Abstract
BACKGROUND AND AIMS: Lactulose fermentation by the intestinal microflora acidifies the gut contents, resulting in an increased resistance to colonisation by acid sensitive pathogens. The extent of fermentation should be controlled to prevent acid induced epithelial cell damage. Considering the buffering capacity of calcium phosphate and its intestinal cytoprotective effects, whether supplemental calcium phosphate adds to the increased resistance to intestinal infections by lactulose fermentations was studied. METHODS: In a strictly controlled experiment, rats were fed a purified low calcium control diet, a low calcium/lactulose diet, or a high calcium/lactulose diet, and subsequently infected orally with Salmonella enteritidis. RESULTS: Lactulose fermentation lowered the pH and increased the lactic acid concentration of the intestinal contents, which significantly reduced excretion of this pathogen in faeces; thus it improved the resistance to colonisation. This agreed with the high sensitivity of S enteritidis to lactic acid (main metabolite of lactulose fermentation) in vitro. Calcium phosphate decreased translocation of S enteritidis to the systemic circulation, an effect independent of lactulose. The unfavourable increased cytotoxicity of faecal water caused by lactulose fermentation was more than counteracted by supplemental calcium phosphate. Moreover, calcium phosphate stimulated lactulose fermentation, as judged by the reduced lactulose excretion in faeces and increased lactic acid, ammonia, and faecal nitrogen excretion. CONCLUSION: Extra calcium phosphate added to a lactulose diet improves the resistance to colonisation and translocation of S enteritidis. This is probably mediated by a calcium induced stimulation of lactulose fermentation by the intestinal microflora and reversion of the lactulose mediated increased luminal cytotoxicity, which reduces damage inflicted on the intestinal mucosa.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argenzio R. A., Meuten D. J. Short-chain fatty acids induce reversible injury of porcine colon. Dig Dis Sci. 1991 Oct;36(10):1459–1468. doi: 10.1007/BF01296816. [DOI] [PubMed] [Google Scholar]
- Bircher J., Müller J., Guggenheim P., Haemmerli U. P. Treatment of chronic portal-systemic encephalopathy with lactulose. Lancet. 1966 Apr 23;1(7443):890–892. doi: 10.1016/s0140-6736(66)91573-x. [DOI] [PubMed] [Google Scholar]
- Bird S. P., Hewitt D., Ratcliffe B., Gurr M. I. Effects of lactulose and lactitol on protein digestion and metabolism in conventional and germ free animal models: relevance of the results to their use in the treatment of portosystemic encephalopathy. Gut. 1990 Dec;31(12):1403–1406. doi: 10.1136/gut.31.12.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bliss D. Z., Stein T. P., Schleifer C. R., Settle R. G. Supplementation with gum arabic fiber increases fecal nitrogen excretion and lowers serum urea nitrogen concentration in chronic renal failure patients consuming a low-protein diet. Am J Clin Nutr. 1996 Mar;63(3):392–398. doi: 10.1093/ajcn/63.3.392. [DOI] [PubMed] [Google Scholar]
- Bovee-Oudenhoven I., Termont D., Dekker R., Van der Meer R. Calcium in milk and fermentation by yoghurt bacteria increase the resistance of rats to Salmonella infection. Gut. 1996 Jan;38(1):59–65. doi: 10.1136/gut.38.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter P. B., Collins F. M. The route of enteric infection in normal mice. J Exp Med. 1974 May 1;139(5):1189–1203. doi: 10.1084/jem.139.5.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark M. A., Jepson M. A., Simmons N. L., Hirst B. H. Preferential interaction of Salmonella typhimurium with mouse Peyer's patch M cells. Res Microbiol. 1994 Sep;145(7):543–552. doi: 10.1016/0923-2508(94)90031-0. [DOI] [PubMed] [Google Scholar]
- Crowther R. S., Wetmore R. F. Fluorometric assay of O-linked glycoproteins by reaction with 2-cyanoacetamide. Anal Biochem. 1987 May 15;163(1):170–174. doi: 10.1016/0003-2697(87)90108-4. [DOI] [PubMed] [Google Scholar]
- Florent C., Flourie B., Leblond A., Rautureau M., Bernier J. J., Rambaud J. C. Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). J Clin Invest. 1985 Feb;75(2):608–613. doi: 10.1172/JCI111738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardiner K. R., Erwin P. J., Anderson N. H., McCaigue M. D., Halliday M. I., Rowlands B. J. Lactulose as an antiendotoxin in experimental colitis. Br J Surg. 1995 Apr;82(4):469–472. doi: 10.1002/bjs.1800820413. [DOI] [PubMed] [Google Scholar]
- Giaffer M. H., Holdsworth C. D., Duerden B. I. The assessment of faecal flora in patients with inflammatory bowel disease by a simplified bacteriological technique. J Med Microbiol. 1991 Oct;35(4):238–243. doi: 10.1099/00222615-35-4-238. [DOI] [PubMed] [Google Scholar]
- Gianotti L., Alexander J. W., Pyles T., Fukushima R. Arginine-supplemented diets improve survival in gut-derived sepsis and peritonitis by modulating bacterial clearance. The role of nitric oxide. Ann Surg. 1993 Jun;217(6):644–654. doi: 10.1097/00000658-199306000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorden J., Small P. L. Acid resistance in enteric bacteria. Infect Immun. 1993 Jan;61(1):364–367. doi: 10.1128/iai.61.1.364-367.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Govers M. J., Termont D. S., Van Aken G. A., Van der Meer R. Characterization of the adsorption of conjugated and unconjugated bile acids to insoluble, amorphous calcium phosphate. J Lipid Res. 1994 May;35(5):741–748. [PubMed] [Google Scholar]
- Govers M. J., Termont D. S., Van der Meer R. Mechanism of the antiproliferative effect of milk mineral and other calcium supplements on colonic epithelium. Cancer Res. 1994 Jan 1;54(1):95–100. [PubMed] [Google Scholar]
- Govers M. J., Van der Meet R. Effects of dietary calcium and phosphate on the intestinal interactions between calcium, phosphate, fatty acids, and bile acids. Gut. 1993 Mar;34(3):365–370. doi: 10.1136/gut.34.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
- Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
- Hansson H. B., Barkenius G., Cronberg S., Juhlin I. Controlled comparison of nalidixic acid or lactulose with placebo in shigellosis. Scand J Infect Dis. 1981;13(3):191–193. doi: 10.3109/inf.1981.13.issue-3.06. [DOI] [PubMed] [Google Scholar]
- Heijnen A. M., Brink E. J., Lemmens A. G., Beynen A. C. Ileal pH and apparent absorption of magnesium in rats fed on diets containing either lactose or lactulose. Br J Nutr. 1993 Nov;70(3):747–756. doi: 10.1079/bjn19930170. [DOI] [PubMed] [Google Scholar]
- Hoffmann K. Behandlung von gesunden Salmonellen-Ausscheidern mit Lactulose (beta-Galaktosido-Fructose) Dtsch Med Wochenschr. 1975 Jun 27;100(26):1429–1431. doi: 10.1055/s-0028-1106401. [DOI] [PubMed] [Google Scholar]
- Lacey R. W. Food-borne bacterial infections. Parasitology. 1993;107 (Suppl):S75–S93. doi: 10.1017/s0031182000075521. [DOI] [PubMed] [Google Scholar]
- Lapré J. A., Termont D. S., Groen A. K., Van der Meer R. Lytic effects of mixed micelles of fatty acids and bile acids. Am J Physiol. 1992 Sep;263(3 Pt 1):G333–G337. doi: 10.1152/ajpgi.1992.263.3.G333. [DOI] [PubMed] [Google Scholar]
- Liao W., Cui X. S., Jin X. Y., Florén C. H. Lactulose--a potential drug for the treatment of inflammatory bowel disease. Med Hypotheses. 1994 Oct;43(4):234–238. doi: 10.1016/0306-9877(94)90072-8. [DOI] [PubMed] [Google Scholar]
- Link-Amster H., Rochat F., Saudan K. Y., Mignot O., Aeschlimann J. M. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol Med Microbiol. 1994 Nov;10(1):55–63. doi: 10.1111/j.1574-695X.1994.tb00011.x. [DOI] [PubMed] [Google Scholar]
- Mantle M., Thakore E., Hardin J., Gall D. G. Effect of Yersinia enterocolitica on intestinal mucin secretion. Am J Physiol. 1989 Feb;256(2 Pt 1):G319–G327. doi: 10.1152/ajpgi.1989.256.2.G319. [DOI] [PubMed] [Google Scholar]
- Mashige F., Imai K., Osuga T. A simple and sensitive assay of total serum bile acids. Clin Chim Acta. 1976 Jul 1;70(1):79–86. doi: 10.1016/0009-8981(76)90007-3. [DOI] [PubMed] [Google Scholar]
- Mital B. K., Garg S. K. Anticarcinogenic, hypocholesterolemic, and antagonistic activities of Lactobacillus acidophilus. Crit Rev Microbiol. 1995;21(3):175–214. doi: 10.3109/10408419509113540. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Mortensen P. B. The effect of oral-administered lactulose on colonic nitrogen metabolism and excretion. Hepatology. 1992 Dec;16(6):1350–1356. doi: 10.1002/hep.1840160608. [DOI] [PubMed] [Google Scholar]
- Mouricout M., Petit J. M., Carias J. R., Julien R. Glycoprotein glycans that inhibit adhesion of Escherichia coli mediated by K99 fimbriae: treatment of experimental colibacillosis. Infect Immun. 1990 Jan;58(1):98–106. doi: 10.1128/iai.58.1.98-106.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oudenhoven I. M., Klaasen H. L., Lapré J. A., Weerkamp A. H., Van der Meer R. Nitric oxide-derived urinary nitrate as a marker of intestinal bacterial translocation in rats. Gastroenterology. 1994 Jul;107(1):47–53. doi: 10.1016/0016-5085(94)90059-0. [DOI] [PubMed] [Google Scholar]
- Oudenhoven I. M., Klaasen H. L., Lapré J. A., Weerkamp A. H., Van der Meer R. Nitric oxide-derived urinary nitrate as a marker of intestinal bacterial translocation in rats. Gastroenterology. 1994 Jul;107(1):47–53. doi: 10.1016/0016-5085(94)90059-0. [DOI] [PubMed] [Google Scholar]
- Pell J. D., Johnson I. T., Goodlad R. A. The effects of and interactions between fermentable dietary fiber and lipid in germfree and conventional mice. Gastroenterology. 1995 Jun;108(6):1745–1752. doi: 10.1016/0016-5085(95)90136-1. [DOI] [PubMed] [Google Scholar]
- Rampling A. Salmonella enteritidis five years on. Lancet. 1993 Aug 7;342(8867):317–318. doi: 10.1016/0140-6736(93)91466-y. [DOI] [PubMed] [Google Scholar]
- Rémésy C., Levrat M. A., Gamet L., Demigné C. Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. Am J Physiol. 1993 May;264(5 Pt 1):G855–G862. doi: 10.1152/ajpgi.1993.264.5.G855. [DOI] [PubMed] [Google Scholar]
- Sahota S. S., Bramley P. M., Menzies I. S. The fermentation of lactulose by colonic bacteria. J Gen Microbiol. 1982 Feb;128(2):319–325. doi: 10.1099/00221287-128-2-319. [DOI] [PubMed] [Google Scholar]
- Stephen A. M., Cummings J. H. The microbial contribution to human faecal mass. J Med Microbiol. 1980 Feb;13(1):45–56. doi: 10.1099/00222615-13-1-45. [DOI] [PubMed] [Google Scholar]
- Stohs S. J., Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995 Feb;18(2):321–336. doi: 10.1016/0891-5849(94)00159-h. [DOI] [PubMed] [Google Scholar]
