Skip to main content
Gut logoLink to Gut
. 1997 Jul;41(1):14–18. doi: 10.1136/gut.41.1.14

Enhancement of photodynamic therapy in gastric cancer cells by removal of iron.

W C Tan 1, N Krasner 1, P O'Toole 1, M Lombard 1
PMCID: PMC1027221  PMID: 9274465

Abstract

BACKGROUND: Aminolaevulinic acid (ALA) is an endogenous substrate in the haem biosynthetic pathway. Protoporphyrin IX (PPIX), the immediate haem precursor in the pathway, has photoexcitable properties. Exogenous ALA has been used previously as a precursor agent in photodynamic therapy (PDT). Its main advantage is a short half-life and hence reduced incidence of skin photosensitivity. ALA can be toxic, however, causing, for example, transient increases in liver enzyme concentrations when given systemically and this may be dose related. AIM: To assess whether accumulation of PPLX and ultimately the efficacy of PDT could be improved by modulating both ends of the haem biosynthetic pathway. METHODS: Gastric cancer cells (MKN 28) were incubated with ALA (0-1000 mumolar) and desferrioxamine (0-800 mumolar) for 24 hours before exposure to argon-pumped dye laser (630 nm) at different energy levels (0-40 J/cm2). Cell viability was assessed by use of the methyl-tetrazolium (MTT) assay four hours after exposure to light. RESULTS: Total PPIX accumulation increased linearly with increasing extracellular concentrations of ALA up to 1 mmolar (r = 0.973, p < 0.005). Adding 200 molar of desferrioxamine trebled PPIX accumulation over the same period of incubation. Cell viability after exposure to light decreased with low doses (0-30 mumolar) of desferrioxamine (r = 0.976, p = 0.024). However, higher doses of desferrioxamine (more than 40 molar) seemed to confer a protective effect against PDT. CONCLUSION: PDT using ALA can be improved by removal of available iron with desferrioxamine. The reason for the protective effect of desferrioxamine seen at higher doses is not clear.

Full text

PDF
14

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr H., Shepherd N. A., Dix A., Roberts D. J., Tan W. C., Krasner N. Eradication of high-grade dysplasia in columnar-lined (Barrett's) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX. Lancet. 1996 Aug 31;348(9027):584–585. doi: 10.1016/s0140-6736(96)03054-1. [DOI] [PubMed] [Google Scholar]
  2. Barr H., Tralau C. J., Boulos P. B., MacRobert A. J., Krasner N., Phillips D., Bown S. G. Selective necrosis in dimethylhydrazine-induced rat colon tumors using phthalocyanine photodynamic therapy. Gastroenterology. 1990 Jun;98(6):1532–1537. doi: 10.1016/0016-5085(90)91086-l. [DOI] [PubMed] [Google Scholar]
  3. Bedwell J., MacRobert A. J., Phillips D., Bown S. G. Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model. Br J Cancer. 1992 Jun;65(6):818–824. doi: 10.1038/bjc.1992.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cairnduff F., Stringer M. R., Hudson E. J., Ash D. V., Brown S. B. Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. Br J Cancer. 1994 Mar;69(3):605–608. doi: 10.1038/bjc.1994.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grant W. E., Hopper C., MacRobert A. J., Speight P. M., Bown S. G. Photodynamic therapy of oral cancer: photosensitisation with systemic aminolaevulinic acid. Lancet. 1993 Jul 17;342(8864):147–148. doi: 10.1016/0140-6736(93)91347-o. [DOI] [PubMed] [Google Scholar]
  6. Hann H. W., Stahlhut M. W., Hann C. L. Effect of iron and desferoxamine on cell growth and in vitro ferritin synthesis in human hepatoma cell lines. Hepatology. 1990 Apr;11(4):566–569. doi: 10.1002/hep.1840110407. [DOI] [PubMed] [Google Scholar]
  7. Hann H. W., Stahlhut M. W., Rubin R., Maddrey W. C. Antitumor effect of deferoxamine on human hepatocellular carcinoma growing in athymic nude mice. Cancer. 1992 Oct 15;70(8):2051–2056. doi: 10.1002/1097-0142(19921015)70:8<2051::aid-cncr2820700806>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  8. He D., Sassa S., Lim H. W. Effect of UVA and blue light on porphyrin biosynthesis in epidermal cells. Photochem Photobiol. 1993 May;57(5):825–829. doi: 10.1111/j.1751-1097.1993.tb09218.x. [DOI] [PubMed] [Google Scholar]
  9. Iinuma S., Farshi S. S., Ortel B., Hasan T. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin. Br J Cancer. 1994 Jul;70(1):21–28. doi: 10.1038/bjc.1994.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jin M. L., Yang B. Q., Zhang W., Ren P. Review of photodynamic therapy for gastrointestinal tumours in the past 6 years in China. J Photochem Photobiol B. 1990 Sep;7(1):87–92. doi: 10.1016/1011-1344(90)85145-m. [DOI] [PubMed] [Google Scholar]
  11. Karanov S., Shopova M., Getov H. Photodynamic therapy in gastrointestinal cancer. Lasers Surg Med. 1991;11(5):395–398. doi: 10.1002/lsm.1900110502. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Loh C. S., Bliss P., Bown S. G., Krasner N. Photodynamic therapy for villous adenomas of the colon and rectum. Endoscopy. 1994 Feb;26(2):243–246. doi: 10.1055/s-2007-1008952. [DOI] [PubMed] [Google Scholar]
  14. Loh C. S., Vernon D., MacRobert A. J., Bedwell J., Bown S. G., Brown S. B. Endogenous porphyrin distribution induced by 5-aminolaevulinic acid in the tissue layers of the gastrointestinal tract. J Photochem Photobiol B. 1993 Sep;20(1):47–54. doi: 10.1016/1011-1344(93)80130-2. [DOI] [PubMed] [Google Scholar]
  15. Malik Z., Lugaci H. Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer. 1987 Nov;56(5):589–595. doi: 10.1038/bjc.1987.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marcon N. E. Photodynamic therapy and cancer of the esophagus. Acta Gastroenterol Belg. 1993 Mar-Apr;56(2):184–191. [PubMed] [Google Scholar]
  17. Merlin J. L., Azzi S., Lignon D., Ramacci C., Zeghari N., Guillemin F. MTT assays allow quick and reliable measurement of the response of human tumour cells to photodynamic therapy. Eur J Cancer. 1992;28A(8-9):1452–1458. doi: 10.1016/0959-8049(92)90542-a. [DOI] [PubMed] [Google Scholar]
  18. Pass H. I. Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer Inst. 1993 Mar 17;85(6):443–456. doi: 10.1093/jnci/85.6.443. [DOI] [PubMed] [Google Scholar]
  19. Patrice T., Foultier M. T., Yactayo S., Adam F., Galmiche J. P., Douet M. C., Le Bodic L. Endoscopic photodynamic therapy with hematoporphyrin derivative for primary treatment of gastrointestinal neoplasms in inoperable patients. Dig Dis Sci. 1990 May;35(5):545–552. doi: 10.1007/BF01540400. [DOI] [PubMed] [Google Scholar]
  20. Regula J., MacRobert A. J., Gorchein A., Buonaccorsi G. A., Thorpe S. M., Spencer G. M., Hatfield A. R., Bown S. G. Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX--a pilot study. Gut. 1995 Jan;36(1):67–75. doi: 10.1136/gut.36.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sassa S., Schwartz S., Ruth G. Accumulation of protoporphyrin IX from delta-aminolevulinic acid in bovine skin fibroblasts with hereditary erythropoietic protoporphyria. A gene-dosage effect. J Exp Med. 1981 May 1;153(5):1094–1101. doi: 10.1084/jem.153.5.1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shulyakovskaya T., Sümegi L., Gál D. In vivo experimental studies on the role of free radicals in photodynamic therapy. I. Measurement of the steady state concentration of free radicals in tumor tissues of mice. Biochem Biophys Res Commun. 1993 Sep 15;195(2):581–587. doi: 10.1006/bbrc.1993.2085. [DOI] [PubMed] [Google Scholar]
  23. Sibille A., Lambert R., Souquet J. C., Sabben G., Descos F. Long-term survival after photodynamic therapy for esophageal cancer. Gastroenterology. 1995 Feb;108(2):337–344. doi: 10.1016/0016-5085(95)90058-6. [DOI] [PubMed] [Google Scholar]
  24. Timmins G. S., Davies M. J. An EPR spin trapping study of albumin protein radicals formed by the photodynamic action of haematoporphyrin. J Photochem Photobiol B. 1993 Dec;21(2-3):167–173. doi: 10.1016/1011-1344(93)80179-d. [DOI] [PubMed] [Google Scholar]
  25. Van Hillegersberg R., Van den Berg J. W., Kort W. J., Terpstra O. T., Wilson J. H. Selective accumulation of endogenously produced porphyrins in a liver metastasis model in rats. Gastroenterology. 1992 Aug;103(2):647–651. doi: 10.1016/0016-5085(92)90860-2. [DOI] [PubMed] [Google Scholar]
  26. Weishaupt K. R., Gomer C. J., Dougherty T. J. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 1976 Jul;36(7 Pt 1):2326–2329. [PubMed] [Google Scholar]
  27. Wieman T. J., Mang T. S., Fingar V. H., Hill T. G., Reed M. W., Corey T. S., Nguyen V. Q., Render E. R., Jr Effect of photodynamic therapy on blood flow in normal and tumor vessels. Surgery. 1988 Sep;104(3):512–517. [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES