Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2023 Feb 14;51(6):679–690. [Article in Chinese] doi: 10.3724/zdxbyxb-2022-0484

宿主基因与结核病易感性研究概览

Research progress on genetic control of host susceptibility to tuberculosis

Wenjuan HU 1, Kaijin XU 1
PMCID: PMC10262011  PMID: 36915969

Abstract

“吕贝克灾难”、双胞胎研究及收养研究等流行病学观察性研究结果都充分表明,宿主基因是决定机体对结核分枝杆菌是否易感和感染后是否发病的重要因素。从连锁分析到全基因组关联研究已发现,人白细胞抗原(HLA)类基因和非HLA类基因( SLC11A1VDRASAP1、细胞因子类基因及模式识别受体类基因)与结核病易感性相关。本文对近年涉及结核病易感性基因的研究进行回顾,重点叙述HLA类基因和非HLA类基因与结核病发病的关联,并对文中涉及的基因进行富集分析,结果提示大部分基因参与免疫炎症调控,并与自身免疫性疾病关系密切,可为后续结核感染风险预测和结核病诊治提供参考。


人白细胞抗原(human leucocyte antigen,HLA);孟德尔遗传易感分枝杆菌病(mendelian susceptibility to mycobacterial disease,MSMD);全基因组关联分析(geno-me wide association study,GWAS);单核苷酸多态性(single nucleotide polymorphism,SNP);白介素(interleukin,IL);溶质载体家族11成员1(solute carrier family 11 member 1,SLC11A1);维生素D受体(vitamin D receptor,VDR);二磷酸腺苷核糖化因子鸟苷酸激酶1(Arf GAP with SH3 domain,ankyrin repeat and PH domain 1,ASAP1);模式识别受体(pattern recognition receptor,PRR);肿瘤坏死因子(tumor necrosis factor,TNF);Toll样受体(Toll-like receptor,TLR);

结核病是结核分枝杆菌引起的感染性疾病。2021年全球有1060万人罹患结核病 [1] 。全世界约1/4人口感染过结核分枝杆菌,但仅5%~10%感染人群会在其一生中发展为结核病 [1] ,其余感染者则为结核潜伏感染。还有研究发现,尽管持续高水平暴露于结核分枝杆菌,但10%~20%“抵抗者”不会受到感染 [ 25] 。宿主遗传因素会导致结核感染的个体差异。从流行病学观察性研究、连锁分析到全基因组关联研究都发现宿主遗传背景与结核病易感性相关,并发现许多基因位点与结核病关系密切,包括HLA类基因和非HLA类基因 [6] 。本文综述了结核易感基因研究发展过程及已知相关基因,探讨结核病与宿主基因易感性关系,以期为结核病精准防控提供依据,助力结核病疫情早日得到控制。

结核病易感性研究发展过程

20世纪30年代,“吕贝克灾难”、双胞胎研究和收养研究等流行病学观察性研究是较早聚焦宿主基因与结核病易感性相关的研究。之后的连锁分析、候选基因关联研究及全基因组关联研究相继发现许多基因位点与结核病关系密切,其中MSMD基因突变位点的发现是结核基因易感性的有力例证。

流行病学观察性研究提示宿主基因与结核病易感性相关

1929年,德国吕贝克总医院251名新生儿接种了被不明剂量活结核分枝杆菌污染的卡介苗,致使228名婴儿罹患结核病,其中72名婴儿在接种1年内死于结核病,这就是“吕贝克灾难”。而后Fox等 [7] 对该事故进行回顾性分析,发现部分新生儿对结核分枝杆菌感染具有明显抵抗力,但部分暴露于低剂量结核分枝杆菌即发病的新生儿可能具有先天易感性。双胞胎研究及收养研究结果也表明,人类遗传背景与结核病易感性相关。1943年,Kallmann等 [8] 一项涉及2534份样本的双胞胎研究表明,发展为活动性结核病的概率与指示病例的血缘关系成正比,最高概率为同卵双胞胎,达87.3%;且当同卵双胞胎中一个在明确接触结核病患者后并不发病时,另一个死于结核病的概率接近零。1988年,Sørensen等 [9] 一项关于基因和环境因素对成年被收养者早逝影响的研究指出,早逝尤其因感染(包含结核病)而早逝的成年人具有很强的遗传背景。以上研究提示,宿主对结核分枝杆菌的易感程度受遗传背景影响,这开启了结核病宿主基因易感性研究的序幕。

关联研究等方法引入结核病易感性研究

疾病遗传易感性研究方法主要有基于家系的连锁分析、基于群体基因频率分析的候选基因关联研究和全基因组关联研究。每种研究方法都有其优势和局限性,一般来说,连锁分析特别适用于有高外显率,符合经典孟德尔单基因性状遗传规律的相关罕见基因定位;而对于复杂性状而言,运用关联研究则更具优势,但关联研究亦不能识别复杂性状的所有遗传决定因素。关联研究可分为候选基因关联研究和GWAS,其中前者由于候选基因是主观设定的,研究结果重复性差,结果可靠性有待提升,正逐渐被GWAS取代。GWAS指在全基因组层面上筛选出疾病相关SNP位点。2010年,第一个识别结核基因易感性位点的GWAS来源于加纳和冈比亚人群样本分析,结果表明位于染色体18q11.2上基因贫乏区的rs4331426与结核病易感性相关 [10] 。GWAS在遗传力缺失、责任位点识别及疾病预测方面具有一定局限性 [11] ,因此需要进一步联合全基因组测序和基因型填充的方法,可为破译整个基因组提供可能,有利于发现罕见变异与疾病的关联。值得注意的是,对关联研究所得出的结论须客观、谨慎解释,因为统计学上的关联并不代表实际因果关联,得出的变异序列很有可能只是与真正的致病序列存在连锁不平衡关系 [12]

MSMD是宿主基因与结核病易感性相关的确切证据

通过连锁分析及关联研究发现了MSMD基因突变的许多位点,这是宿主基因与结核病易感性的有力证据。MSMD是一组以对微弱毒力的分枝杆菌(如卡介苗、环境分枝杆菌)和沙门菌易感为特点的原发性免疫缺陷病。从1996年明确第一个MSMD突变位点以来,截至目前已发现17个基因突变,分别为 IFNGR1IFNGR2IL12BIL12RB1STAT1NEMOCYBBTYK2IRF8ISG15SPPL2AJAK1RORCIL12RB2IL23RIFNGTBX21。这些突变基因与γ干扰素/IL-12/23通路相关,该通路对结核分枝杆菌感染清除至关重要,通路障碍会导致γ干扰素分泌或免疫应答缺陷,从而使得个体对结核分枝杆菌易感 [13] 。Alangari等 [14] 指出,对于γ干扰素产生受损而发生播散性结核病的年轻患者,重组γ干扰素的补充治疗是有效的。临床上对于儿童反复发生严重的分枝杆菌感染,应警惕MSMD的可能。

结核病易感性相关基因概述

与结核病易感性相关的基因大致可以分为HLA类基因和非HLA类基因两大类。当前涉及非HLA类基因研究较多。

与结核病易感性相关HLA类基因

HLA复合体位于第6号染色体短臂上,是迄今已知的人体最复杂的基因系统。整个复合体基因分为HLA-Ⅰ类、HLA-Ⅱ类和HLA-Ⅲ类基因。HLA-Ⅰ类和HLA-Ⅱ类基因分别编码结合及提呈抗原的HLA-Ⅰ类和HLA-Ⅱ类分子,其中 HLA-Ⅰ类分子将抗原提呈给CD8 +T细胞,HLA-Ⅱ类分子则将抗原提呈给CD4 +T细胞,均与适应性免疫应答调节相关。大部分HLA-Ⅲ类基因的功能不明,少数HLA-Ⅲ类分子可以通过补体途径进行免疫调节。2019年中国香港的一项研究结果提示,HLA-DQA1*03位点(rs9272785)在全年龄分析时与结核病易感性无关,但进行年龄亚组分析时,发病年龄为20~40岁的患者该位点与结核病易感性相关,因此提出临床结核病在不同年龄组有不同的发病机制,而遗传因素可能只在早发性结核病中起重要作用 [15] 。早在2010年,Alcaïs等 [16] 指出遗传效应在传染病早发患者中比晚发患者更明显。这提示在结核病基因易感性研究中,不能只单纯考虑结核感染状态,也需要注重年龄对研究结果的影响,年龄亦是发病机制中不可忽略的因素。近年HLA类基因与结核病易感性关系研究详见 表1

表1 与结核病易感性有关的HLA类基因研究汇总

Table1 Summary of relationship between HLA genes and tuberculosis susceptibility

HLA类型

样本来源

HLA等位基因

与结核病关系

参考文献

HLA-Ⅰ

加拿大

A*03

易感

[17]

南非

A*30:01、B*41:01、B*42:02、C*05:01、C*06:02、C*17:01

易感

[18]

A*01:01、A*34:02、B*07:02、C*04:01、C*07:02

抵抗

[18]

HLA-Ⅱ

巴西

DRB1*04:11:01

易感

[19]

DRB1*04:07:01

抵抗

[19]

加拿大

DRB1*05:03

易感

[17]

泰国

DRB1*09:01、DQB1*03:03

易感

[20]

中国汉族

rs9272461

抵抗

[21]

南非

DRB1*11:01

抵抗

[18]

DRB1*04:01、DRB1*15:01

易感

[18]

中国香港

DQA1*03

易感

[15]

南印度

DPB1*0101/0201、DQB1*050301/0601

易感

[22]

DPB1*1501、DQB1*0303

抵抗

[22]

中国新疆

DQB2:rs7453920 G>A:GA

易感

[23]

HLA-Ⅲ

莫桑比克

rs1800629( TNF-α)

易感

[24]

中国藏族和伊朗

rs1800629( TNF-α)

抵抗

[ 25- 26]

墨西哥

rs361525:A( TNF-α)

易感

[27]

中国

rs1799724( TNF-α)

易感

[28]

北印度

rs1041981( TNF-β)

易感

[29]

HLA:人白细胞抗原;TNF:肿瘤坏死因子.

与结核病易感性相关非HLA类基因

目前关于非HLA类基因与结核病易感性的研究较多,大致分为 SLC11A1基因、 VDR基因、 ASAP1 基因、细胞因子类基因和PRR基因。

SLC11A1基因

SLC11A1基因也称为 NRAMP1,位于染色体2q35区域,是第一个被识别的结核病易感性相关基因,1998年被证明与西非地区人群的结核病易感性显著相关 [30] SLC11A1是一种控制细胞内病原体(沙门菌、分枝杆菌及利什曼虫)的宿主抗性因子,在调节铁稳态、吞噬小体成熟、固有淋巴细胞激活、一氧化氮和活性氧及脂质运载蛋白2的生成方面具有重要作用 [31] SLC11A1作为被广泛研究的宿主基因之一,许多学者发现其与患者结核病易感性相关; SLC11A1基因 3′非翻译区与中国和印度安得拉邦肺结核风险增加相关,通过对研究对象进行性别和年龄亚组分析,发现中国女性和年龄不超过65岁者该位点与肺结核风险增加相关 [ 32- 33] 。2022年一项研究提示,rs17235409(D543N)位点与增加脊柱结核发病风险相关 [34] 。除此之外, SLC11A1还与耐多药结核病、较长的痰培养转化时间及空洞形成相 关 [35] 。 SLA11A1蛋白主要分布于巨噬细胞吞噬溶酶体膜上,与巨噬细胞清除结核分枝杆菌密切相关,其作为结核病防治生物标志物具有较大前景,值得进一步深入研究。

VDR基因

研究表明,1,25-二羟维生素D3可以抑制结核分枝杆菌生长 [36] ,而缺乏25-羟维生素D3与结核病易感风险增加相关 [37] 。与结核病易感性关联密切的 VDR基因多态性位点有APaI、Bsm、TaqI和FokI。一项荟萃分析结果显示, VDR FokI:f vs.F会增加东亚及东南亚人群结核病患病风险 [38] 。在中国、韩国、巴西、印度和伊朗等国的研究均发现, VDR基因与结核病易感性有关 [ 2539- 42] ,其中中国和印度的 VDR FokI:f与增加结核病患病风险相关, VDR FokI:F则与抵抗结核病患病风险相关 [ 3942] 。摩洛哥的一项研究则指出, VDR f-b-a-T单倍型基因与当地肺结核抵抗显著相关 [43] 。当前, VDR基因在结核病易感性方面有较大争议,未能达成共识,若开展人体结核病测定血维生素D浓度的前瞻性临床试验,可为确定 VDR基因与结核病易感性提供依据,为临床补充维生素D防治结核病提供可能。

ASAP1基因

ASAP1基因位于染色体8q24位置,编码腺苷二磷酸核糖基化因子鸟苷三磷酸酶活化蛋白(Arf GAP)。2015年,Curtis等 [44] 对来自俄罗斯标本的760万个基因突变位点进行研究,发现 ASAP1基因的rs4733781位点和rs10956514位点与肺结核抵抗显著相关。由遗传决定的 ASAP1表达的过度减少会引起被结核分枝杆菌感染的树突状细胞的迁移受损,这可能是结核病的发病机制之一。而后发现rs4733781等位基因A是中国汉族人群结核病的保护因素 [45] 。中国香港的一项研究结果表明, ASAP1基因的rs4733775、rs10089819及rs17210536位点与结核病易感性关系均无统计学意义 [15] 。作为新发现的基因, ASAP1在不同研究中不一致甚至相互矛盾的结果,还需更多的研究明确其意义。

细胞因子类基因

细胞因子对免疫细胞的发育分化、免疫应答及免疫调节至关重要,其参与了抗感染免疫应答的全过程。细菌可刺激感染部位的巨噬细胞释放IL-1、TNF-α、IL-6、IL-8和 IL-12等细胞因子,引起局部和全身炎症反应,促进对病原体的清除。目前已发现很多编码细胞因子、细胞因子受体的基因与结核病易感性相关,见 表2。 细胞因子类基因位点突变会影响机体对病原体的固有免疫及适应性免疫应答,从而对疾病易感。将包含 TNF在内的26个细胞因子类基因在Metascape( www.metascape.org/gp/index.html)进行富集分析可发现,其中15个基因参与IL-10信号通路(多重检验调整后 P=10 –32.57),提示IL-10信号通路在结核病易感性中可能起重要作用,可以作为下一步重点研究的方向。

表2 与结核易感性有关的编码细胞因子类基因

Table2 Summary of genes encoding cytokines and their receptors related to susceptibility to tuberculosis

