Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2022 Nov 29;51(5):626–633. [Article in Chinese] doi: 10.3724/zdxbyxb-2022-0075

细胞因子类药物在眼科临床的应用进展

Progress on the application of growth factor-related drugs in ophthalmology

Xiaojie WANG 1, Qi HUI 1, Zi JIN 1, Fengqin RAO 1, Bingjie YU 1, Lei JIN 1, Joshua BANDA 1, Xiaokun LI 1
PMCID: PMC10264984  PMID: 36581569

Abstract

血管内皮生长因子、成纤维细胞生长因子、神经生长因子、表皮生长因子、干扰素等细胞生长因子是调控细胞增殖、分化和再生的重要内源性蛋白。以上述生长因子等为靶点开发的生物药物,在老年性黄斑变性、角膜损伤、神经营养性角膜炎等眼部疾病的治疗中发挥了重要作用,相应药物陆续上市。抗血管内皮生长因子类药物可以控制血管内皮的增生,减轻视网膜组织的水肿和渗出,已经成为老年性黄斑变性和糖尿病视网膜病的主要治疗手段。碱性成纤维细胞生长因子可促进角膜上皮细胞的增殖、分化和迁移,具有加速角膜损伤愈合,降低角膜炎症反应的作用,其中牛碱性成纤维细胞生长因子已用于角膜损伤临床治疗。神经生长因子能促进中枢和外周神经元的生长、发育和分化,加快神经损伤的修复,用于神经营养性角膜炎的治疗,可促进角膜完全愈合。临床上,表皮生长因子衍生物滴眼液可用于角膜上皮损伤的治疗,重组人干扰素可用于眼部病毒性感染疾病的治疗。本文就细胞因子类药物在眼科疾病治疗及新药开发的研究进展进行综述,为拓展细胞因子在眼科临床的应用提供参考。


老年性黄斑变性(age-related macular degeneration,ARMD);成纤维细胞生长因子(fibroblast growth factor,FGF);血管内皮生长因子(vascular endothelial growth factor,VEGF);神经生长因子(nerve growth factor,NGF);表皮生长因子(epidermal growth factor,EGF);白介素(interleukin,IL);富血小板血浆(platelet rich plasma,PRP);美国食品和药品管理局(U.S. Food and Drug Administration,美国FDA);准分子激光原地角膜消除术(Laser-assisted keratomileusis,LASIK);

据世界卫生组织统计,全球患有近视、老视、青光眼、ARMD、糖尿病性视网膜病变等眼科疾病的人群已经超过了50亿 [1] 。随着老龄化加重、生活方式改变和用眼过度等因素的增加,近年来眼科疾病治疗需求不断增长。尽管激光矫正手术用于近视的治疗已经越来越成熟,但诸如ARMD、老视等眼部疾病目前尚无成熟的治疗手段,这些未满足的眼科临床需求极大地促进了眼科药物的开发。靶向FGF、VEGF、NGF、EGF等细胞因子类药物在角膜损伤、ARMD、干眼症等眼部疾病的治疗中发挥着重要作用,相应药物陆续上市并在临床上得到广泛的应用 [ 2- 6] 。本文对眼科临床常用的细胞因子类药物进行综述,旨在为细胞因子在眼科临床的应用提供思路。

细胞因子类药物在眼表疾病中的应用

细胞因子是一类由多种免疫细胞(如巨噬细胞、淋巴细胞和肥大细胞等)以及某些非免疫细胞(如内皮细胞、表皮细胞等)分泌的小分子可溶性蛋白 [7] ,包括IL、趋化因子、干扰素、生长因子等 [8] ,在调节细胞生长、分化和激活中发挥重要作用。其中的生长因子是一类信号分子,包括FGF、EGF、VEGF等 [9] 。生长因子能够在眼组织发育和愈合过程中刺激细胞增殖、迁移、分化和多细胞形态发生。目前已批准用于眼表疾病治疗的细胞因子类药物主要有碱性FGF、NGF、EGF、干扰素、IL-1受体拮抗剂、PRP。

碱性FGF

碱性FGF是FGF家族中旁分泌蛋白的典型代表。碱性FGF可促进角膜上皮细胞的增殖、分化和迁移,具有加速角膜损伤愈合,减轻角膜炎症反应的作用。重组牛碱性FGF滴眼液主要用于各种原因引起的角膜上皮细胞缺损和点状角膜病变等疾病的治疗 [ 10- 12] 。临床研究表明,重组牛碱性FGF滴眼液能明显促进角膜外伤的修复,在常规治疗外伤性角膜缺损的基础上使用重组牛碱性FGF滴眼液能够显著提高临床疗效,缩短患者角膜上皮愈合时间,提高患者角膜愈合程度 [ 213] 。另外,重组牛碱性FGF能有效改善中度干眼的症状和体征,显著促进结膜上皮细胞修复和增加杯状细胞数 [ 314- 15]

NGF

欧洲药品管理局和美国FDA分别于2017年和2018年批准了首个重组人NGF滴眼液用于神经营养性角膜炎的治疗 [4] ,我国于2020年NGF上市。神经营养性角膜炎是由于三叉神经损伤、神经形态改变、分泌功能及感受性下降引起角膜炎性反应激活,从而导致角膜上皮缺损、愈合延迟、角膜溃疡等一系列病理现象。研究表明,大多数中重度神经营养性角膜炎成人患者在NGF治疗8周后,角膜完全愈合,角膜完全愈合率普遍较高,且疾病恶化程度低 [16] 。尽管与其他神经营养性角膜炎治疗手段相比,NGF滴眼液未显著提高角膜敏感性和视觉敏锐度,但经过NGF治疗48周的患者角膜炎复发率降低 [16]

EGF

EGF衍生物滴眼液可促进角膜上皮细胞的再生,加速眼角膜创伤的愈合。2002年中国食品药品监督管理局批准EGF衍生物滴眼液用于各种原因引起的角膜上皮缺损,包括角膜机械性损伤、各种角膜手术后、轻度干眼症伴浅层点状角膜病变、轻度化学烧伤等。研究表明,EGF对于白内障术后干眼症和角膜病等具有良好的治疗效果 [ 517] 。EGF滴眼液还可缓解EGF受体抑制剂引起的眼角膜糜烂 [18] 。除EGF滴眼液外,Moon等 [19] 实验表明EGF软膏能够提升眼角膜持续性上皮缺损患者的视觉灵敏度,促进角膜上皮细胞的形成。

干扰素

干扰素是机体感染病毒时,宿主细胞通过抗病毒应答产生的一组结构类似、功能相近的低分子糖蛋白 [20] 。目前临床上抗病毒治疗使用的主要是α干扰素。重组人干扰素α1b和重组人干扰素α2b用于治疗眼部病毒性感染疾病,特别是单纯疱疹病毒性角膜炎的治疗 [ 21- 22] 。此外,重组人干扰素α2b也可用于眼表鳞状上皮瘤的治疗 [23] ;重组人干扰素α2a是急性视网膜坏死的有效治疗方法 [24]

IL-1受体拮抗剂

IL-1受体拮抗剂可与IL-1受体特异性结合,从而阻断由IL-1介导的炎症反应,减轻由免疫应答、炎症反应等引起的组织损伤,用于各种非感染性疾病引起的角膜损伤和炎症、过敏性结膜炎以及角膜移植等治疗。研究表明,重组人IL-1受体拮抗剂可使角膜上皮细胞的排列以及形态等逐渐恢复,角膜损伤减轻,炎性细胞浸润减少 [25] 。此外,IL-1受体拮抗剂可以通过抑制炎症反应和血管翳,治疗角膜损伤和实验性角膜移植手术后宿主排斥反应 [26]

PRP类药物

PRP是将动物或人的全血经过离心后得到的富含血小板的血浆部分。由于该部分含有丰富的生长因子(如血小板衍生生长因子、转化生长因子-β、胰岛素样生长因子-1等),因此也被称为富生长因子血浆 [27] 。研究表明,PRP在角膜损伤、干眼症、LASIK术后眼表并发症、眼表烧伤和黄斑裂孔等眼科疾病的治疗上具有很大的应用前景 [28] 。PRP属于自体血液制品,具有安全、简便和性价比高的特点 [ 29- 30] 。通过控制离心参数和激活方式,可以控制激活后释放的生长因子和蛋白质的剂量。PRP滴眼液对于第二和第三阶段的神经营养性角膜炎是一种有效、安全的治疗方法,在短时间内可有效缓解眼角膜损伤或溃疡症状,因此可阻止神经营养性角膜炎的恶性发展 [31] 。此外,PRP滴眼液可保护和逆转角膜基质细胞的成纤维化,促进细胞增殖;对中重度干眼病具有治疗作用 [32]

VEGF抑制剂在眼底新生血管性疾病中的应用

VEGF是血管内皮细胞特异性的肝素结合生长因子,具有诱导血管新生的作用。VEGF抑制剂通过阻断VEGF来抑制新生血管生长、减轻视网膜组织的水肿和渗出,已经成为治疗ARMD、糖尿病视网膜病变、糖尿病黄斑水肿等眼部疾病的主要手段 [6] 。目前国内外临床抗眼底新生血管药物主要有哌加他尼、贝伐单抗、雷珠单抗、阿柏西普、康柏西普和布洛赛珠单抗等。

哌加他尼

哌加他尼是2004年美国FDA批准的第一个核酸适配体类药物,其含有28个核苷酸,核糖框架经过修饰可防止核酸内切酶和外切酶的降解 [33] 。哌加他尼对VEGF具有高度亲和力,是VEGF异构体165的拮抗剂,可阻断VEGF165信号的传导,从而抑制内皮细胞的增生和新生血管形成。动物实验表明,哌加他尼对实验性视网膜新生血管和角膜新生血管等具有抑制作用;Ⅲ期临床试验结果显示,哌加他尼治疗12个月后,70%患者视力稳定,6%患者视力得到改善 [34] ,且在三年内安全性良好 [35] ,其钠盐在2006年被欧洲药品管理局批准用于治疗ARMD [34]

贝伐单抗

贝伐单抗是一种人源化的抗VEGF重组鼠单克隆抗体,对人VEGF的所有亚型都具有特异性亲和力,能结合和阻断所有VEGF的异构体,是第一个获得批准上市的肿瘤血管生成抑制药物 [36] 。研究表明,贝伐单抗在改善视网膜静脉阻塞继发黄斑水肿、抑制角膜新生血管形成、治疗糖尿病视网膜病变等方面具有显著疗效 [ 37- 38] 。已有研究报道玻璃体内注射贝伐单抗可使视网膜厚度变薄,视力得到改善,且全身或眼部无明显不良反应 [ 39- 40]

雷珠单抗

雷珠单抗是第二代人源化的重组鼠单克隆抗体片段,可以特异性地结合VEGF-A异构体,阻断其信号通路,其与VEGF的亲和力约为贝伐单抗的5~10倍 [ 41- 42] 。自2006年上市以来,雷珠单抗已有六个适应证获得美国FDA批准,分别是湿性ARMD、视网膜静脉阻塞性黄斑水肿、糖尿病黄斑水肿、糖尿病视网膜病变、近视性脉络膜新生血管和早产儿视网膜病变。雷珠单抗在治疗黄斑相关性疾病方面能明显减轻血管渗漏及水肿程度,改善视力,并且未发现严重并发症;在治疗视网膜静脉阻塞方面疗效确切,但多需根据情况多次注射方能维持好的视力;在治疗特发性脉络膜新生血管疾病方面,早期治疗预后更好;在治疗早产儿视网膜病变方面,可持久改善视力 [43]

阿柏西普

阿柏西普是用中国仓鼠卵巢细胞进行重组生产的人VEGF受体1、2细胞外段与人IgG1Fc段的融合蛋白,其可与所有形式VEGF-A和胎盘生长因子紧密结合,能够减少新血管的生成和降低血管的通透性 [44] 。临床上,阿柏西普治疗ARMD,能以更低的治疗频率(起始每4周给药1次,连续3次后延长至每8周给药1次)达到与雷珠单抗同等的治疗效果 [45] ;对于视网膜中央静脉闭塞相关性黄斑水肿的治疗效果可能较贝伐单抗、雷珠单抗作用更强、更持久 [46] ,也可作为其他抗血管生成药物无效时的替代治疗药物 [47] 。此外,研究表明,阿柏西普在糖尿病黄斑水肿 [48] 、糖尿病视网膜病变视网膜静脉阻塞 [49] 及早产儿视网膜病变等治疗中也取得了较好效果 [50]

康柏西普

康柏西普是利用中国仓鼠卵巢细胞表达系统生产的重组融合蛋白。其由VEGF受体1中的免疫球蛋白样区域2和VEGF受体2中的免疫球蛋白样区域3、4,与人免疫球蛋白Fc片段经过融合而成,主要用于ARMD和角膜新生血管的治疗 [ 51- 52] 。近年研究发现,康柏西普在糖尿病性黄斑水肿 [53] 、视网膜静脉阻塞 [54] 和近视性脉络膜新生血管 [55] 病变方面也有良好的治疗效果。

布洛赛珠单抗

新型VEGF抑制剂布洛赛珠单抗于2019年在美国上市用于治疗ARMD [56] 。布洛赛珠单抗是一种人源化单链抗体片段,能够靶向所有的VEGF类型。与阿柏西普相比,布洛赛珠单抗视网膜积水消退效果更佳,是首个在治疗第一年就能通过较少给药频率同时维持有效治疗的药物 [57] 。除ARMD以外,还将用于糖尿病性黄斑水肿引起的视力损害 [58] 和视网膜中央静脉闭塞相关性黄斑水肿引起的静脉阻塞 [59] 这两种适应证。

此外,还有一些新的抗VEGF类药物进入临床研究,如法瑞昔单抗是专门为玻璃体内注射而设计的首个双特异性抗体,可同时强效及特异性结合并中和血管生成素-2和VEGF-A。Ⅲ期临床试验结果显示,与阿柏西普相比,法瑞昔单抗每8周给药一次在视力提高方面达到非劣效性标准,且个体化给药中超过50%受试者在第一年接受治疗时给药间隔长达16周,这是治疗糖尿病性黄斑水肿Ⅲ期临床试验中达到这种持久性水平的首款在研药物 [60] 。此外,我国开发了能同时高亲和力结合VEGF和FGF2的重组诱饵型受体创新药物(RC28-E,VF-Trap),可有效拮抗氧诱导的视网膜病变小鼠新生血管形成,而且效果显著优于单一干预VEGF靶点的VEGF-Trap对照品 [61] 。因此,双靶点干预VEGF和FGF2为治疗新生血管性视网膜病变的药物研发提供了新的研究思路。

结语

目前,抗VEGF药物已发展成为眼底血管增生性疾病的一线治疗药物 [6] ;NGF已批准用于神经营养性角膜炎的治疗 [4] ;2020年首个胰岛素样生长因子-1R单克隆抗体药物替妥木单抗用于甲状腺眼病的治疗 [62] 。上述新的研究成果凸显了细胞因子类药物在眼科疾病治疗中的作用。尽管各种细胞因子类药物治疗眼部疾病的机制研究仍然有限,药物递送及给药途径等问题仍需要进一步研究,但以细胞因子为靶点的眼科药物开发无疑为眼科疾病治疗提供了新的选择,是眼科药物开发的重要发展方向。

COMPETING INTERESTS

所有作者均声明不存在利益冲突

Funding Statement

浙江省“尖兵”“领雁”研发攻关计划(2022C03110)

References

  • 1.World Health Organization. World report on vision [EB/OL]. (2019-10-8) [2022-03-01]. https://www.who.int/publications/i/item/9789241516570
  • 2.王瑞华, 贺 燚, 郝燕燕. 外伤性角膜上皮缺损的治疗——碱性成纤维细胞生长因子滴眼液的临床应用[J]. 眼外伤职业眼病杂志, 2002, 24(3): 276-277 ; WANG Ruihua, HE Yi, HAO Yanyan. Treatment of traumatic corneal epithelium defect[J]. Chinese Journal of Ocular Trauma and Occupational Eye Disease, 2002, 24(3): 276-277. (in Chinese)
  • 3.梁 平, 梁 慷, 谢莉娜, 等. 贝复舒(重组bFGF)滴眼液治疗干眼症的临床研究[J]. 临床眼科杂志, 2001, 9(6): 464-466 ; LIANG Ping, LIANG Kang, XIE Lina, et al. A clinic study on effect of bFGF eye drops treated the patients with dry eye[J]. Journal of Clinical Ophthalmology, 2001, 9(6): 464-466. (in Chinese)
  • 4.魏利军. 2017年美国、欧洲和日本批准的新药总结与点评(Ⅱ)[J]. 药学进展, 2018, 42(2): 148-157 ; WEI Lijun. Summary and review of new drugs approved by FDA, EMA and PMDA in 2017(Ⅱ)[J]. Progress in Pharmaceutical Sciences, 2018, 42(2): 148-157. (in Chinese)
  • 5.袁鹏华. 重组人表皮生长因子衍生物滴眼剂在治疗干眼中的应用价值[J]. 中西医结合心血管病电子杂志, 2017, 5(22): 186 ; YUAN Penghua. Application value of recombinant human epidermal growth factor derivative eye drops in the treatment of dry eye[J]. Cardiovascular Disease Electronic Journal of Integrated Traditional Chinese and Western Medicine, 2017, 5(22): 186. (in Chinese)
  • 6.CAMPA C. New anti-VEGF drugs in ophthalmology[J] Curr Drug Targets. . 2020;21(12):1194–1200. doi: 10.2174/1389450121666200428101738. [DOI] [PubMed] [Google Scholar]
  • 7.朱彤波. 医学免疫学[M]. 2版. 成都: 四川大学出版社, 2017: 61-76 ; ZHU Tongbo. Medical immunology[M]. 2nd edition. Chengdu: Sichuan University Press, 2017: 61-76. (in Chinese)
  • 8.全国科学技术名词审定委员会. 术语在线[EB/OL]. [2022-02-20]. https://www.termonline.cn/index ; China National Committee for Terms in Sciences and Technologies. Termonline[EB/OL]. [2022-02-20]. https://www.termonline.cn/index. (in Chinese)
  • 9.李校堃, 刘 旭, 刘建华, 等. 细胞生长因子在神经康复与神经可塑性中的研究进展[J]. 中国康复理论与实践, 2022, 28(2): 175-182 ; LI Xiaokun, LIU Xu, LIU Jianhua, et al. Progress of cellular growth factors in neurorehabilitation and neuroplasticity[J]. Chinese Journal of Rehabilitation Theory and Practice, 2022, 28(2): 175-182. (in Chinese)
  • 10.王 炜. 重组牛碱性成纤维细胞生长因子治疗膜性结膜炎疗效[J]. 上海医药, 2017, 38(14): 34-36 ; WANG Wei. Effect of recombinant bovine basic fibroblast growth factor in the treatment of membranous conjunctivitis[J]. Shanghai Medical & Pharmaceutical Journal, 2017, 38(14): 34-36. (in Chinese)
  • 11.毕建东. 贝复舒滴眼液应用于临床治疗角膜病患者的可行性探讨[J]. 海峡药学, 2018, 30(9): 178-179 ; BI Jiandong. Feasibility of Beifushu eye drops in clinical treatment of patients with keratopathy[J]. Strait Pharmaceutical Journal, 2018, 30(9): 178-179. (in Chinese)
  • 12.王 磊. 贝复舒滴眼液治疗角膜溃疡临床疗效分析[J]. 中外医疗, 2016, 35(4): 116-117 ; WANG Lei. Clinical curative effect analysis of bFGF eye drops in treatment of Keratohelcosis[J]. China Foreign Medical Treatment, 2016, 35(4): 116-117. (in Chinese)
  • 13.王 爽, 苏 冉, 张前辉. 重组牛碱性成纤维细胞生长因子治疗外伤性角膜上皮缺损的临床疗效观察[J]. 四川解剖学杂志, 2020, 28(3): 177-178 ; WANG Shuang, SU Ran, ZHANG Qianhui. Clinical effect of recombinant bovine basic fibroblast growth factor in the treatment of traumatic corneal epithelial defect[J]. Sichuan Journal of Anatomy, 2020, 28(3): 177-178. (in Chinese)
  • 14.赵 治, 石春和. 贝复舒(重组bFGF)滴眼液治疗干眼症的疗效观察[J]. 江苏大学学报(医学版), 2004, 14(4): 287-288 ; ZHAO Zhi, SHI Chunhe. Observation on the curative effect of recombinant bFGF eye drops in the treatment of dry eye[J]. Journal of Jiangsu University (Medicine Edition), 2004, 14(4): 287-288. (in Chinese)
  • 15.黄彩虹, 刘祖国, 张明昌, 等. 重组牛bFGF凝胶治疗中度干眼的多中心随机双盲平行对照临床试验[J]. 中华眼科杂志, 2021, 57(12): 930-938 . [DOI] [PubMed]; HUANG Caihong, LIU Zuguo, ZHANG Mingchang, et al. Efficacy of a recombinant bovine basic fibroblast growth factor gel for the treatment of moderate dry eye: a multicenter randomized double-blind parallel controlled clinical trial[J]. Chinese Journal of Ophthalmology, 2021, 57(12): 930-938. (in Chinese) . [DOI] [PubMed]
  • 16.DEEKS E D, LAMB Y N. Cenegermin: a review in neurotrophic keratitis[J] Drugs. . 2020;80(5):489–494. doi: 10.1007/s40265-020-01289-w. [DOI] [PubMed] [Google Scholar]
  • 17.曾敦征, 张采华, 陈光约, 等. 金因舒滴眼液治疗丝状角膜炎疗效观察[J]. 求医问药, 2013, 11(1): 361 ; ZENG Dunzheng, ZHANG Caihua, CHEN Guangyue, et al. Observation on the therapeutic effect of Jinyinshu eye drops in the treatment of filamentous keratitis[J]. Seek Medical and Ask the Medicine, 2013, 11(1): 361. (in Chinese)
  • 18.FÖRSTER C G, CURSIEFEN C, KRUSE F E. Topical application of EGF for the therapy of persisting corneal erosion under cetuximab treatment[J] Ophthalmologe. . 2008;105(3):269–273. doi: 10.1007/s00347-007-1527-8. [DOI] [PubMed] [Google Scholar]
  • 19.MOON H S, LI L, YOON H J, et al. Effect of epidermal growth factor ointment on persistent epithelial defects of the cornea[J]. BMC Ophthalmol, 2020, 20(1): 147 . [DOI] [PMC free article] [PubMed]
  • 20.DE ANDREA M, RAVERA R, GIOIA D, et al. The interferon system: an overview[J] Eur J Paediatric Neurol. . 2002;6:A41–A46. doi: 10.1053/ejpn.2002.0573. [DOI] [PubMed] [Google Scholar]
  • 21.朱本虎. 重组人干扰素α1b滴眼液治疗单纯疱疹病毒性角膜炎效果观察[J]. 中国乡村医药, 2014, 21(22): 48-49 ; ZHU Benhu. Recombinant human interferon α1b eye drops in the treatment of herpes simplex keratitis effect observation[J]. Chinese Journal of Rural Medicine and Pharmacy, 2014, 21(22): 48-49. (in Chinese)
  • 22.万金兰, 康 斌. 重组人干扰素α-2b滴眼液治疗上皮型单纯疱疹病毒性角膜炎[J]. 国际眼科杂志, 2014, 14(2): 276-278 ; WAN Jinlan, KANG Bin. Treatment of epithelial herpes simplex viral keratitis by recombinant human interferon α-2b eye drops[J]. International Eye Science, 2014, 14(2): 276-278. (in Chinese)
  • 23.GALOR A, KARP C L, CHHABRA S, et al. Topical interferon alpha 2b eye-drops for treatment of ocular surface squamous neoplasia: a dose comparison study[J] Br J Ophthalmol. . 2010;94(5):551–554. doi: 10.1136/bjo.2008.153197. [DOI] [PubMed] [Google Scholar]
  • 24.QIAN Z, FARDEAU C, CARDOSO J N, et al. Effect of interferon α2a in cystoid macular edema due to intraocular infection[J] Eur J Ophthalmol. . 2015;25(5):431–436. doi: 10.5301/ejo.5000591. [DOI] [PubMed] [Google Scholar]
  • 25.贺瑞龙. 重组人白细胞介素-1受体拮抗剂对眼角膜上皮细胞损伤的修复作用研究[J]. 中国实用医刊, 2016, 43(17): 93-95 ; HE Ruilong. Effect of recombinant human interleukin-1 receptor antagonist on repair of corneal epithelial damage[J]. Chinese Journal of Practical Medicine, 2016, 43(17): 93-95. (in Chinese)
  • 26.FISHER C J. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome[J] JAMA. . 1994;271(23):1836–1843. doi: 10.1001/jama.1994.03510470040032. [DOI] [PubMed] [Google Scholar]
  • 27.RIVERA C, MONSALVE F, SALAS J, et al. Platelet-rich plasma, plasma rich in growth factors and simvastatin in the regeneration and repair of alveolar bone[J] Exp Ther Med. . 2013;6(6):1543–1549. doi: 10.3892/etm.2013.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.ANITUA E, DE LA SEN-CORCUERA B, ORIVE G, et al. Progress in the use of plasma rich in growth factors in ophthalmology: from ocular surface to ocular fundus[J]. Expert Opin Biol Ther, 2021, 22(1): 31-45 . [DOI] [PubMed]
  • 29.中国老年医学学会烧创伤分会. 浓缩血小板制品在创面修复中应用的全国专家共识(2020版)[J]. 中华烧伤杂志, 2020, 36(11): 993-1002 ; The Burn and Trauma Branch of Chinese Geriatrics Society. National expert consensus on application of enriched platelet products in wound repair (2020 version)[J]. Chinese Journal of Burns, 2020, 36(11): 993-1002. (in Chinese) . [DOI] [PubMed]
  • 30.纪庆明, 杨育晖, 陈 昊, 等. 富血小板血浆辅助前交叉韧带重建治疗的临床疗效分析[J]. 中国修复重建外科杂志, 2017, 31(4): 410-416 . [DOI] [PMC free article] [PubMed]; JI Qingming, YANG Yuhui, CHEN Hao, et al. Clinical evaluations of anterior cruciate ligament reconstruction with platelet rich plasma[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2017, 31(4): 410-416. (in Chinese) . [DOI] [PMC free article] [PubMed]
  • 31.SANCHEZ-AVILA R M, MERAYO-LLOVES J, RIESTRA A C, et al. Treatment of patients with neurotrophic keratitis stages 2 and 3 with plasma rich in growth factors (PRGF-Endoret) eye-drops[J] Int Ophthalmol. . 2018;38(3):1193–1204. doi: 10.1007/s10792-017-0582-7. [DOI] [PubMed] [Google Scholar]
  • 32.MURUZABAL F J, DE LA FUENTE M, RIESTRA A C, et al. Effects of autologous serum and plasma rich in growth factors (PRGF-Endoret) eye drops on ocular surface myofibroblast differentiation[J]. Invest Ophthalmol Vis Sci, 2015, 56(7): 734
  • 33.NG E W M, SHIMA D T, CALIAS P, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease[J] Nat Rev Drug Discov. . 2006;5(2):123–132. doi: 10.1038/nrd1955. [DOI] [PubMed] [Google Scholar]
  • 34.SIVAPRASAD S, HYKIN P, SAEED A, et al. Intravitreal pegaptanib sodium for choroidal neovascularisation secondary to age-related macular degeneration: Pan-European experience[J] Eye. . 2010;24(5):793–798. doi: 10.1038/eye.2009.232. [DOI] [PubMed] [Google Scholar]
  • 35.SINGERMAN L J, MASONSON H, PATEL M, et al. Pegaptanib sodium for neovascular age-related macular degeneration: third-year safety results of the VEGF Inhibition Study in Ocular Neovascularisation (VISION) trial[J] Br J Ophthalmol. . 2008;92(12):1606–1611. doi: 10.1136/bjo.2007.132597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.BOCK F, KÖNIG Y, KRUSE F, et al. Bevacizumab (Avastin) eye drops inhibit corneal neovascularization[J] Graefes Arch Clin Exp Ophthalmol. . 2008;246(2):281–284. doi: 10.1007/s00417-007-0684-4. [DOI] [PubMed] [Google Scholar]
  • 37.李 涛, 郑 志, 郑冰清, 等. 贝伐单抗辅助的23G璃体切割术治疗严重增生性糖尿病视网膜病变的疗效观察[J]. 现代生物医学进展, 2013, 13(23): 4488-4491 ; LI Tao, ZHENG Zhi, ZHENG Bingqing et al. A therapeutic effect observation of 23G pars plana vitrectomy assistedby bevacizumab for severe proli-ferative diabetic retinopathy[J]. Progress in Modern Biomedicine, 2013, 13(23): 4488-4491. (in Chinese)
  • 38.吴庆伟, 邹桂年, 吴志群, 等. 贝伐单抗治疗视网膜静脉阻塞继发黄斑水肿疗效观察[J]. 深圳中西医结合杂志, 2016, 26(23): 3-5 ; WU Qingwei, ZOU Guinian, WU Zhiqun, et al. Effect observation of retinal vein occlusion with macular edema treated by Bevacizumab[J]. Shenzhen Journal of Integrated Traditional Chinese and Western Medicine, 2016, 26(23): 3-5. (in Chinese)
  • 39.DAVID W S. 贝伐单抗在眼科的应用引起争议[J]. 科学观察, 2008, 3(2): 54-55 ; DAVID W S. The application of bevacizumab in ophthalmology is controversial[J]. Science Focus, 2008, 3(2): 54-55. (in Chinese)
  • 40.AVERY R L, PIERAMICI D J, RABENA M D, et al. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration[J] Ophthalmology. . 2006;113(3):363–372.e5. doi: 10.1016/j.ophtha.2005.11.019. [DOI] [PubMed] [Google Scholar]
  • 41.HUTTON-SMITH L A, GAFFNEY E A, BYRNE H M, et al. Theoretical insights into the retinal dynamics of vascular endothelial growth factor in patients treated with ranibizumab, based on an ocular pharmacokinetic/pharmacodynamic model[J] Mol Pharm. . 2018;15(7):2770–2784. doi: 10.1021/acs.molpharmaceut.8b00280. [DOI] [PubMed] [Google Scholar]
  • 42.KOKAME G T, YEUNG L, LAI J C. Continuous anti-VEGF treatment with ranibizumab for polypoidal choroidal vasculopathy: 6-month results[J] Br J Ophthalmol. . 2010;94(3):297–301. doi: 10.1136/bjo.2008.150029. [DOI] [PubMed] [Google Scholar]
  • 43.高 婧, 刘迪丰, 蔡 林. 雷珠单抗临床应用新进展概述[J]. 中国药师, 2015, 18(3): 479-482 ; GAO Jing, LIU Difeng, CAI Lin. Recent progress in clinical application of Ranibizumab[J]. China Pharmacist, 2015, 18(3): 479-482. (in Chinese)
  • 44.CIOMBOR K K, BERLIN J, CHAN E. Aflibercept[J] Clin Cancer Res. . 2013;19(8):1920–1925. doi: 10.1158/1078-0432.CCR-12-2911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.HEIER J S, BROWN D M, CHONG V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration[J] Ophthalmology. . 2012;119(12):2537–2548. doi: 10.1016/j.ophtha.2012.09.006. [DOI] [PubMed] [Google Scholar]
  • 46.褚梦琪, 沈丽君. 视网膜静脉阻塞继发黄斑水肿的最新治疗进展[J]. 中华实验眼科杂志, 2018, 36(1): 65-69 ; CHU Mengqi, SHEN Lijun. Advances in the treatment of macular edema secondary to retinal vein occlusion[J]. Chinese Journal Experimental Ophthalmology, 2018, 36(1): 65-69. (in Chinese)
  • 47.COHEN M N, HOUSTON S K, JUHN A, et al. Effect of aflibercept on refractory macular edema associated with central retinal vein occlusion[J] Canadian J Ophthalmol. . 2016;51(5):342–347. doi: 10.1016/j.jcjo.2016.02.001. [DOI] [PubMed] [Google Scholar]
  • 48.KOROBELNIK J F, DO D V, SCHMIDT-ERFURTH U, et al. Intravitreal aflibercept for diabetic macular edema[J] Ophthalmology. . 2014;121(11):2247–2254. doi: 10.1016/j.ophtha.2014.05.006. [DOI] [PubMed] [Google Scholar]
  • 49.CAMPOCHIARO P A, CLARK W L, BOYER D S, et al. Intravitreal aflibercept for macular edema following branch retinal vein occlusion[J] Ophthalmology. . 2015;122(3):538–544. doi: 10.1016/j.ophtha.2014.08.031. [DOI] [PubMed] [Google Scholar]
  • 50.SALMAN A G, SAID A M. Structural, visual and refractive outcomes of intravitreal aflibercept injection in high-risk prethreshold type 1 retinopathy of prematurity[J] Ophthalmic Res. . 2015;53(1):15–20. doi: 10.1159/000364809. [DOI] [PubMed] [Google Scholar]
  • 51.LI X, XU G, WANG Y, et al. Safety and efficacy of conbercept in neovascular age-related macular degeneration[J] Ophthalmology. . 2014;121(9):1740–1747. doi: 10.1016/j.ophtha.2014.03.026. [DOI] [PubMed] [Google Scholar]
  • 52.LIU H, ZHANG X R, XU H C, et al. Effects of VEGF inhibitor conbercept on corneal neovascularization following penetrating keratoplasty in rabbit model[J] Clin Ophthalmol. . 2020;14:2185–2193. doi: 10.2147/OPTH.S260302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.任 韩, 黄东勉, 郭翠玲, 等. 玻璃体腔注射康柏西普对不同OCT分型糖尿病黄斑水肿的疗效观察[J]. 国际眼科杂志, 2019, 19(7): 1166-1169 ; REN Han, HUANG Dongmian, GUO Cuiling, et al. Curative effect of intravitreal injection of conbercept on macular edema in different types of OCT diabetes mellitus[J]. International Eye Science, 2019, 19(7): 1166-1169. (in Chinese)
  • 54.XIA J P, WANG S, ZHANG J S. The anti-inflammatory and anti-oxidative effects of conbercept in treatment of macular edema secondary to retinal vein occlusion[J] Biochem Biophysl Res Commun. . 2019;508(4):1264–1270. doi: 10.1016/j.bbrc.2018.12.049. [DOI] [PubMed] [Google Scholar]
  • 55.ZHOU Y, YANG S, YUAN Y, et al. Progression and new onset of macular retinoschisis in myopic choroidal neovascularization eyes after Conbercept therapy: a post-hoc analysis[J] Eye. . 2020;34(3):523–529. doi: 10.1038/s41433-019-0516-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.NGUYEN Q D, DAS A, DO D V, et al. Brolucizumab: evolution through preclinical and clinical studies and the implications for the management of neovascular age-related macular degeneration[J] Ophthalmology. . 2020;127(7):963–976. doi: 10.1016/j.ophtha.2019.12.031. [DOI] [PubMed] [Google Scholar]
  • 57.MARKHAM A. Brolucizumab: first approval[J] Drugs. . 2019;79(18):1997–2000. doi: 10.1007/s40265-019-01231-9. [DOI] [PubMed] [Google Scholar]
  • 58.GARWEG J G. A randomized, double-masked, multicenter, phase Ⅲ study assessing the efficacy and safety of brolucizumab versus aflibercept in patients with visual impairment due to diabetic macular edema (KITE)[J] Klin Monatsbl Augenheilkd. . 2020;237(4):450–453. doi: 10.1055/a-1101-9126. [DOI] [PubMed] [Google Scholar]
  • 59.SHARMA A, KUMAR N, PARACHURI N, et al. Brolucizumab-related retinal vasculitis: emerging disconnect between clinical trials and real world[J] Eye. . 2021;35(5):1292–1294. doi: 10.1038/s41433-020-01227-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.WELLS J A, WYKOFF C C, WILLIS J R, et al. Efficacy, durability, and safety of faricimab in diabetic macular edema (DME): one-year results from the phase 3 YOSEMITE and RHINE trials[J]. Invest Ophthalmol Vis Sci, 2021, 62(8): 1037
  • 61.LI D, XIE K, ZHANG L, et al. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects[J] Cancer Lett. . 2016;377(2):164–173. doi: 10.1016/j.canlet.2016.04.036. [DOI] [PubMed] [Google Scholar]
  • 62.DOUGLAS R S, KAHALY G J, PATEL A, et al. Teprotumumab for the treatment of active thyroid eye disease[J] N Engl J Med. . 2020;382(4):341–352. doi: 10.1056/NEJMoa1910434. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES