Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2023 Feb 14;51(6):750–757. [Article in Chinese] doi: 10.3724/zdxbyxb-2022-0282

低氧诱导肺动脉平滑肌细胞表型转化机制的研究进展

Research progress on the mechanism of phenotypic transformation of pulmonary artery smooth muscle cells induced by hypoxia

Jiaqi MAO 1,2, Lan MA 2
PMCID: PMC10262008  PMID: 36915980

Abstract

肺动脉平滑肌细胞(PASMC)的表型转化是肺血管重塑的关键因素,抑制或逆转表型转化可以抑制肺血管重塑进程,进而控制低氧性肺动脉高压的疾病进展。研究发现,低氧可以通过引发超氧代谢导致细胞内氧化应激状态;通过激活细胞内外多条信号通路改变细胞表型标志蛋白的表达;通过调控非编码RNA进而影响细胞标志基因转录;通过诱导内皮细胞信号串扰降低收缩型细胞标志物的表达;通过诱导细胞过度自噬、产生内质网应激和诱导线粒体功能受损等多种途径引起PASMC稳态破坏,导致细胞表型转化。本文综述了上述关于低氧诱导PASMC表型转化的相关研究,为寻找抑制表型转化的靶点提供思路,为改善低氧性肺动脉高压等肺血管重塑疾病的研究提供参考。


肺动脉平滑肌细胞(pulmonary artery smooth muscle cell,PASMC);平滑肌肌动蛋白(smooth muscle actin,SMA);骨桥蛋白(osteopontin,OPN);波形蛋白(vimentin,VIM);胶原蛋白(collagen,Col);基质金属蛋白酶(matrix metalloproteinase,MMP);还原型烟酰胺腺嘌呤二核苷酸磷酸(reduced nicotinamide adenine dinucleotide phosphate,NADPH);cAMP反应元件结合蛋白(cAMP response element binding protein,CREB);低密度脂蛋白受体相关蛋白(low-density lipoprotein receptor-related protein,LRP);整合素链接激酶(integrin-linked kinase,ILK);信使核糖核酸(messenger RNA,mRNA);多聚嘧啶区结合蛋白(polypyrimidine tract-binding protein,PTBP);小分子核糖核酸(micro ribonucleic acid,miRNA,miR);长链非编码RNA(long noncoding RNA,lncRNA);核小RNA(small nuclear RNA,snRNA);缺氧诱导因子(hypoxia-inducible factor,HIF);癌症易感性候选物(cancer susceptibility candidate,CASC);趋化因子CX3C配体(chemokine CX3C ligand,CX3CL);趋化因子CX3C受体(chemokine CX3C receptor,CX3CR);软骨寡聚基质蛋白(cartilage oligomeric matrix protein,COMP);

低氧可导致PASMC表型转化,而PASMC表型转化是肺动脉管壁增厚、管腔狭窄以及不可逆血管重塑的重要原因之一 [1] 。血管重塑是肺动脉高压、心血管狭窄和血管纤维化等疾病的病理基础 [2] 。了解PASMC表型转化的机制对于减轻血管重塑程度和重塑进程相关药物的研发具有积极的指导意义。

PASMC是一种位于肺血管中层的高度分化的细胞,当血流动力学发生改变以及炎症因子释放引起血管微环境改变时,已分化的收缩型PASMC会发生去分化而变为合成型,这一过程称为PASMC的表型转化 [3] 。其特征是细胞表面收缩型标志物表达降低(如α-SMA、平滑肌肌球蛋白重链、平滑肌22α蛋白、类肌钙蛋白等)、合成型细胞标志物表达升高(如OPN、VIM等),以及参与细胞周期和细胞外基质合成的蛋白质(如钙调蛋白、细胞周期蛋白、ColⅠ、MMP等)表达升高,同时细胞内肌丝减少,细胞收缩功能降低;细胞器含量增多,细胞的增殖和迁移能力增强 [4] 。本文将从氧化应激、细胞分子信号转导、非编码RNA调控、内皮细胞信号串扰、细胞自噬、内质网应激、线粒体功能受损等方面对近年来低氧诱导的PASMC表型转化的相关机制做一简要综述,以期为寻找抑制表型转化的靶点提供思路。

低氧诱导氧化应激促进PASMC表型转化

低氧是产生氧化应激的关键因素之一,会引发超氧代谢,导致细胞内超氧化物过度释放,产生氧化应激反应 [5] 。研究发现,在氧化型低密度脂蛋白诱导的PASMC氧化应激模型中,PASMC由收缩型向合成型转化,可见氧化应激与PASMC的表型转化密切相关 [6] 。研究发现,低氧引起大鼠体内PASMC收缩型标志物降低的同时,伴随活性氧和过氧化氢生成增加以及NADPH氧化酶表达水平升高;活性氧可通过氧化损伤和改变信号转导的途径破坏细胞内稳态;增加的NADPH氧化酶进一步衍生出活性氧,活性氧水平继续升高进而导致氧化损伤,促进肺动脉高压的发展;采用NADPH氧化酶抑制剂可以抑制低氧引起的PASMC中合成型标志物OPN表达升高,进一步说明抑制氧化应激可以抑制细胞表型转化 [7] 。转录因子CREB作为维持PASMC收缩型的重要分子,在慢性缺氧中会被过度消耗;使用超氧化物清除剂抑制超氧化物的产生,可以防止CREB的消耗,从而维持PASMC的收缩型,减轻肺血管重塑 [8] 。以上研究表明,低氧时肺血管壁产生的氧化应激是引起PASMC表型转化的基本机制,抑制氧化应激可以抑制低氧引起的PASMC表型转化。

低氧引起信号分子转导促进PASMC表型转化

低氧可以引起细胞内外多条信号通路和信号分子改变,进而影响PASMC表型 [9] 。其中LRP-1和ILK是参与信号转导的两种重要分子。

LRP-1途径

LRP-1通过多种途径调节细胞信号转导,进而调控PASMC表型转化。研究表明,低氧可以增加PASMC中LRP-1的mRNA和蛋白表达水平 [10] ,这与肺动脉高压患者体内分离的PASMC中 LRP-1高表达一致 [11] 。沉默PASMC中的 LRP-1后,合成型标志物OPN和ColⅠ表达降低,伴随收缩型标志物心肌素和α-SMA升高,说明LRP-1作为信号传递分子可以促进PASMC从收缩型到合成型转化,抑制LRP-1可以抑制PASMC表型转化 [12] 。此外,LRP-1还可以调节MMP13和MMP14的表达,调控胶原编码基因( COL11A1COL15A1)的mRNA水平,导致PASMC细胞外基质成分合成和加工失调,从而导致PASMC去分化 [13] 。除了作为信号传递分子,LRP-1还可以通过内吞作用内化低密度脂蛋白,使渗透到血管壁的低密度脂蛋白在PASMC中聚集,进一步引起PASMC表型转化 [14] 。以上研究表明,LRP-1途径通过信号转导和内吞作用调控低氧诱导的PASMC表型转化。

ILK途径

ILK是一种丝氨酸/苏氨酸激酶,是细胞信号转导的中枢调节蛋白,在细胞分化、发育和肿瘤生长等多种生理病理过程中有广泛的调控作用 [15] 。作为维持血管收缩型的必要蛋白之一,ILK可以磷酸化Akt、糖原合酶激酶3β和肌球蛋白轻链等靶蛋白,降低PASMC内VIM、OPN等合成型相关蛋白的表达,从而维持血管的收缩型 [16] 。研究表明,ILK与一种RNA结合蛋白PTBP1密切相关。低氧条件下 PTBP1基因表达增加抑制了ILK的mRNA稳定性,导致ILK失调,引起PASMC表型转化。可见低氧通过促进PTBP1表达抑制ILK表达,磷酸化下游的靶蛋白从而下调PASMC收缩型标志蛋白 α-SMA、类肌钙蛋白和心肌素的表达,上调OPN表达,打破了PASMC的表型稳态,引起PASMC表型转化 [17] 。由此可见,ILK通过PTBP1/ILK轴的分子信号转导调控低氧诱导的PASMC的表型转化。

其他信号转导途径

此外,TGF-β/Smad4 [18] 、LOX-1/ERK1/2-Elk-1/MRTF-A/SRF [19] 、Notch [20] 、VPO1/HOCl/ERK [21] 等信号通路也参与了低氧诱导的PASMC的表型转化。低氧可激活以上信号通路,促使PASMC表型由收缩型转化为合成型,用相应抑制剂可以减弱该转化,证明这些通路都参与了表型转化的过程,未来可能成为潜在的预防血管重塑的靶标。

低氧条件下非编码RNA调控PASMC表型转化

近年来认为,miRNA、lncRNA、snRNA等非编码RNA参与体内多个信号调控,参与细胞的增殖、凋亡、代谢、分化等多种生理过程。miRNA是一种单链的、长度为18~22 nt的高度保守序列 [22] 。miRNA作为一种关键的转录后调节因子,可以直接降解或抑制mRNA的翻译从而起到负向调节作用。研究表明,低氧可以通过HIF-1α依赖途径或非HIF-1α依赖途径介导miRNA的表达,从而诱导PASMC的表型转化,可见miRNA在PASMC表型转化中发挥独特而关键的作用 [ 22- 25] 。在受低氧调控的miRNA中,有些miRNA在低氧条件下表达增加,促进PASMC表型转化;有些miRNA在低氧条件下表达降低,过表达后同样发挥抑制表型转化的作用。

促进表型转化的非编码RNA

低氧可以激活HIF,引起100多个基因的转录,包括miRNA,由此调节各种肺血管的功能 [22] 。研究发现,暴露于低氧刺激的大鼠PASMC发生表型转化,同时miR-9表达增加,且低氧 24、 48 h后发现在miR-9上游有大量HIF-1α富集,表明miR-9可以通过HIF-1α调控PASMC表型转化 [23] 。miR-143-5p也是促进细胞表型转化的miRNA之一。研究表明,低氧引起PASMC收缩型标志蛋白表达减少同时伴HIF-1α和miR-143-5p表达增加,敲低miR-143-5p后可逆转低氧引起的PASMC收缩型标志蛋白表达减少,说明miR-143-5p可以促进细胞表型向合成型转化;且沉默HIF-1α可以抑制miR-143-5p在低氧条件下表达,提示miR-143-5p可受HIF-1α的靶向调节减少PASMC收缩型标志蛋白表达,从而引起PASMC表型转化 [24] 。另有研究发现,HIF可以结合miR-23a转录起始位点上游的调控元件,激活miR-23a转录,导致miR-23a在低氧条件下表达增加,进而下调PASMC中收缩型标志蛋白的表达,促进细胞去分化;转染miR-23a抑制剂后,收缩型标志蛋白的表达显著上调 [25] 。以上非编码RNA通过调控HIF-1α或其他通路抑制细胞收缩型标志蛋白表达,调控细胞分化方向,引发细胞表型转化。

抑制表型转化的非编码RNA

部分非编码RNA在低氧诱导的大鼠肺动脉组织和PASMC中表达降低,过表达后可以促进PASMC收缩型标志蛋白表达。研究表明,PASMC由收缩型转为合成型的过程中lncRNA CASC2表达降低,上调lncRNA CASC2可以在体外抑制低氧诱导的PASMC增殖和迁移,加速细胞凋亡,证明lncRNA CASC2可以抑制PASMC的表型转化 [26] 。研究表明,miR-17/20a可增加正常细胞收缩型标志物表达,促进细胞向收缩型转化 [27] 。miR-17~92可通过直接抑制PDLIM5激活TGF-β3/Smad3通路,从而诱导PASMC中收缩型标志蛋白表达增 加 [28] 。 此外,miR-124可以通过抑制活化T细胞通路的核因子抑制PASMC增殖,促进收缩型标志物类肌钙蛋白和α-SMA表达,减少合成型标志物OPN表达,帮助细胞维持收缩型 [29]

以上研究均显示非编码RNA在体内通过复杂的网络调控影响PASMC表型标志物的表达,进而改变PASMC的分化方向,在PASMC表型转化和肺动脉高压防治中发挥一定的作用,因此非编码RNA有望成为治疗肺动脉高压的潜在靶点。

低氧诱导内皮细胞信号串扰促进PASMC表型转化

PASMC与内皮细胞的信号串联是细胞间通信的重要部分,对PASMC表型起到一定的调控作用 [ 30- 33] 。研究表明,肺动脉高压患者的内皮细胞通过旁分泌5-羟色胺促进PASMC的过度增殖,参与血管重塑 [30] 。可见内皮细胞对PASMC的增殖具有一定的调控作用。CX3CL1是一种锚定于内皮细胞表面的趋化因子,PASMC表达其唯一受体CX3CR1,低氧可使内皮细胞产生过量CX3CL1, 与PASMC上的受体结合触发PASMC发生表型转化 [31] 。CX3CL1/CX3CR1轴作为内皮细胞与平滑肌细胞间交互的关键环节,在低氧引起的肺动脉高压中发挥重要作用。研究表明,肺泡缺氧会导致内皮细胞过度释放CX3CL1,与PASMC表面的CX3CR1结合后,诱导血管平滑肌细胞增殖并且发生表型转化,导致肺远端微血管肌化和血管重 构 [32] 。 此外也有研究表明,低氧时内皮细胞来源的外泌体可以通过靶向ADP-核糖基化因子6和钠/钙交换蛋白1降低PASMC收缩型标志基因的表达 [33] ,说明肺微血管内皮细胞与PASMC通过CX3CL1/CX3CR1轴的信号串扰在细胞表型转化中发挥着重要调控作用,且CX3CR1拮抗剂有望治疗低氧性肺动脉高压。

低氧诱导细胞过度自噬促进PASMC表型转化

研究表明,抑制细胞自噬可以抑制低氧时PASMC的增殖和迁移 [34] ,从而降低肺动脉压 [35] , 可见自噬在调节低氧引起的肺动脉高压中发挥着重要作用。自噬是细胞内维持细胞正常生理功能的调控器,在所有细胞中均可能发生,但正常水平下的细胞自噬可以促进细胞的生长,而过度自噬会引起PASMC表型的转化。研究表明,低氧可以引起细胞自噬蛋白表达增加,进而PASMC合成型标志蛋白表达增加;低氧通过HIF降低自噬抑制因子Sirtuin3的表达,激活细胞自噬,从而促进细胞的异常增殖和迁移 [36] ;拮抗自噬的上游调控因子钙敏感受体后可以明显减轻低氧诱导PASMC的增殖、迁移和表型转化 [37] 。在低氧肺动脉高压小鼠模型中,自噬标志蛋白LC3b增加,PASMC发生去分化转化为合成型 [38]

低氧诱导内质网应激促进PASMC表型转化

内质网是蛋白质折叠加工的场所,内质网应激可以抑制内质网的折叠能力,激活未折叠蛋白质反应或导致蛋白质错误折叠,引起细胞内蛋白表达紊乱,影响细胞功能 [39] 。低氧可以激活HIF-1,通过介导内质网二硫化物氧化酶1α的表达提高过氧化氢的水平,从而引起内质网应激 [40] ,多项 研究表明,内质网应激参与了PASMC的表型转 化 [ 41- 42] 。 有研究发现,低氧48h后PASMC内鸟苷三磷酸酶Rab6A上调并产生内质网应激,内质网应激相关蛋白表达升高,伴细胞合成型标志物VIM表达升高,说明内质网应激与促进PASMC表型转化有关;抑制Rab6A后,内质网应激被抑制,同时VIM表达降低 [41] ,进一步说明抑制内质网应激可以抑制PASMC表型转化。在动物实验中,内质网应激促进了小鼠血管钙化,血管平滑肌细胞收缩型标志物α-SMA表达降低,抑制内质网应激可延缓血管钙化,同时提高α-SMA表达水平 [42] 。说明抑制内质网应激,减少未折叠蛋白质反应,可以抑制PASMC表型转化。此外,有研究表明抑制内质网应激可以增强缺氧大鼠PASMC的收缩功能 [43] ,间接反映内质网应激对细胞收缩的抑制作用。以上研究表明,低氧引起的内质网应激参与了PASMC表型转化过程,内质网应激导致的蛋白质错误折叠可以诱导PASMC去分化,促进细胞转化为合成型。

低氧诱导线粒体功能受损促进PASMC表型转化

PASMC的收缩主要依赖于线粒体氧化磷酸化产生的三磷酸腺苷,少部分来自糖酵解。线粒体功能障碍会导致活性氧过度产生、线粒体DNA损伤、线粒体动力学异常和钙稳态紊乱,最终限制了线粒体氧化磷酸化能力,导致三磷酸腺苷生成不足,因此线粒体功能对于PASMC维持正常的收缩功能至关重要 [44] 。低氧会破坏线粒体稳态,使线粒体在低氧应激下发生代谢重编程,导致活性氧过度释放引起氧化应激,进一步加重线粒体功能障碍 [45] 。PASMC线粒体功能受损会导致PASMC收缩型丧失,从而导致平滑肌收缩力降 低 [46] 。 高度增殖表型的PASMC线粒体功能受损导致细胞代谢改变 [47] ,线粒体呼吸减少而糖酵解增加,激活甘油-3-磷酸氧化酶脱氢酶,同时降低脂肪酸丙酮酸脱氢酶活性,导致脂肪酸代谢和氧化代偿性增加,活性氧水平升高 [48] ,进一步损伤线粒体功能,加速低氧诱导的PASMC表型转化 [49] 。与此同时,线粒体作为氧传感器,在低氧状态下功 能受到抑制,而PASMC在低氧下过度释放活性 氧产生线粒体应激,从而导致PASMC转化为合成型 [50] 。COMP是一种存在于肌肉骨骼和心血管系统的细胞外基质蛋白,已有研究发现COMP也存在于线粒体内,低氧会导致COMP缺乏,引起线粒体氧化磷酸化功能障碍,并伴形态异常 [51] ,导致PASMC收缩蛋白丢失,发生表型转化 [52] 。以上研究表明,调节线粒体氧化磷酸化、抑制线粒体糖酵解可以维持PASMC的收缩型。

结语

低氧条件下的肺动脉血管重塑是一系列复杂的细胞和分子共同作用结果,在血管重塑的过程中,血管壁外层的成纤维细胞、中层的平滑肌细胞和内层的内皮细胞,甚至血管周围的间质均参与了血管重塑的进程 [53] 。PASMC作为肺血管壁的主要细胞成分,其表型在血管重塑过程中表现出复杂的动态变化 [54] 。PASMC的表型可塑性对于逆转血管重塑具有重要意义,因此逆转PASMC的表型转化在低氧性肺动脉高压的治疗中具有广泛的研究前景。通过研究低氧条件下PASMC表型转化的机制,从理论上寻找抑制表型转化的靶点,针对不同的靶点和信号通路设计并研发相关药物或寻找天然药物,靶向性抑制PASMC去分化并维持其收缩型,或将成为改善低氧性肺动脉高压等肺血管重塑疾病的突破口。

COMPETING INTERESTS

所有作者均声明不存在利益冲突

Funding Statement

国家自然科学基金(32060207,31560292); 青海省自然科学基金(2021-ZJ-738)

References

  • 1.OWENS G K. Regulation of differentiation of vascular smooth muscle cells[J] Physiol Rev. . 1995;75(3):487–517. doi: 10.1152/physrev.1995.75.3.487. [DOI] [PubMed] [Google Scholar]
  • 2.PADDENBERG R, STIEGER P, VON LILIEN A L, et al. Rapamycin attenuates hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy in mice[J] Respir Res. . 2007;8(1):15. doi: 10.1186/1465-9921-8-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.OWENS G K, KUMAR M S, WAMHOFF B R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease[J] Physiol Rev. . 2004;84(3):767–801. doi: 10.1152/physrev.00041.2003. [DOI] [PubMed] [Google Scholar]
  • 4.FRID M G, ALDASHEV A A, DEMPSEY E C, et al. Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities[J] Circ Res. . 1997;81(6):940–952. doi: 10.1161/01.RES.81.6.940. [DOI] [PubMed] [Google Scholar]
  • 5.YU H, ALRUWAILI N, HU B, et al. Potential role of cartilage oligomeric matrix protein in the modulation of pulmonary arterial smooth muscle superoxide by hypoxia[J] Am J Physiol Lung Cell Mol Physiol. . 2019;317(5):L569–L577. doi: 10.1152/ajplung.00080.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.WANG X, LI H, ZHANG Y, et al. Suppression of miR-4463 promotes phenotypic switching in VSMCs treated with Ox- LDL[J] Cell Tissue Res. . 2021;383(3):1155–1165. doi: 10.1007/s00441-020-03338-y. [DOI] [PubMed] [Google Scholar]
  • 7.LI T, LUO X J, WANG E L, et al. Magnesium lithospermate B prevents phenotypic transformation of pulmonary arteries in rats with hypoxic pulmonary hypertension through suppression of NADPH oxidase[J] Eur J Pharmacol. . 2019;847:32–41. doi: 10.1016/j.ejphar.2019.01.020. [DOI] [PubMed] [Google Scholar]
  • 8.KLEMM D J, MAJKA S M, CROSSNO JR J T, et al. Reduction of reactive oxygen species prevents hypoxia-induced CREB depletion in pulmonary artery smooth muscle cells[J] J Cardiovasc Pharmacol. . 2011;58(2):181–191. doi: 10.1097/FJC.0b013e31821f2773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.XING Y, ZHENG X, QI J, et al. 15-Lipoxygenase/15-hydroxyeicosanoid and activator protein 1 contribute to hypoxia-induced pulmonary artery smooth muscle cells phenotype alteration[J] Prostaglandins Leukot Essent Fatty Acids. . 2018;135:22–29. doi: 10.1016/j.plefa.2018.03.002. [DOI] [PubMed] [Google Scholar]
  • 10.LEE S H, SUH H N, LEE Y J, et al. Midkine prevented hypoxic injury of mouse embryonic stem cells through activation of Akt and HIF-1α via low-density lipoprotein receptor-related protein-1[J] J Cell Physiol. . 2012;227(4):1731–1739. doi: 10.1002/jcp.22897. [DOI] [PubMed] [Google Scholar]
  • 11.CALVIER L, BOUCHER P, HERZ J, et al. LRP1 deficiency in vascular SMC leads to pulmonary arterial hypertension that is reversed by PPARγ activation[J] Circ Res. . 2019;124(12):1778–1785. doi: 10.1161/CIRCRESAHA.119.315088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.ZUCKER M M, WUJAK L, GUNGL A, et al. LRP1 promotes synthetic phenotype of pulmonary artery smooth muscle cells in pulmonary hypertension[J] Biochim Biophys Acta Mol Basis Dis. . 2019;1865(6):1604–1616. doi: 10.1016/j.bbadis.2019.03.012. [DOI] [PubMed] [Google Scholar]
  • 13.MURATOGLU S C, BELGRAVE S, HAMPTON B, et al. LRP1 protects the vasculature by regulating levels of connective tissue growth factor and HtrA1[J] Arterioscler Thromb Vasc Biol. . 2013;33(9):2137–2146. doi: 10.1161/ATVBAHA.113.301893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.BOUCHER P, HERZ J. Signaling through LRP1: protection from atherosclerosis and beyond[J] Biochem Pharmacol. . 2011;81(1):1–5. doi: 10.1016/j.bcp.2010.09.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.HOU J, LIU B, ZHU B, et al. Role of integrin-linked kinase in the hypoxia-induced phenotypic transition of pulmonary artery smooth muscle cells: Implications for hypoxic pulmonary hypertension[J] Exp Cell Res. . 2019;382(2):111476. doi: 10.1016/j.yexcr.2019.06.021. [DOI] [PubMed] [Google Scholar]
  • 16.SHEN D, LI J, LEPORE J J, et al. Aortic aneurysm generation in mice with targeted deletion of integrin-linked kinase in vascular smooth muscle cells[J] Circ Res. . 2011;109(6):616–628. doi: 10.1161/CIRCRESAHA.110.239343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.YAN G, SUN R, CHEN Z, et al. PTBP1 targets ILK to regulate the hypoxia-induced phenotypic transformation of pulmonary artery smooth muscle cells[J] Drug Des Devel Ther. . 2021;15:2025–2033. doi: 10.2147/DDDT.S275000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.RUAN C, LU J, WANG H, et al. MiR-26b-5p regulates hypoxia-induced phenotypic switching of vascular smooth muscle cells via the TGF-β/Smad4 signaling pathway[J] Mol Med Rep. . 2017;15(6):4185–4190. doi: 10.3892/mmr.2017.6509. [DOI] [PubMed] [Google Scholar]
  • 19.ZHANG W, ZHU T, WU W, et al. LOX-1 mediated phenotypic switching of pulmonary arterial smooth muscle cells contributes to hypoxic pulmonary hypertension[J] Eur J Pharmacol. . 2018;818:84–95. doi: 10.1016/j.ejphar.2017.10.037. [DOI] [PubMed] [Google Scholar]
  • 20.QIAO L, XIE L, SHI K, et al. Notch signaling change in pulmonary vascular remodeling in rats with pulmonary hypertension and its implication for therapeutic intervention[J/OL] PLoS One. . 2012;7(12):e51514. doi: 10.1371/journal.pone.0051514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.LI T, LIU B, LI N S, et al. Vascular peroxidase 1 promotes phenotypic transformation of pulmonary artery smooth muscle cells via ERK pathway in hypoxia-induced pulmonary hypertensive rats[J] Life Sci. . 2022;307:120910. doi: 10.1016/j.lfs.2022.120910. [DOI] [PubMed] [Google Scholar]
  • 22.ZHANG W, TAO Z, XU F, et al. An overview of miRNAs involved in PASMC phenotypic switching in pulmonary hypertension[J]. Biomed Res Int , 2021, 2021: 5765029 . [DOI] [PMC free article] [PubMed]
  • 23.SHAN F, LI J, HUANG Q Y. HIF-1 alpha-induced up-regulation of miR-9 contributes to phenotypic modulation in pulmonary artery smooth muscle cells during hypoxia[J] J Cell Physiol. . 2014;229(10):1511–1520. doi: 10.1002/jcp.24593. [DOI] [PubMed] [Google Scholar]
  • 24.TANG B, TANG M, XU Q, et al. MicroRNA-143–5p modulates pulmonary artery smooth muscle cells functions in hypoxic pulmonary hypertension through targeting HIF-1α[J] J Biosci. . 2020;45(1):37. doi: 10.1007/s12038-020-9992-1. [DOI] [PubMed] [Google Scholar]
  • 25.YAN L, GAO H, LI C, et al. Effect of miR-23a on anoxia-induced phenotypic transformation of smooth muscle cells of rat pulmonary arteries and regulatory mechanism[J] Oncol Lett. . 2017;13(1):89–98. doi: 10.3892/ol.2016.5440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.GONG J, CHEN Z, CHEN Y, et al. Long non-coding RNA CASC2 suppresses pulmonary artery smooth muscle cell proliferation and phenotypic switch in hypoxia-induced pulmonary hypertension[J] Respir Res. . 2019;20(1):53. doi: 10.1186/s12931-019-1018-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.CHEN T, HUANG J B, DAI J, et al. PAI-1 is a novel component of the miR-17~92 signaling that regulates pulmonary artery smooth muscle cell phenotypes[J] Am J Physiol Lung Cell Mol Physiol. . 2018;315(2):L149–L161. doi: 10.1152/ajplung.00137.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.CHEN T, ZHOU G, ZHOU Q, et al. Loss of microRNA-17-92 in smooth muscle cells attenuates experimental pulmonary hypertension via induction of PDZ and LIM domain 5[J] Am J Respir Crit Care Med. . 2015;191(6):678–692. doi: 10.1164/rccm.201405-0941OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.KANG K, PENG X, ZHANG X, et al. MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells[J] J Biol Chem. . 2013;288(35):25414–25427. doi: 10.1074/jbc.M113.460287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.EDDAHIBI S, GUIGNABERT C, BARLIER-MUR A M, et al. Cross talk between endothelial and smooth muscle cells in pulmonary hypertension[J] Circulation. . 2006;113(15):1857–1864. doi: 10.1161/CIRCULATIONAHA.105.591321. [DOI] [PubMed] [Google Scholar]
  • 31.AMSELLEM V, ABID S, POUPEL L, et al. Roles for the CX3CL1/CX3CR1 and CCL2/CCR2 chemokine systems in hypoxic pulmonary hypertension[J] Am J Respir Cell Mol Biol. . 2017;56(5):597–608. doi: 10.1165/rcmb.2016-0201OC. [DOI] [PubMed] [Google Scholar]
  • 32.ZHANG J, HU H, PALMA N L, et al. Hypoxia-induced endothelial CX3CL1 triggers lung smooth muscle cell phenotypic switching and proliferative expansion[J] Am J Physiol Lung Cell Mol Physiol. . 2011;303(10):L912–L922. doi: 10.1152/ajplung.00014.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.LIN X, HE Y, HOU X, et al. Endothelial cells can regulate smooth muscle cells in contractile phenotype through the miR-206/ARF6&NCX1/exosome axis[J/OL] PLoS One. . 2016;11(3):e0152959. doi: 10.1371/journal.pone.0152959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.YAMANAKA R, HOSHINO A, FUKAI K, et al. TIGAR reduces smooth muscle cell autophagy to prevent pulmonary hypertension[J] Am J Physiol Heart Circ Physiol. . 2020;319(5):H1087–H1096. doi: 10.1152/ajpheart.00314.2020. [DOI] [PubMed] [Google Scholar]
  • 35.ZHOU Y, WANG Y, WANG X, et al. The protective effects of Κ-opioid receptor stimulation in hypoxic pulmonary hypertension involve inhibition of autophagy through the AMPK-mTOR pathway[J] Cell Physiol Biochem. . 2017;44(5):1965–1979. doi: 10.1159/000485886. [DOI] [PubMed] [Google Scholar]
  • 36.ZHANG L, MA C, WANG X, et al. MicroRNA-874-5p regulates autophagy and proliferation in pulmonary artery smooth muscle cells by targeting Sirtuin 3[J] Eur J Pharmacol. . 2020;888:173485. doi: 10.1016/j.ejphar.2020.173485. [DOI] [PubMed] [Google Scholar]
  • 37.PENG X, WEI C, LI H Z, et al. NPS2390, a selective calcium-sensing receptor antagonist controls the phenotypic modulation of hypoxic human pulmonary arterial smooth muscle cells by regulating autophagy[J] J Transl Internal Med. . 2019;7(2):59–68. doi: 10.2478/jtim-2019-0013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.YAO Y, LI H, DA X, et al. SUMOylation of Vps34 by SUMO1 promotes phenotypic switching of vascular smooth muscle cells by activating autophagy in pulmonary arterial hypertension[J] Pulmonary Pharmacol Ther. . 2019;55:38–49. doi: 10.1016/j.pupt.2019.01.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.KOZUTSUMI Y, SEGAL M, NORMINGTON K, et al. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins[J] Nature. . 1988;332(6163):462–464. doi: 10.1038/332462a0. [DOI] [PubMed] [Google Scholar]
  • 40.AKMAN M, BELISARIO D C, SALAROGLIO I C, et al. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons[J] J Exp Clin Cancer Res. . 2021;40(1):28. doi: 10.1186/s13046-020-01824-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.WANG F, XU X, TANG W, et al. Rab6A GTPase contributes to phenotypic modulation in pulmonary artery smooth muscle cells under hypoxia[J] J Cell Biochem. . 2019;120(5):7858–7867. doi: 10.1002/jcb.28060. [DOI] [PubMed] [Google Scholar]
  • 42.ZHANG Y, HE L, TU M, et al. The ameliorative effect of terpinen-4-ol on ER stress-induced vascular calcification depends on SIRT1-mediated regulation of PERK acetylation[J] Pharmacol Res. . 2021;170:105629. doi: 10.1016/j.phrs.2021.105629. [DOI] [PubMed] [Google Scholar]
  • 43.ZHUAN B, WANG X, WANG M D, et al. Hypoxia induces pulmonary artery smooth muscle dysfunction through mitochondrial fragmentation-mediated endoplasmic reticulum stress[J] Aging. . 2020;12(23):23684–23697. doi: 10.18632/aging.103892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.DASGUPTA A, WU D, TIAN L, et al. Mitochondria in the pulmonary vasculature in health and disease: oxygen-sensing, metabolism, and dynamics[J]. Compr Physiol , 2020, 10(2): 713-765 . [DOI] [PubMed]
  • 45.LEE P, CHANDEL N S, SIMON M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond[J] Nat Rev Mol Cell Biol. . 2020;21(5):268–283. doi: 10.1038/s41580-020-0227-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.LIU Y F, ZHU J J, YU TIAN X, et al. Hypermethylation of mitochondrial DNA in vascular smooth muscle cells impairs cell contractility[J] Cell Death Dis. . 2020;11(1):35. doi: 10.1038/s41419-020-2240-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.LI D, SHAO N Y, MOONEN J R, et al. ALDH1A3 coordinates metabolism with gene regulation in pulmonary arterial hypertension[J] Circulation. . 2021;143(21):2074–2090. doi: 10.1161/CIRCULATIONAHA.120.048845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.JAMES J, ZEMSKOVA M, ECCLES C A, et al. Single mutation in the NFU1 gene metabolically reprograms pulmonary artery smooth muscle cells[J] . Arterioscler Thromb Vasc Biol. . 2021;41(2):734–754. doi: 10.1161/ATVBAHA.120.314655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.ZHANG L, MA C, ZHANG C, et al. Reactive oxygen species effect PASMCs apoptosis via regulation of dynamin-related protein 1 in hypoxic pulmonary hypertension[J] Histochem Cell Biol. . 2016;146(1):71–84. doi: 10.1007/s00418-016-1424-9. [DOI] [PubMed] [Google Scholar]
  • 50.BHANSALI S, SOHI K, DHAWAN V. Hypoxia-induced mitochondrial reactive oxygen species (mtROS) differentially regulates smooth muscle cell (SMC) proliferation of pulmonary and systemic vasculature[J] Mitochondrion. . 2021;57:97–107. doi: 10.1016/j.mito.2020.11.012. [DOI] [PubMed] [Google Scholar]
  • 51.JIA Y, WANG M, MAO C, et al. COMP-prohibitin 2 interaction maintains mitochondrial homeostasis and controls smooth muscle cell identity[J] Cell Death Dis. . 2018;9(6):676. doi: 10.1038/s41419-018-0703-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.ZHANG C, MA C, ZHANG L, et al. MiR-449a-5p mediates mitochondrial dysfunction and phenotypic transition by targeting Myc in pulmonary arterial smooth muscle cells[J] J Mol Med. . 2019;97(3):409–422. doi: 10.1007/s00109-019-01751-7. [DOI] [PubMed] [Google Scholar]
  • 53.HASSOUN P M, MOUTHON L, BARBERÀ J A, et al. Inflammation, growth factors, and pulmonary vascular remodeling[J] J Am Coll Cardiol. . 2009;54(1):S10–S19. doi: 10.1016/j.jacc.2009.04.006. [DOI] [PubMed] [Google Scholar]
  • 54.YOSHIDA T, OWENS G K. Molecular determinants of vascular smooth muscle cell diversity[J] Circ Res. . 2005;96(3):280–291. doi: 10.1161/01.RES.0000155951.62152.2e. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES