Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Jun 5:2023.06.02.543219. [Version 1] doi: 10.1101/2023.06.02.543219

Stability of navigation in catheter-based endovascular procedures

Chase M Hartquist, Jin Vivian Lee, Michael Y Qiu, Charles Suskin, Vinay Chandrasekaran, Halle R Lowe, Mohamed A Zayed, Joshua W Osbun, Guy M Genin
PMCID: PMC10274636  PMID: 37333419

Abstract

Endovascular procedures provide surgeons and other interventionalists with minimally invasive methods to treat vascular diseases by passing guidewires, catheters, sheaths and treatment devices into the vasculature to and navigate toward a treatment site. The efficiency of this navigation affects patient outcomes, but is frequently compromised by catheter “herniation”, in which the catheter-guidewire system bulges out from the intended endovascular pathway so that the interventionalist can no longer advance it. Here, we showed herniation to be a bifurcation phenomenon that can be predicted and controlled using mechanical characterizations of catheter-guidewire systems and patientspecific clinical imaging. We demonstrated our approach in laboratory models and, retrospectively, in patients who underwent procedures involving transradial neurovascular procedures with an endovascular pathway from the wrist, up in the arm, around the aortic arch, and into the neurovasculature. Our analyses identified a mathematical navigation stability criterion that predicted herniation in all of these settings. Results show that herniation can be predicted through bifurcation analysis, and provide a framework for selecting catheter-guidewire systems to avoid herniation in specific patient anatomy.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES