Abstract
BACKGROUND: Nitric oxide (NO) is an unstable vasodilator formed by NO synthetase (NOS) from L-arginine (L-Arg) in various cells but its role in the control of pancreatic secretion in humans has not been examined. AIMS: This study was designed to determine the role of endogenous NO in the control of exocrine and endocrine pancreas using NOS inhibitor, NG-monomethyl-L-Arg (L-NMMA). METHODS: Pancreatic secretion was stimulated by intravenous infusion of secretin (80 pmol/kg/h) plus caerulein (50 pmol/kg/h) and duodenal content was aspirated by gastroduodenal tube. Two series of tests with secretagogue infusion were performed, one, with addition of graded doses of L-NMMA and, another, with addition of a constant dose of L-Arg alone followed by L-NMMA alone and finally by a combination of L-Arg and L-NMMA. RESULTS: Addition of L-NMMA in graded doses (2-8 mumol/kg/h) reduced dose dependently the secretin-caerulein stimulated pancreatic enzyme secretion without alterations in the volume flow and bicarbonate outputs. The addition of L-Arg to L-NMMA reversed the inhibitory action of L-NMMA on protein enzyme response to secretin-caerulein in these subjects. Secretin-caerulein infusion caused significant increase in plasma insulin and pancreatic polypeptide levels but without changes in plasma glucagon or somatostatin levels. L-NMMA alone resulted in a significant fall in plasma insulin and pancreatic polypeptide levels, while L-Arg added to pancreatic secretagogue infusion caused a significant increase of plasma insulin and pancreatic polypeptide levels above those attained with secretagogues alone. After the addition of L-Arg to L-NMMA, both plasma insulin and pancreatic polypeptide levels rose significantly above the levels observed with L-NMMA plus secretin-CCK stimulation. CONCLUSION: This study provides evidence that the suppression of NOS reduces pancreatic enzyme secretion and the plasma insulin and pancreatic polypeptide levels suggesting that endogenous NO affects both exocrine and endocrine pancreatic secretion in humans.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bouwens L., Klöppel G. Cytochemical localization of NADPH-diaphorase in the four types of pancreatic islet cell. Histochemistry. 1994 Mar;101(3):209–214. doi: 10.1007/BF00269546. [DOI] [PubMed] [Google Scholar]
- Dembińska-Kieć A., Gościński I., Szczudlik A. Labile products of vascular endothelium as mediators and modulators of the functions of the central nervous system. J Physiol Pharmacol. 1994 Jun;45(2):191–221. [PubMed] [Google Scholar]
- Ekblad E., Alm P., Sundler F. Distribution, origin and projections of nitric oxide synthase-containing neurons in gut and pancreas. Neuroscience. 1994 Nov;63(1):233–248. doi: 10.1016/0306-4522(94)90019-1. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones P. M., Persaud S. J., Bjaaland T., Pearson J. D., Howell S. L. Nitric oxide is not involved in the initiation of insulin secretion from rat islets of Langerhans. Diabetologia. 1992 Nov;35(11):1020–1027. doi: 10.1007/BF02221676. [DOI] [PubMed] [Google Scholar]
- Kirchgessner A. L., Liu M. T., Gershon M. D. NADPH diaphorase (nitric oxide synthase)-containing nerves in the enteropancreatic innervation: sources, co-stored neuropeptides, and pancreatic function. J Comp Neurol. 1994 Apr 1;342(1):115–130. doi: 10.1002/cne.903420111. [DOI] [PubMed] [Google Scholar]
- Knowles R. G., Salter M., Brooks S. L., Moncada S. Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1042–1048. doi: 10.1016/0006-291x(90)91551-3. [DOI] [PubMed] [Google Scholar]
- Kokot F., Kuska J. Metoda radioimmunologicznego oznaczania insuliny. Przegl Lek. 1973 Dec;30(12):902–911. [PubMed] [Google Scholar]
- Konturek S. J., Bilski J., Konturek P. K., Cieszkowski M., Pawlik W. Role of endogenous nitric oxide in the control of canine pancreatic secretion and blood flow. Gastroenterology. 1993 Mar;104(3):896–902. doi: 10.1016/0016-5085(93)91028-g. [DOI] [PubMed] [Google Scholar]
- Konturek S. J., Swierczek J., Kwiecień N., Obtutowicz W., Dobrzańska M., Kopp B., Oleksy J. Gastric secretory and plasma hormonal responses to sham-feeding of varying duration in patients with duodenal ulcer. Gut. 1981 Dec;22(12):1003–1010. doi: 10.1136/gut.22.12.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konturek S. J., Szlachcic A., Dembinski A., Warzecha Z., Jaworek J., Stachura J. Nitric oxide in pancreatic secretion and hormone-induced pancreatitis in rats. Int J Pancreatol. 1994 Feb;15(1):19–28. doi: 10.1007/BF02924384. [DOI] [PubMed] [Google Scholar]
- Konturek S. K., Konturek P. C. Role of nitric oxide in the digestive system. Digestion. 1995;56(1):1–13. doi: 10.1159/000201214. [DOI] [PubMed] [Google Scholar]
- Liu H. P., Leong S. K., Tay S. S. Localization of NADPH-diaphorase positive neurons in the pancreas of the mouse, rat, chick, kitten and monkey. J Hirnforsch. 1994;35(4):501–510. [PubMed] [Google Scholar]
- Maczka M., Thor P., Bilski J., Konturek S. J. Nitric oxide and the interrelation between intestinal motility and pancreatic secretion in fasted and fed dogs. J Physiol Pharmacol. 1994 Jun;45(2):285–298. [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Schmidt H. H., Warner T. D., Ishii K., Sheng H., Murad F. Insulin secretion from pancreatic B cells caused by L-arginine-derived nitrogen oxides. Science. 1992 Feb 7;255(5045):721–723. doi: 10.1126/science.1371193. [DOI] [PubMed] [Google Scholar]
- Shimosegawa T., Abe T., Satoh A., Abe R., Kikuchi Y., Koizumi M., Toyota T. NADPH-diaphorase activity in neurons of the mammalian pancreas: coexpression with vasoactive intestinal polypeptide. Gastroenterology. 1993 Oct;105(4):999–1008. doi: 10.1016/0016-5085(93)90942-6. [DOI] [PubMed] [Google Scholar]
- Wrenn R. W., Currie M. G., Herman L. E. Nitric oxide participates in the regulation of pancreatic acinar cell secretion. Life Sci. 1994;55(7):511–518. doi: 10.1016/0024-3205(94)00743-8. [DOI] [PubMed] [Google Scholar]
- Wrenn R. W., Currie M. G., Herman L. E. Nitric oxide participates in the regulation of pancreatic acinar cell secretion. Life Sci. 1994;55(7):511–518. doi: 10.1016/0024-3205(94)00743-8. [DOI] [PubMed] [Google Scholar]