基 因

基因多态性位点

样本来源

与结核病关系

参考文献

基 因

基因多态性位点

样本来源

与结核病关系

参考文献

IFNG

rs1861494

北印度、中国

易感

[ 29, 46]

IL-1B

rs1143634

巴西

易感

[65]

rs1861494

阿根廷

抵抗

[47]

rs16944

中国藏族

抵抗

[26]

rs2069718

中国

抵抗

[48]

IL-1R1

rs10490571、rs956730、rs3917225

中国

易感

[66]

rs1861493

北印度

易感

[29]

IL-1RA

rs4252019

北印度

易感

[29]

IFNAR1

rs72552343

中国

抵抗

[49]

IL-1R2

rs4851527

中国

抵抗

[66]

IFNGR1

rs1327474

中国新疆南部

抵抗

[50]

IL-2

–330T/G:TG

印度

易感

[54]

rs11914、rs7749390

伊朗

抵抗

[51]

IL-4

rs2070874

北印度

易感

[29]

TNFRSF1B

rs3397

非洲

抵抗

[52]

–589C/T:CC

印度

易感

[54]

rs1061624

中国

易感

[53]

IL-6

rs1800795

巴西南部

抵抗

[67]

TGF-β1

+869T/C:TC

印度

易感

[54]

rs2069837

中国汉族

抵抗

[26]

rs2317130、rs4803457、rs4803455、rs11466313、rs11466334

中国

易感

[55]

IL-10

rs1800872

苏丹、巴西

易感

[ 41, 63]

EREG

rs2367707、rs6446993

中国

易感

[56]

IL-12B

rs3212220、rs2853694

北印度

易感

[29]

rs7675690

越南

易感

[57]

rs3212227

墨西哥、乌干达

易感

[ 27, 68]

CCR2

rs1799864

印度

抵抗

[58]

IL-17A

rs2275913

巴西南部

抵抗

[67]

CCR5

rs2734648、rs1799987

中国

易感

[59]

rs8193036

中国

易感

[69]

CCL2

rs1024611

北印度、泰国、中国

易感

[ 60- 62]

–152A/G

伊朗

易感

[70]

rs2857656:CC

北印度

易感

[60]

IL-17F

rs763780

阿根廷

易感

[71]

rs2857656:GC、rs1024611:AG

北印度

抵抗

[60]

IL-18

rs1946518、rs187238:C、rs2430561:AA

埃及

抵抗

[72]

CCL5

rs2280788

苏丹

抵抗

[63]

rs187238:GC+GG、rs2430561:A

埃及

易感

[72]

rs2280789

摩尔多瓦

易感

[64]

IL-22

rs2227473:G

中国

易感

[73]

rs2107538

印度

易感

[58]

IL-27

rs17855750

中国

抵抗

[74]

IL-8

rs2227307

墨西哥

易感

[27]

–964A/G

韩国

抵抗

[75]

IL-1A

rs1800587

巴西

易感

[65]

 

IFN:干扰素;TNF:肿瘤坏死因子;TGF:转化生长因子;EREG:上皮调节蛋白;CCR:C-C-基元趋化因子受体;CCL:C-C-基元趋化因子配体;IL:白介素.

PRR基因

PRR是一类能够直接识别病原体相关分子模式以及在受损宿主细胞上表达损伤相关分子模式的受体。固有免疫细胞通过PRR识别病原体相关分子模式和损伤相关分子模式,介导非特异性抗感染、抗肿瘤、免疫调节以及适应性免疫应答过程。目前已发现许多结核病易感性相关基因可编码PRR,见 表3TLR8基因位于性染色体Xp22.2位置,许多研究结论都呈现出性别分层现象,如rs3764879和rs3764880等位基因G是南非女性结核病的易感因素,但在南非男性群体中却是结核病的保护因素 [76] ;rs3764880位点等位基因A与中国汉族女性人群结核病患病风险增加相关,但在中国汉族男性人群中与结核病抵抗相 关 [77] 。 男性X染色体数较女性少 1条, TLR8等X染色体上基因效应可能对男性影响更大。《2022年全球结核病报告》指出,结核病最高负担来源于成年男性,占2021年全部结核病病例的56.5%,远高于女性和儿童(分别为32.5%和11%) [1] 。因此推测,男女结核病患病率呈现差异的原因可能与基因效应的性别偏倚现象有关。

表3 与结核易感性有关的编码模式识别受体类基因

Table3 Summary of the relationship between genes encoding pattern recognition receptors and tuberculosis susceptibility

基 因

样本来源

基因多态性位点

与结核病关系

参考文献

基 因

样本来源

基因多态性位点

与结核病关系

参考文献

TLR1

中国藏族

rs5743604

易感

[78]

rs3764880:A(男)

抵抗

[77]

rs5743557、rs5743596

抵抗

[78]

土耳其

rs3764880:A/(-)(男)

易感

[90]

中国汉族儿童

rs5743618:G

易感

[79]

TLR9

中国汉族

rs187084:G/GA(肺结核)

易感

[77]

加纳

rs3923647

抵抗

[80]

rs187084:GA(MTB感染)

抵抗

[77]

印度

rs4833095

抵抗

[81]

越南

rs352142(显)、rs352143(隐)

易感

[91]

伊朗

rs5743551、rs5743618

易感

[82]

TLR10

中国藏族

rs1146617、rs4129009(隐)

抵抗

[92]

南非、巴西

rs5743618

易感

[ 76, 83]

克罗地亚

rs11096957:A/A

易感

[93]

TLR2

中国

rs1898830

抵抗

[84]

rs11096957:A/C

抵抗

[93]

印度

196–174 Ins > del

易感

[85]

MBL2

中国汉族

rs930507、rs2099902、rs10824793

易感

[94]

巴基斯坦

Arg753Gln:AA

易感

[86]

DC-SIGN

巴西东北部

rs735240、rs2287886

易感

[95]

TLR4

墨西哥

rs4986790、rs4986791

抵抗

[87]

rs735239、rs4804803

抵抗

[95]

中国新疆南部

rs4986790

易感

[50]

伊朗东南部

rs4804803

易感

[96]

中国藏族

rs11536889:GC

抵抗

[84]

CRP

中国

rs1130864

易感

[97]

中国江苏

rs10759932、rs2737190

易感

[88]

AIM2

巴西

rs1103577

抵抗

[98]

印度

Thr399Ile

易感

[85]

P2X7

中国藏族

rs208290

易感

[99]

TLR6

中国藏族

rs5743808、rs5743827

易感

[89]

北印度

rs3751143

易感

[100]

TLR8

南非

rs3761624、rs3764879、rs3764880(女)

易感

[76]

中国汉族

rs2393799:C、rs208294

易感

[101]

rs3764879、rs3764880(男)

抵抗

[76]

NOD2

印度

802C>T(隐)、2105G>A(隐)

易感

[102]

TLR8

中国汉族

rs3764880:AA(女)

易感

[77]

 

显:显性模型;隐:隐性模型. TLR:Toll样受体;MTB:结核分枝杆菌;MBL:甘露糖结合凝集素;DC-SIGN:树突状细胞特异性细胞间黏附分子-3-结合非整合素;CRP:C反应蛋白;AIM:黑色素瘤缺乏因子;NOD:核苷酸结合寡聚化结构域.

结核病易感性相关基因富集分析

为解读易感基因背后所代表的生物学意义,挖掘其与通路或生物学过程的关联,采用Metascape( www.metascape.org/gp/index.html)对文献涉及的66个结核易感相关基因进行富集分析 [103] ,得出前20个与富集基因相关的生物学过程或通路聚类,其中与免疫系统细胞因子信号转导、细胞因子产生正向调节和炎症性肠病相关的基因分别占70.31%、60.94%和43.75%。炎症性肠病相关基因占比虽不是最高,却与本次富集基因最显著相关(多重检验调整后 P=10 –55.27)。 图1为富集分析所得与富集基因相关前二十位生物学过程或通路聚类,推测结核病易感性相关基因绝大部分都参与炎症免疫调控。基于DisGeNET数据库进行富集分析,与富集基因相关前二十位疾病聚类见 图2。可见与富集基因关系密切的疾病除结核病以外,还有炎症性肠病 [104] 、白塞综合征以及川崎病,表明结核与自身免疫性疾病具有共病可能,两者潜在病理机制可能是共通的 [105]

图1 .


图1

与结核病易感性相关富集基因相关的生物过程或通路聚类图

条目长短及颜色深浅对应–log10( P)值大小,代表富集程度. –log10( P)>20,条目框为红色;10<–log10( P)≤20,条目框为黄色; –log10( P) 值越大,则长度越长,与富集所得生物过程或通路相关性越大. SARS-CoV-2:严重急性呼吸综合征冠状病毒2.

图2 .


图2

与结核病易感性相关富集基因关系密切的疾病富集分析聚类图

条目长短对应–log10( P)值,代表富集程度,–log10( P)值越大,长度越长,与疾病相关性越大.

结语

全球有近1/4的人口感染过结核分枝杆菌,绝大多数为潜伏感染,如果能在个体发展为活动性结核病之前将其识别,并且进行预防性治疗,这对结核病诊治及阻止结核病流行大有裨益。目前研究发现,许多基因都与结核病易感性相关,这提示可能有多基因参与致病。从宿主基因角度探究结核发病机制,通过易感基因对结核病发病及病情进展进行风险预测,可为临床预防结核感染及结核病诊疗提供新靶点。

对结核病与宿主基因易感性相互关系的探索需要运用多组学的系统生物学方法,如基因组学、蛋白质组学、转录组学等。目前已发现许多可用来预测结核病病情进展风险的转录组基因生物标志物,以协助诊断不同类型结核病和预测疾病进展。2016年,Zak等 [106] 在南非进行了一项青少年前瞻性队列研究,用外周血进行转录组分析得出16个全血基因标志物,可用来预测1年内结核病进展,敏感度为66.1%,特异度为80.6%,并在南非和冈比亚独立队列样本中得到验证。2020年巴西的一项研究指出,基因转录组标志物PREDICT29可以预测近期暴露结核病的个体在结核病发病前至少5年的疾病进展或再激活风险,敏感度为74.2%,特异度为84.8% [107] 。也许在不久的将来,结核易感基因也可对疾病进展人群进行风险分层,用多基因风险评分预测疾病发病风险。

结核基因易感性研究虽多,但尚未得出统一的结论,由于疾病发生发展机制复杂、研究对象缺少种族和地域代表性、结核感染状态不同,都会导致研究结果不一致和不可重复性,研究中需要均衡基因-基因及基因-环境相互作用因素 [108] 。当前,结核病基因易感性研究所得出的结果只是“冰山一角”,如上所述,GWAS等研究方法在风险判断、疾病预测、位点识别等方面仍存在不足,结果正确性有待提高。期待统计效能更高、定位更精细、成本效益更好的研究方法和大样本量、多中心的研究,以便得出更为可靠的结论,同时也需更多基础研究阐明基因易感性的具体机制。

COMPETING INTERESTS

所有作者均声明不存在利益冲突

Funding Statement

国家重点研发计划(2021YFC2301800)

References

  • 1.World Health Organization. Global tuberculosis report 2022[EB/OL]. [2022-12-20]. https://apps.who.int/iris/handle/10665/363752
  • 2.ABEL L, EL-BAGHDADI J, BOUSFIHA A A, et al. Human genetics of tuberculosis: a long and winding road[J] Phil Trans R Soc B. . 2014;369(1645):20130428. doi: 10.1098/rstb.2013.0428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.O’GARRA A, REDFORD P S, MCNAB F W, et al. The immune response in tuberculosis[J] Annu Rev Immunol. . 2013;31(1):475–527. doi: 10.1146/annurev-immunol-032712-095939. [DOI] [PubMed] [Google Scholar]
  • 4.SIMMONS J D, STEIN C M, SESHADRI C, et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection[J] . Nat Rev Immunol. . 2018;18(9):575–589. doi: 10.1038/s41577-018-0025-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.MA N, ZALWANGO S, MALONE L S L, et al. Clinical and epidemiological characteristics of individuals resistant to M. tuberculosis infection in a longitudinal TB household contact study in Kampala, Uganda[J] . BMC Infect Dis. . 2014;14(1):352. doi: 10.1186/1471-2334-14-352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.庄 斌, 杨本付. 人类结核病遗传易感性研究进展[J]. 中华流行病学杂志, 2008, 29(11): 1153-1155 . [PubMed]; ZHUANG Bin, YANG Benfu. Overview of human hereditary susceptibility on tuberculosis[J]. Chinese Journal of Epidemiology, 2008, 29(11): 1153-1155. (in Chinese) . [PubMed]
  • 7.FOX G J, ORLOVA M, SCHURR E. Tuberculosis in newborns: the lessons of the “Lübeck Disaster” (1929—1933)[J/OL]. PLoS Pathog, 2016, 12(1): e1005271 . [DOI] [PMC free article] [PubMed]
  • 8.KALLMANN FJ, REISNER D. Twin studies on the significance of genetic factors in tuberculosis[J]. Am Revtuberc,1943, 47: 549-571
  • 9.SØRENSEN T I A, NIELSEN G G, ANDERSEN P K, et al. Genetic and environmental influences on premature death in adult adoptees[J] N Engl J Med. . 1988;318(12):727–732. doi: 10.1056/NEJM198803243181202. [DOI] [PubMed] [Google Scholar]
  • 10.THYE T, VANNBERG F O, WONG S H, et al. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2[J] Nat Genet. . 2010;42(9):739–741. doi: 10.1038/ng.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.TAM V, PATEL N, TURCOTTE M, et al. Benefits and limitations of genome-wide association studies[J] Nat Rev Genet. . 2019;20(8):467–484. doi: 10.1038/s41576-019-0127-1. [DOI] [PubMed] [Google Scholar]
  • 12.胡永华. 遗传流行病学[M]. 北京: 北京大学医学出版社, 2008: 189 ; HU Yonghua. Genetic Epidemiology[M]. Beijing: Peking University Medical Press, 2008: 189. (in Chinese)
  • 13.DAS J, BANDAY A Z, SHANDILYA J, et al. An updated review on Mendelian susceptibility to mycobacterial diseases—a silver jubilee celebration of its first genetic diagnosis[J] Expert Rev Clin Immunol. . 2021;17(10):1103–1120. doi: 10.1080/1744666X.2021.1956314. [DOI] [PubMed] [Google Scholar]
  • 14.ALANGARI A A, AL-ZAMIL F, AL-MAZROU A, et al. Treatment of disseminated mycobacterial infection with high-dose IFN-γ in a patient with IL-12Rβ1 deficiency[J] Clin Dev Immunol. . 2011;2011:1–5. doi: 10.1155/2011/691956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.TANG N L, WANG X, CHANG K C, et al. Genetic susceptibility to tuberculosis: interaction between HLA-DQA1 and age of onset[J] Infect Genet Evol. . 2019;68:98–104. doi: 10.1016/j.meegid.2018.12.014. [DOI] [PubMed] [Google Scholar]
  • 16.ALCAÏS A, QUINTANA-MURCI L, THALER D S, et al. Life-threatening infectious diseases of childhood: single-gene inborn errors of immunity?[J] Ann New York Acad Sci. . 2010;1214(1):18–33. doi: 10.1111/j.1749-6632.2010.05834.x. [DOI] [PubMed] [Google Scholar]
  • 17.LARCOMBE L A, SHAFER L A, NICKERSON P W, et al. HLA-A, B, DRB1, DQA1, DQB1 alleles and haplotype frequencies in Dene and Cree cohorts in Manitoba, Canada[J] Hum Immunol. . 2017;78(5-6):401–411. doi: 10.1016/j.humimm.2017.03.009. [DOI] [PubMed] [Google Scholar]
  • 18.SEEDAT F, JAMES I, LOUBSER S, et al. Human leukocyte antigen associations with protection against tuberculosis infection and disease in human immunodeficiency virus-1 infected individuals, despite household tuberculosis exposure and immune suppression[J] Tuberculosis. . 2021;126:102023. doi: 10.1016/j.tube.2020.102023. [DOI] [PubMed] [Google Scholar]
  • 19.SOUZA DE LIMA D, MORISHI OGUSKU M, PORTO DOS SANTOS M, et al. Alleles of HLA-DRB1*04 associated with pulmonary tuberculosis in Amazon Brazilian population[J/OL]. PLoS One, 2016, 11(2): e0147543 . [DOI] [PMC free article] [PubMed]
  • 20.TOYO‐OKA L, MAHASIRIMONGKOL S, YANAI H, et al. Strain‐based HLA association analysis identified HLA‐DRB1*09:01 associated with modern strain tuberculosis[J] . HLA. . 2017;90(3):149–156. doi: 10.1111/tan.13070. [DOI] [PubMed] [Google Scholar]
  • 21.MIAO R, HUANG S, LI C, et al. An HLA class Ⅱ locus, previously identified by a genome-wide association study, is also associated with susceptibility to pulmonary tuberculosis in a Chinese population[J] Infect Genet Evol. . 2018;64:164–167. doi: 10.1016/j.meegid.2018.06.022. [DOI] [PubMed] [Google Scholar]
  • 22.SELVARAJ P, RAGHAVAN S, SWAMINATHAN S, et al. HLA-DQB1 and -DPB1 allele profile in HIV infected patients with and without pulmonary tuberculosis of south India[J] Infect Genet Evol. . 2008;8(5):664–671. doi: 10.1016/j.meegid.2008.06.005. [DOI] [PubMed] [Google Scholar]
  • 23.WANG X, CAO X, ZHANG W, et al. Association of human leukocyte antigens‐DQB2/DPA1/DPB1 polymorphism and pulmonary tuberculosis in the Chinese Uygur population[J/OL] Mol Genet Genomic Med. . 2019;7(3):e544. doi: 10.1002/mgg3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.MABUNDA N, ALVARADO-ARNEZ L E, VUBIL A, et al. Gene polymorphisms in patients with pulmonary tuberculosis from Mozambique[J] Mol Biol Rep. . 2015;42(1):71–76. doi: 10.1007/s11033-014-3741-1. [DOI] [PubMed] [Google Scholar]
  • 25.MERZA M, FARNIA P, ANOOSHEH S, et al. The NRAMPI, VDR and TNF-α gene polymorphisms in Iranian tuberculosis patients: the study on host susceptibility[J] Braz J Infect Dis. . 2009;13(4):252–256. doi: 10.1590/s1413-86702009000400002. [DOI] [PubMed] [Google Scholar]
  • 26.WU S, WANG M G, WANG Y, et al. Polymorphisms of cytokine genes and tuberculosis in two independent studies[J] Sci Rep. . 2019;9(1):2507. doi: 10.1038/s41598-019-39249-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.PLOWES-HERNANDEZ O, PRADO-CALLEROS H, ARROYO-ESCALANTE S, et al. Cervical lymph node tuberculosis and TNF, IL8, IL10, IL12B and IFNG polymorphisms[J]. New Microbiol, 2021, 44(1): 24-32 . [PubMed]
  • 28.ZHENG M, SHI S, WEI W, et al. Correlation between MBL2/CD14/TNF-α gene polymorphisms and susceptibility to spinal tuberculosis in Chinese population[J] Biosci Rep. . 2018;38(1):BSR20171140. doi: 10.1042/BSR20171140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.ABHIMANYU, BOSE M, JHA P. Footprints of genetic susceptibility to pulmonary tuberculosis: cytokine gene variants in north Indians[J]. Indian J Med Res, 2012, 135(5): 763-770 . [PMC free article] [PubMed]
  • 30.BELLAMY R, RUWENDE C, CORRAH T, et al. Variations in the NRAMP1 gene and susceptibility to tuberculosis in west Africans[J] . N Engl J Med. . 1998;338(10):640–644. doi: 10.1056/NEJM199803053381002. [DOI] [PubMed] [Google Scholar]
  • 31.CUNRATH O, BUMANN D. Host resistance factor SLC11A1 restricts Salmonella growth through magnesium deprivation[J] . Science. . 2019;366(6468):995–999. doi: 10.1126/science.aax7898. [DOI] [PubMed] [Google Scholar]
  • 32.LEUNG K H, YIP S P, WONG W S, et al. Sex- and age-dependent association of SLC11A1polymorphisms with tuberculosis in Chinese: a case control study[J] BMC Infect Dis. . 2007;7(1):19. doi: 10.1186/1471-2334-7-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.MEDAPATI R V, SUVVARI S, GODI S, et al. NRAMP1 and VDR gene polymorphisms in susceptibility to pulmonary tuberculosis among Andhra Pradesh population in India: a case-control study[J] BMC Pulm Med. . 2017;17(1):89. doi: 10.1186/s12890-017-0431-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.LI T, WANG L, GUO C, et al. Polymorphisms of SLC11A1(NRAMP1) rs17235409 associated with and susceptibility to spinal tuberculosis in a southern Han Chinese population[J] Infect Genet Evol. . 2022;98:105202. doi: 10.1016/j.meegid.2021.105202. [DOI] [PubMed] [Google Scholar]
  • 35.TAKAHASHI K, HASEGAWA Y, ABE T, et al. SLC11A1 (formerly NRAMP1) polymorphisms associated with multidrug-resistant tuberculosis[J] Tuberculosis. . 2008;88(1):52–57. doi: 10.1016/j.tube.2007.08.008. [DOI] [PubMed] [Google Scholar]
  • 36.ROCKETT K A, BROOKES R, UDALOVA I, et al. 1,25-Dihydroxyvitamin D 3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line[J]. Infect Immun, 1998, 66(11): 5314-5321 . [DOI] [PMC free article] [PubMed]
  • 37.WILKINSON R J, LLEWELYN M, TOOSSI Z, et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study[J] Lancet. . 2000;355(9204):618–621. doi: 10.1016/S0140-6736(99)02301-6. [DOI] [PubMed] [Google Scholar]
  • 38.CAO Y, WANG X, CAO Z, et al. Vitamin D receptor gene FokI polymorphisms and tuberculosis susceptibility: a meta- analysis[J] Arch Med Sci. . 2016;12(5):1118–1134. doi: 10.5114/aoms.2016.60092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.WU L, DENG H, ZHENG Y, et al. An association study of NRAMP1, VDR, MBL and their interaction with the susceptibility to tuberculosis in a Chinese population[J] Int J Infect Dis. . 2015;38:129–135. doi: 10.1016/j.ijid.2015.08.003. [DOI] [PubMed] [Google Scholar]
  • 40.KIM S S, LEE S I, JIN H S, et al. Tuberculosis risk is associated with genetic polymorphisms in the LRP2, CUBN, and VDR genes[J] . Genes Genom. . 2020;42(10):1189–1196. doi: 10.1007/s13258-020-00971-3. [DOI] [PubMed] [Google Scholar]
  • 41.SILVA C A, FERNANDES D C R O, BRAGA A C O, et al. Investigation of genetic susceptibility to Mycobacterium tuberculosis ( VDR and IL10 genes) in a population with a high level of substructure in the Brazilian Amazon region[J] . Int J Infect Dis. . 2020;98:447–453. doi: 10.1016/j.ijid.2020.06.090. [DOI] [PubMed] [Google Scholar]
  • 42.PANDA S, TIWARI A, LUTHRA K, et al. Association of Fok1 VDR polymorphism with Vitamin D and its associated molecules in pulmonary tuberculosis patients and their household contacts[J] Sci Rep. . 2019;9(1):15251. doi: 10.1038/s41598-019-51803-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.ARJI N, BUSSON M, IRAQI G, et al. Genetic diversity of TLR2, TLR4, and VDR loci and pulmonary tuberculosis in Moroccan patients[J] J Infect Dev Ctries. . 2014;8(4):430–440. doi: 10.3855/jidc.3820. [DOI] [PubMed] [Google Scholar]
  • 44.CURTIS J, LUO Y, ZENNER H L, et al. Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration[J] . Nat Genet. . 2015;47(5):523–527. doi: 10.1038/ng.3248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.CHEN C, ZHAO Q, SHAO Y, et al. A common variant of ASAP1 is associated with tuberculosis susceptibility in the Han Chinese population[J] . Dis Markers. . 2019;2019:7945429. doi: 10.1155/2019/7945429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.WU S, WANG Y, ZHANG M, et al. Genetic variants in IFNG and IFNGR1 and tuberculosis susceptibility[J] Cytokine. . 2019;123:154775. doi: 10.1016/j.cyto.2019.154775. [DOI] [PubMed] [Google Scholar]
  • 47.ROLANDELLI A, PELLEGRINI J, AMIANO N, et al. The IFNG rs1861494 single nucleotide polymorphism is associated with protection against tuberculosis disease in argentina[J] Genes. . 2018;9(1):46. doi: 10.3390/genes9010046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.LI J, ZHOU Y, ZHANG H, et al. Association of IFNG gene polymorphisms with pulmonary tuberculosis but not with spinal tuberculosis in a Chinese Han population[J] Microb Pathog. . 2017;111:238–243. doi: 10.1016/j.micpath.2017.08.054. [DOI] [PubMed] [Google Scholar]
  • 49.ZHANG G, DEWEERD N A, STIFTER S A, et al. A proline deletion in IFNAR1 impairs IFN-signaling and underlies increased resistance to tuberculosis in humans[J] Nat Commun. . 2018;9(1):85. doi: 10.1038/s41467-017-02611-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.CHEN Y, ZENG Y, WANG J, et al. Immune and inflammation‐related gene polymorphisms and susceptibility to tuberculosis in Southern Xinjiang population: a case‐control analysis[J] Int J Immunogenet. . 2022;49(2):70–82. doi: 10.1111/iji.12564. [DOI] [PubMed] [Google Scholar]
  • 51.NADERI M, HASHEMI M, REZAEI M, et al. Association of genetic polymorphisms of IFNGR1 with the risk of pulmonary tuberculosis in Zahedan, Southeast Iran[J] Tuberc Res Treat. . 2015;2015:292505. doi: 10.1155/2015/292505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.MÖLLER M, FLACHSBART F, TILL A, et al. A functional haplotype in the 3′untranslated region of TNFRSF1B is associated with tuberculosis in two African populations[J] . Am J Respir Crit Care Med. . 2010;181(4):388–393. doi: 10.1164/rccm.200905-0678OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.MOKROUSOV I, WU X R, VYAZOVAYA A, et al. Polymorphism of 3′UTR region of TNFR2 coding gene and its role in clinical tuberculosis in Han Chinese pediatric population[J] Infect Genet Evol. . 2011;11(6):1312–1318. doi: 10.1016/j.meegid.2011.04.025. [DOI] [PubMed] [Google Scholar]
  • 54.SIVANGALA R, PONNANA M, THADA S, et al. Association of cytokine gene polymorphisms in patients with tuberculosis and their household contacts[J] Scand J Immunol. . 2014;79(3):197–205. doi: 10.1111/sji.12136. [DOI] [PubMed] [Google Scholar]
  • 55.ZHANG S, LI G, BI J, et al. Association between functional nucleotide polymorphisms up-regulating transforming growth factor β1 expression and increased tuberculosis susceptibility[J] J Infect Dis. . 2022;225(5):825–835. doi: 10.1093/infdis/jiaa585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.CAO W, LUO L, CHEN W, et al. Polymorphism in the EREG gene confers susceptibility to tuberculosis[J] BMC Med Genet. . 2019;20(1):7. doi: 10.1186/s12881-018-0729-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.THUONG N T T, HAWN T R, CHAU T T H, et al. Epiregulin (EREG) variation is associated with susceptibility to tuberculosis[J] Genes Immun. . 2012;13(3):275–281. doi: 10.1038/gene.2011.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.MISHRA G, POOJARY S S, RAJ P, et al. Genetic polymorphisms of CCL2, CCL5, CCR2 and CCR5 genes in Sahariya tribe of North Central India: an association study with pulmonary tuberculosis[J] Infect Genet Evol. . 2012;12(5):1120–1127. doi: 10.1016/j.meegid.2012.03.018. [DOI] [PubMed] [Google Scholar]
  • 59.LIU S, LIU N, WANG H, et al. CCR5 promoter polymorphisms associated with pulmonary tuberculosis in a Chinese Han population[J] Front Immunol. . 2021;11:544548. doi: 10.3389/fimmu.2020.544548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.BISWAS S K, MITTAL M, SINHA E, et al. Exploring the role of C-C motif chemokine ligand-2 single nucleotide polymorphism in pulmonary tuberculosis: a genetic association study from North India[J]. J Immunol Res, 2020, 2020: 1019639 . [DOI] [PMC free article] [PubMed]
  • 61.NONGHANPHITHAK D, REECHAIPICHITKUL W, NAMWAT W, et al. Genetic polymorphisms of CCL2 associated with susceptibility to latent tuberculous infection in Thailand[J] . Int J Tuberc Lung Dis. . 2016;20(9):1242–1248. doi: 10.5588/ijtld.16.0017. [DOI] [PubMed] [Google Scholar]
  • 62.CHEN L M, TONG X, LI X B, et al. The association between the -2518A/G polymorphism in the MCP-1 gene and the risk of pulmonary tuberculosis in Sichuan Chinese population[J]. Eur Rev Med Pharmacol Sci, 2015, 19(4):563-566 . [PubMed]
  • 63.MHMOUD N, FAHAL A, WENDY VAN DE SANDE W J. Association of IL-10 and CCL5 single nucleotide polymorphisms with tuberculosis in the Sudanese population[J] Trop Med Int Health. . 2013;18(9):1119–1127. doi: 10.1111/tmi.12141. [DOI] [PubMed] [Google Scholar]
  • 64.VARZARI A, TUDOR E, BODRUG N, et al. Age-specific association of CCL5 gene polymorphism with pulmonary tuberculosis: a case-control study[J] . Genet Test Mol Biomarkers. . 2018;22(5):281–287. doi: 10.1089/gtmb.2017.0250. [DOI] [PubMed] [Google Scholar]
  • 65.SALUM K C R, CASTRO M C S, MOREIRA V B, et al. Interleukin 1α and 1β gene variations are associated with tuberculosis in silica exposed subjects[J] Am J Ind Med. . 2020;63(1):74–84. doi: 10.1002/ajim.23066. [DOI] [PubMed] [Google Scholar]
  • 66.REN G, DONG Q, HUYAN B, et al. IL1R1 and IL1R2 polymorphisms were associated with tuberculosis risk: a pilot study[J/OL] . J Gene Med. . 2018;20(10-11):e3057. doi: 10.1002/jgm.3057. [DOI] [PubMed] [Google Scholar]
  • 67.MILANO M, MORAES M O, RODENBUSCH R, et al. Single nucleotide polymorphisms in IL17A and IL6 are associated with decreased risk for pulmonary tuberculosis in Southern Brazilian population[J/OL]. PLoS One, 2016, 11(2): e0147814 . [DOI] [PMC free article] [PubMed]
  • 68.MCHENRY M L, BARTLETT J, IGO R P, et al. Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: evidence for coevolution?[J/OL]. PLoS Genetics, 2020, 16(4): e1008728 . [DOI] [PMC free article] [PubMed]
  • 69.WANG W, DENG G, ZHANG G, et al. Genetic polymorphism rs8193036 of IL17A is associated with increased susceptibility to pulmonary tuberculosis in Chinese Han population[J] Cytokine. . 2020;127:154956. doi: 10.1016/j.cyto.2019.154956. [DOI] [PubMed] [Google Scholar]
  • 70.MANSOURI F, HEYDARZADEH R, YOUSEFI S. The association of interferon-gamma, interleukin-4 and interleukin-17 single-nucleotide polymorphisms with susceptibility to tuberculosis[J] APMIS. . 2018;126(3):227–233. doi: 10.1111/apm.12810. [DOI] [PubMed] [Google Scholar]
  • 71.ROLANDELLI A, PELLEGRINI J M, HERNÁNDEZ DEL PINO R E, et al. The non-synonymous rs763780 single-nucleotide polymorphism in IL17F gene is associated with susceptibility to tuberculosis and advanced disease severity in argentina[J] . Front Immunol. . 2019;10:2248. doi: 10.3389/fimmu.2019.02248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.HASSUNA N A, EL FEKY M, HUSSEIN A A R M, et al. Interleukin-18 and interferon-γ single nucleotide polymorphisms in Egyptian patients with tuberculosis[J/OL] PLoS One. . 2021;16(1):e0244949. doi: 10.1371/journal.pone.0244949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.YU Z Q, WANG W F, DAI Y C, et al. Interleukin-22 receptor 1 is expressed in multinucleated giant cells:a study on intestinal tuberculosis and Crohn’s disease[J] World J Gastroenterol. . 2019;25(20):2473–2488. doi: 10.3748/wjg.v25.i20.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.LI M, JIAO L, LYU M, et al. Association of IL27 and STAT3 genetic polymorphism on the susceptibility of tuberculosis in Western Chinese Han population[J] Infect Genet Evol. . 2020;83:104324. doi: 10.1016/j.meegid.2020.104324. [DOI] [PubMed] [Google Scholar]
  • 75.OH J Y, SIM J K, JUNG W J, et al. Association between interleukin-27 polymorphisms and pulmonary tuberculosis[J] Int J Tuberc Lung Dis. . 2015;19(6):702–708. doi: 10.5588/ijtld.14.0773. [DOI] [PubMed] [Google Scholar]
  • 76.SALIE M, DAYA M, LUCAS L A, et al. Association of toll-like receptors with susceptibility to tuberculosis suggests sex-specific effects of TLR8 polymorphisms[J] Infect Genet Evol. . 2015;34:221–229. doi: 10.1016/j.meegid.2015.07.004. [DOI] [PubMed] [Google Scholar]
  • 77.WANG M G, ZHANG M M, WANG Y, et al. Association of TLR8 and TLR9 polymorphisms with tuberculosis in a Chinese Han population: a case-control study[J] BMC Infect Dis. . 2018;18(1):561. doi: 10.1186/s12879-018-3485-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.ZHANG M, TANG X, WANG Y, et al. Variants of TLR1 associated with tuberculosis susceptibility in the Chinese Tibetan population but not in Han Chinese[J] Infect Genet Evol. . 2018;61:53–59. doi: 10.1016/j.meegid.2018.02.021. [DOI] [PubMed] [Google Scholar]
  • 79.QI H, SUN L, WU X, et al. Toll-like receptor 1(TLR1) Gene SNP rs5743618 is associated with increased risk for tuberculosis in Han Chinese children[J] Tuberculosis. . 2015;95(2):197–203. doi: 10.1016/j.tube.2014.12.001. [DOI] [PubMed] [Google Scholar]
  • 80.MEYER C G, REILING N, EHMEN C, et al. TLR1 variant H305L associated with protection from pulmonary tuberculosis[J/OL] PLoS One. . 2016;11(5):e0156046. doi: 10.1371/journal.pone.0156046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.DITTRICH N, BERROCAL-ALMANZA L C, THADA S, et al. Toll-like receptor 1 variations influence susceptibility and immune response to Mycobacterium tuberculosis[J] . Tuberculosis. . 2015;95(3):328–335. doi: 10.1016/j.tube.2015.02.045. [DOI] [PubMed] [Google Scholar]
  • 82.NADERI M, HASHEMI M, MIRSHEKARI H, et al. Toll-like receptor 1 polymorphisms increased the risk of pulmonary tuberculosis in an Iranian population sample[J]. Biomed Environ Sci, 2016, 29(11): 825-828 . [DOI] [PubMed]
  • 83.BARLETTA-NAVECA R H, NAVECA F G, ALMEIDA V A, et al. Toll-Like receptor-1 single-nucleotide polymorphism 1805T/G is associated with predisposition to multibacillary tuberculosis[J] Front Immunol. . 2018;9:1455. doi: 10.3389/fimmu.2018.01455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.WU S, LIU X, CHEN L, et al. Polymorphisms of TLR2, TLR4 and TOLLIP and tuberculosis in two independent studies[J] . Biosci Rep. . 2020;40(8):BSR20193141. doi: 10.1042/BSR20193141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.WANI B A, SHEHJAR F, SHAH S, et al. Role of genetic variants of vitamin D receptor, Toll-like receptor 2 and Toll-like receptor 4 in extrapulmonary tuberculosis[J] Microb Pathog. . 2021;156:104911. doi: 10.1016/j.micpath.2021.104911. [DOI] [PubMed] [Google Scholar]
  • 86.FATIMA R, USMAN M, FARYAL R. Association of TLR2 polymorphisms, Arg753Gln and Arg677Trp, with tuberculosis in Pakhtun population of Pakistan[J] Infect Genet Evol. . 2020;83:104291. doi: 10.1016/j.meegid.2020.104291. [DOI] [PubMed] [Google Scholar]
  • 87.ORTEGA E, HERNÁNDEZ-BAZÁN S, SÁNCHEZ-HERNÁNDEZ B, et al. Single nucleotide polymorphisms in TLR4 affect susceptibility to tuberculosis in Mexican population from the state of Veracruz[J] . J Immunol Res. . 2020;2020:2965697. doi: 10.1155/2020/2965697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.LI Z, MAO X, LIU Q, et al. Functional variations of the TLR4 gene in association with chronic obstructive pulmonary disease and pulmonary tuberculosis[J] . BMC Pulm Med. . 2019;19(1):184. doi: 10.1186/s12890-019-0939-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.ZHANG M, CHEN G, HE J Q. Variants of Toll-like receptor 6 associated with tuberculosis susceptibility in the Chinese Tibetan population[J] Microb Pathog. . 2022;162:105208. doi: 10.1016/j.micpath.2021.105208. [DOI] [PubMed] [Google Scholar]
  • 90.DALGIC N, TEKIN D, KAYAALTI Z, et al. Relationship between Toll-like receptor 8 gene polymorphisms and pediatric pulmonary tuberculosis[J] Dis Markers. . 2011;31(1):33–38. doi: 10.1155/2011/545972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.GRAUSTEIN A D, HORNE D J, ARENTZ M, et al. TLR9 gene region polymorphisms and susceptibility to tuberculosis in Vietnam[J] . Tuberculosis. . 2015;95(2):190–196. doi: 10.1016/j.tube.2014.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.WANG Y, ZHANG M M, HUANG W W, et al. Polymorphisms in Toll-like receptor 10 and tuberculosis susceptibility: evidence from three independent series[J] Front Immunol. . 2018;9:309. doi: 10.3389/fimmu.2018.00309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.BULAT-KARDUM L J, ETOKEBE G E, LEDERER P, et al. Genetic polymorphisms in the Toll-like receptor 10, interleukin (IL)17A and IL17F genes differently affect the risk for tuberculosis in croatian population[J] Scand J Immunol. . 2015;82(1):63–69. doi: 10.1111/sji.12300. [DOI] [PubMed] [Google Scholar]
  • 94.ZHANG J X, GONG W P, ZHU D L, et al. Mannose-binding lectin 2 gene polymorphisms and their association with tuberculosis in a Chinese population[J] Infect Dis Poverty. . 2020;9(1):46. doi: 10.1186/s40249-020-00664-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.DA SILVA R C, SEGAT L, DA CRUZ H L A, et al. Association of CD209 and CD209L polymorphisms with tuberculosis infection in a Northeastern Brazilian population[J] Mol Biol Rep. . 2014;41(8):5449–5457. doi: 10.1007/s11033-014-3416-y. [DOI] [PubMed] [Google Scholar]
  • 96.NADERI M, HASHEMI M, TAHERI M, et al. CD209 promoter –336 A/G (rs4804803) polymorphism is associated with susceptibility to pulmonary tuberculosis in Zahedan, southeast Iran[J] J Microbiol Immunol Infect. . 2014;47(3):171–175. doi: 10.1016/j.jmii.2013.03.013. [DOI] [PubMed] [Google Scholar]
  • 97.XU Y, CHENG M, WANG X. C-reactive protein +1444C/T polymorphism is associated with the susceptibility to pulmonary tuberculosis[J]. Biomed Res Int, 2020, 2020: 6634879 . [DOI] [PMC free article] [PubMed]
  • 98.FIGUEIRA M B A, DE LIMA D S, BOECHAT A L, et al. Single-nucleotide variants in the AIM2 - absent in melanoma 2 gene (rs1103577) associated with protection for tuberculosis[J] Front Immunol. . 2021;12:604975. doi: 10.3389/fimmu.2021.604975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.ZHU X, GUO W, REN G, et al. P2X7R gene polymorphisms are associated with increased risk of pulmonary tuberculosis in the tibetan chinese population[J] Am J Tropical Med Hyg. . 2016;95(5):1016–1020. doi: 10.4269/ajtmh.16-0056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.CHAUDHARY A, SINGH J P, SEHAJPAL P K, et al. P2X7 receptor polymorphisms and susceptibility to tuberculosis in a North Indian Punjabi population[J] Int J Tuberc Lung Dis. . 2018;22(8):884–889. doi: 10.5588/ijtld.18.0023. [DOI] [PubMed] [Google Scholar]
  • 101.ZHOU Y, TAN C, MO Z, et al. P2X7 receptor in spinal tuberculosis: gene polymorphisms and protein levels in Chinese Han population[J] Infect Genet Evol. . 2018;57:138–144. doi: 10.1016/j.meegid.2017.11.020. [DOI] [PubMed] [Google Scholar]
  • 102.MANDALA J P, THADA S, SIVANGALA R, et al. Influence of NOD-like receptor 2 gene polymorphisms on muramyl dipeptide induced pro-inflammatory response in patients with active pulmonary tuberculosis and household contacts[J] Immunobiology. . 2021;226(4):152096. doi: 10.1016/j.imbio.2021.152096. [DOI] [PubMed] [Google Scholar]
  • 103.ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J] Nat Commun. . 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.JOSTINS L, RIPKE S, WEERSMA R K, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease[J] Nature. . 2012;491(7422):119–124. doi: 10.1038/nature11582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.CLAYTON K, POLAK M E, WOELK C H, et al. Gene expression signatures in tuberculosis have greater overlap with autoimmune diseases than with infectious diseases[J] Am J Respir Crit Care Med. . 2017;196(5):655–656. doi: 10.1164/rccm.201706-1248LE. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.ZAK D E, PENN-NICHOLSON A, SCRIBA T J, et al. A blood RNA signature for tuberculosis disease risk:a prospective cohort study[J] Lancet. . 2016;387(10035):2312–2322. doi: 10.1016/S0140-6736(15)01316-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.LEONG S, ZHAO Y, RIBEIRO-RODRIGUES R, et al. Cross-validation of existing signatures and derivation of a novel 29-gene transcriptomic signature predictive of progression to TB in a Brazilian cohort of household contacts of pulmonary TB[J] Tuberculosis. . 2020;120:101898. doi: 10.1016/j.tube.2020.101898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.郑伟, 季林丹, 邢文华,等. 肺结核全基因组关联研究进展[J]. 遗传, 2013, 35(7): 823-829 . [DOI] [PubMed]; ZHENG Wei, JI Lindan, XING Wenhua, et al. Advances in genome-wide association study of tuberculosis[J]. Hereditas (Beijing), 2013, 35(7): 823-829. (in Chinese) . [DOI] [PubMed]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES