Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Jun 7:2023.06.07.544132. [Version 1] doi: 10.1101/2023.06.07.544132

Autonomous and non-cell autonomous etiology of ciliopathy associated structural birth defects

Richard Francis, Jovenal T San Agustin, Heather L Szabo Rogers, Cheng Cui, Julie A Jonassen, Thibaut Eguether, John A Follit, Cecilia W Lo, Gregory J Pazour
PMCID: PMC10274801  PMID: 37333142

Abstract

Ciliopathies are associated with wide spectrum of structural birth defects (SBD), indicating important roles for cilia in development. Here we provide novel insights into the temporospatial requirement for cilia in SBDs arising from deficiency in Ift140 , an intraflagellar transport protein regulating ciliogenesis. Ift140 deficient mice exhibit cilia defects accompanied by wide spectrum of SBDs including macrostomia (craniofacial defects), exencephaly, body wall defects, tracheoesophageal fistula, randomized heart looping, congenital heart defects (CHD), lung hypoplasia, renal anomalies, and polydactyly. Tamoxifen inducible CAG-Cre deletion of a floxed Ift140 allele between E5.5 to 9.5 revealed early requirement for Ift140 in left-right heart looping regulation, mid to late requirement for cardiac outflow septation and alignment, and late requirement for craniofacial development and body wall closure. Surprisingly, CHD was not observed with four Cre drivers targeting different lineages essential for heart development, but craniofacial defects and omphalocele were observed with Wnt1-Cre targeting neural crest and Tbx18-Cre targeting epicardial lineage and rostral sclerotome through which trunk neural crest cells migrate. These findings revealed cell autonomous role of cilia in cranial/trunk neural crest mediated craniofacial and body wall closure defects, while non-cell autonomous multi-lineage interactions underlie CHD pathogenesis, revealing unexpected developmental complexity for CHD associated with ciliopathy.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES