Skip to main content
Gut logoLink to Gut
. 1997 Feb;40(2):253–261. doi: 10.1136/gut.40.2.253

In vitro influence of Phaseolus vulgaris, Griffonia simplicifolia, concanavalin A, wheat germ, and peanut agglutinins on HCT-15, LoVo, and SW837 human colorectal cancer cell growth.

R Kiss 1, I Camby 1, C Duckworth 1, R De Decker 1, I Salmon 1, J L Pasteels 1, A Danguy 1, P Yeaton 1
PMCID: PMC1027058  PMID: 9071941

Abstract

BACKGROUND/AIMS: Compared with normal colonic mucosa, lectin receptor expression is increased in hyperplastic and neoplastic tissues; some lectins have been shown to influence human colonic epithelial cell proliferation. The aim was to assess further the influence of five lectins (Phaseolus vulgaris (PNA), Griffonia simplicifolia (GSA), concanavalin A (Con A), wheat germ (WGA), and peanut (PHA-L) agglutinins) on cellular growth in three human colorectal cancer cell lines (LoVo, HCT-15 and SW837). METHODS: Cells were cultured in four lectin concentrations (0.1, 1.0, 10, and 100 micrograms/ml) and growth assessed at days 2, 3, 5, and 7. The experiments were performed in media supplemented with either 1% or 10% fetal calf serum (FCS). Growth was assessed using the MTT (3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) colorimetric assay. RESULTS: Growth in each cell line was greatly affected by at least two of the lectins tested. There was some variation in the effect of a given lectin on different cell lines. Lectin effects showed a dose-response and the greatest effects generally resulted from the highest concentrations at the longest culture time. WGA and Con A induced large effects in all cell lines; the effects of Con A were partly blocked by the higher concentration of FCS. PNA had modest and uniform stimulatory effects overall. The effects of GSA and PHA-L varied between cell lines. CONCLUSIONS: The lectins studied all have the potential to affect colonic cancer growth in vitro. Many dietary lectins are resistant to digestion and may have important effects in vitro but the definition of their role in human colonic cancer biology must take into account the variability in lectin response.

Full text

PDF
253

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boland C. R., Martin M. A., Goldstein I. J. Lectin reactivities as intermediate biomarkers in premalignant colorectal epithelium. J Cell Biochem Suppl. 1992;16G:103–109. doi: 10.1002/jcb.240501119. [DOI] [PubMed] [Google Scholar]
  2. Boland C. R., Montgomery C. K., Kim Y. S. A cancer-associated mucin alteration in benign colonic polyps. Gastroenterology. 1982 Apr;82(4):664–672. [PubMed] [Google Scholar]
  3. Brady P. G., Vannier A. M., Banwell J. G. Identification of the dietary lectin, wheat germ agglutinin, in human intestinal contents. Gastroenterology. 1978 Aug;75(2):236–239. [PubMed] [Google Scholar]
  4. Chen Y. F., Boland C. R., Kraus E. R., Goldstein I. J. The lectin Griffonia simplicifolia I-A4 (GS I-A4) specifically recognizes terminal alpha-linked N-acetylgalactosaminyl groups and is cytotoxic to the human colon cancer cell lines LS174t and SW1116. Int J Cancer. 1994 May 15;57(4):561–567. doi: 10.1002/ijc.2910570420. [DOI] [PubMed] [Google Scholar]
  5. Cooper H. S. Peanut lectin-binding sites in large bowel carcinoma. Lab Invest. 1982 Oct;47(4):383–390. [PubMed] [Google Scholar]
  6. Cooper H. S., Reuter V. E. Peanut lectin-binding sites in polyps of the colon and rectum. Adenomas, hyperplastic polyps, and adenomas with in situ carcinoma. Lab Invest. 1983 Dec;49(6):655–661. [PubMed] [Google Scholar]
  7. Darro F., Camby I., Kruczynski A., Pasteels J. L., Martinez J., Kiss R. Characterisation of the influence of anti-gastrin, anti-epidermal growth factor, anti-oestradiol, and anti-luteinising hormone releasing hormone antibodies on the proliferation of 27 cell lines from the gastrointestinal tract. Gut. 1995 Feb;36(2):220–230. doi: 10.1136/gut.36.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Darro F., Kruczynski A., Etievant C., Martinez J., Pasteels J. L., Kiss R. Characterization of the differentiation of human colorectal cancer cell lines by means of Voronoi diagrams. Cytometry. 1993 Oct;14(7):783–792. doi: 10.1002/cyto.990140711. [DOI] [PubMed] [Google Scholar]
  9. Dexter D. L., Barbosa J. A., Calabresi P. N,N-dimethylformamide-induced alteration of cell culture characteristics and loss of tumorigenicity in cultured human colon carcinoma cells. Cancer Res. 1979 Mar;39(3):1020–1025. [PubMed] [Google Scholar]
  10. Drewinko B., Romsdahl M. M., Yang L. Y., Ahearn M. J., Trujillo J. M. Establishment of a human carcinoembryonic antigen-producing colon adenocarcinoma cell line. Cancer Res. 1976 Feb;36(2 Pt 1):467–475. [PubMed] [Google Scholar]
  11. Graham S., Dayal H., Swanson M., Mittelman A., Wilkinson G. Diet in the epidemiology of cancer of the colon and rectum. J Natl Cancer Inst. 1978 Sep;61(3):709–714. [PubMed] [Google Scholar]
  12. Jacobs L. R. Fiber and colon cancer. Gastroenterol Clin North Am. 1988 Dec;17(4):747–760. [PubMed] [Google Scholar]
  13. Jannot M. C., Kruczynski A., Limouzy A., Dangou J. M., Selves J., Delsol G., Martinez J., Kiss R. Spontaneous evolution of cytoplasmic lectin binding and nuclear size and deoxyribonucleic acid content in human colorectal cancers grafted onto nude mice. Lab Invest. 1993 Apr;68(4):446–455. [PubMed] [Google Scholar]
  14. Kulkarni G. V., McCulloch C. A. Concanavalin A induced apoptosis in fibroblasts: the role of cell surface carbohydrates in lectin mediated cytotoxicity. J Cell Physiol. 1995 Oct;165(1):119–133. doi: 10.1002/jcp.1041650115. [DOI] [PubMed] [Google Scholar]
  15. Leibovitz A., Stinson J. C., McCombs W. B., 3rd, McCoy C. E., Mazur K. C., Mabry N. D. Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 1976 Dec;36(12):4562–4569. [PubMed] [Google Scholar]
  16. Nachbar M. S., Oppenheim J. D. Lectins in the United States diet: a survey of lectins in commonly consumed foods and a review of the literature. Am J Clin Nutr. 1980 Nov;33(11):2338–2345. doi: 10.1093/ajcn/33.11.2338. [DOI] [PubMed] [Google Scholar]
  17. Pauwels O., Kiss R. Digital morphonuclear analyses of sensitive versus resistant neoplastic cells to vinca-alkaloid, alkylating, and intercalating drugs. Cytometry. 1991;12(5):388–397. doi: 10.1002/cyto.990120503. [DOI] [PubMed] [Google Scholar]
  18. Pusztai A., Grant G., Palmer R. Nutritional evaluation of kidney beans (Phaseolus vulgaris): the isolation and partial characterisation of toxic constituents. J Sci Food Agric. 1975 Feb;26(2):149–156. doi: 10.1002/jsfa.2740260205. [DOI] [PubMed] [Google Scholar]
  19. Rhodes J. M., Black R. R., Savage A. Altered lectin binding by colonic epithelial glycoconjugates in ulcerative colitis and Crohn's disease. Dig Dis Sci. 1988 Nov;33(11):1359–1363. doi: 10.1007/BF01536988. [DOI] [PubMed] [Google Scholar]
  20. Rhodes J. M., Black R. R., Savage A. Glycoprotein abnormalities in colonic carcinomata, adenomata, and hyperplastic polyps shown by lectin peroxidase histochemistry. J Clin Pathol. 1986 Dec;39(12):1331–1334. doi: 10.1136/jcp.39.12.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rubinstein L. V., Shoemaker R. H., Paull K. D., Simon R. M., Tosini S., Skehan P., Scudiero D. A., Monks A., Boyd M. R. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst. 1990 Jul 4;82(13):1113–1118. doi: 10.1093/jnci/82.13.1113. [DOI] [PubMed] [Google Scholar]
  22. Ryder S. D., Parker N., Ecclestone D., Haqqani M. T., Rhodes J. M. Peanut lectin stimulates proliferation in colonic explants from patients with inflammatory bowel disease and colon polyps. Gastroenterology. 1994 Jan;106(1):117–124. doi: 10.1016/s0016-5085(94)94775-9. [DOI] [PubMed] [Google Scholar]
  23. Ryder S. D., Smith J. A., Rhodes E. G., Parker N., Rhodes J. M. Proliferative responses of HT29 and Caco2 human colorectal cancer cells to a panel of lectins. Gastroenterology. 1994 Jan;106(1):85–93. doi: 10.1016/s0016-5085(94)94527-6. [DOI] [PubMed] [Google Scholar]
  24. Ryder S. D., Smith J. A., Rhodes J. M. Peanut lectin: a mitogen for normal human colonic epithelium and human HT29 colorectal cancer cells. J Natl Cancer Inst. 1992 Sep 16;84(18):1410–1416. doi: 10.1093/jnci/84.18.1410. [DOI] [PubMed] [Google Scholar]
  25. Salmon I., Camby I., Remmelinck M., Rombaut K., Pasteels J. L., Brotchi J., Kiss R., Danguy A. Lectin histochemistry, ploidy level and proliferation indices in meningioma subtypes. Neuropathol Appl Neurobiol. 1996 Feb;22(1):68–76. [PubMed] [Google Scholar]
  26. Sanford G. L., Harris-Hooker S. Stimulation of vascular cell proliferation by beta-galactoside specific lectins. FASEB J. 1990 Aug;4(11):2912–2918. doi: 10.1096/fasebj.4.11.2379767. [DOI] [PubMed] [Google Scholar]
  27. Slattery M. L., Sorenson A. W., Mahoney A. W., French T. K., Kritchevsky D., Street J. C. Diet and colon cancer: assessment of risk by fiber type and food source. J Natl Cancer Inst. 1988 Nov 16;80(18):1474–1480. doi: 10.1093/jnci/80.18.1474. [DOI] [PubMed] [Google Scholar]
  28. Trock B., Lanza E., Greenwald P. Dietary fiber, vegetables, and colon cancer: critical review and meta-analyses of the epidemiologic evidence. J Natl Cancer Inst. 1990 Apr 18;82(8):650–661. doi: 10.1093/jnci/82.8.650. [DOI] [PubMed] [Google Scholar]
  29. Yu L., Fernig D. G., Smith J. A., Milton J. D., Rhodes J. M. Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res. 1993 Oct 1;53(19):4627–4632. [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES