [DOI] [PubMed] [Google Scholar]
  • 85.TERAUCHI A, JOHNSON-VENKATESH E M, TOTH A B, et al. Distinct FGFs promote differentiation of excitatory and inhibitory synapses[J] Nature. . 2010;465(7299):783–787. doi: 10.1038/nature09041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.LEE C H, JAVED D, ALTHAUS A L, et al. Neurogenesis is enhanced and mossy fiber sprouting arises in FGF7-deficient mice during development[J] Mol Cell Neurosci. . 2012;51(3-4):61–67. doi: 10.1016/j.mcn.2012.07.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.ALLERSTORFER S, SONVILLA G, FISCHER H, et al. FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities[J] Oncogene. . 2008;27(30):4180–4190. doi: 10.1038/onc.2008.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.李 端. 表达Olig1的少突胶质前体细胞中特异性敲除FGF9引起小鼠癫痫发作的机制初步研究[D]. 石家庄: 河北医科大学, 2019 ; LI Duan. Preliminary study on the mechanism of seizure induced by FGF9 knockout in oligodendroglial progenitor cells expressing Olig1 in mice[D]. Shijiazhuang: Hebei Medical University, 2019. (in Chinese)
  • 89.田彦鹏. 海马CA1区特异性敲除 FGF13对小鼠行为学的影响及机制的研究[D]. 石家庄: 河北医科大学, 2018 ; TIAN Yanpeng. Effects and mechanism of conditional knockout hippocampal CA1 FGF13 in murine behaviours[D]. Shijiazhuang: Hebei Medical University, 2018. (in Chinese)
  • 90.XU Y H, ZHU Y, ZHU Y Y, et al. Abnormalities in FGF family members and their roles in modulating depression‐related molecules[J] Eur J Neurosci. . 2021;53(1):140–150. doi: 10.1111/ejn.14570. [DOI] [PubMed] [Google Scholar]
  • 91.JAROSIK J, LEGUTKO B, WERNER S, et al. Roles of exogenous and endogenous FGF-2 in animal models of depression[J] Restor Neurol Neurosci. . 2011;29(3):153–165. doi: 10.3233/RNN-2011-0588. [DOI] [PubMed] [Google Scholar]
  • 92.WANG L, LI X X, CHEN X, et al. Antidepressant-like effects of low-and high-molecular weight FGF-2 on chronic unpredictable mild stress mice[J] Front Mol Neurosci. . 2018;11:377. doi: 10.3389/fnmol.2018.00377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.NUMAKAWA T, ODAKA H, ADACHI N, et al. Basic fibroblast growth factor increased glucocorticoid receptors in cortical neurons through MAP kinase pathway[J] Neurochem Int. . 2018;118:217–224. doi: 10.1016/j.neuint.2018.06.009. [DOI] [PubMed] [Google Scholar]
  • 94.AURBACH E L, GULA INUI E, TURNER C A, et al. Fibroblast growth factor 9 is a novel modulator of negative affect[J] Proc Natl Acad Sci U S A. . 2015;112(38):11953–11958. doi: 10.1073/pnas.1510456112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.WANG X, ZHU L, HU J, et al. FGF21 attenuated LPS-induced depressive-like behavior via inhibiting the inflammatory pathway[J] Front Pharmacol. . 2020;11:154. doi: 10.3389/fphar.2020.00154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.WILLIAMS A J, YEE P, SMITH M C, et al. Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice[J] Behav Brain Res. . 2016;307:11–17. doi: 10.1016/j.bbr.2016.03.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.BOGOUSSLAVSKY J, VICTOR S J, SALINAS E O, et al. Fiblast (trafermin) in acute stroke: results of the European-Australian phase Ⅱ/Ⅲ safety and efficacy trial[J] Cerebrovasc Dis. . 2002;14(3-4):239–251. doi: 10.1159/000065683. [DOI] [PubMed] [Google Scholar]
  • 98.XIE Y, SU N, YANG J, et al. FGF/FGFR signaling in health and disease[J] Signal Transduct Target Ther. . 2020;5(1):181. doi: 10.1038/s41392-020-00222-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.PLOTNIKOV A N, HUBBARD S R, SCHLESSINGER J, et al. Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity[J] Cell. . 2000;101(4):413–424. doi: 10.1016/S0092-8674(00)80851-X. [DOI] [PubMed] [Google Scholar]
  • 100.CHEN G, LIU Y, GOETZ R, et al. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling[J] Nature. . 2018;553(7689):461–466. doi: 10.1038/nature25451. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES