Abstract
目的
通过单能量重建图像和X线片观测,探究与长柄Corail假体相比,短柄ABGⅡ假体能否提高在Dorr C型股骨中的填充率,并比较两种假体的对线及稳定性。
方法
从2006年1月—2012年3月行后外侧入路人工全髋关节置换术治疗的Dorr C型股骨患者中,随机选取使用Corail假体(Corail组)和ABGⅡ假体(ABGⅡ组)患者各20例。两组患者性别、年龄、身体质量指数、术前诊断构成比比较差异均无统计学意义(P>0.05)。ABGⅡ组随访时间102~156个月,平均142个月;Corail组随访时间91~127个月,平均107个月。末次随访时两组Harris评分和主观满意度评分比较差异均无统计学意义(P>0.05)。末次随访时采用双能CT扫描,通过单能量图像重建,计算假体填充率并测量假体在冠状位和矢状位上的对线误差。在X线片上进行股骨柄稳定性评估,使用EBRA-FCA软件测量股骨柄下沉距离。
结果
X线片观测示,两组患者假体稳定性良好,未见松动征象。ABGⅡ组基座征发生率显著低于Corail组,异位骨化发生率显著高于Corail组,差异均有统计学意义(P<0.05)。ABG Ⅱ组股骨柄下沉距离显著大于Corail组(P<0.05);ABG Ⅱ组股骨柄下沉速度亦大于Corail组,但差异无统计学意义(P>0.05)。除ABG Ⅱ组整体假体填充率显著大于Corail组(P<0.05)外,两组在小转子处、小转子下2 cm、小转子下7 cm处假体填充率差异均无统计学意义(P>0.05)。假体对线结果示,除ABG Ⅱ组冠状位对线误差显著大于Corail组(P<0.05)外,两组矢状位对线误差及冠状位和矢状位对线>3° 发生率差异均无统计学意义(P>0.05)。
结论
尽管ABGⅡ假体避免了Corail假体在Dorr C型股骨中近-远端不匹配的问题,并获得了更高填充率,但不能获得更好的对线或稳定性。
Keywords: Dorr C型股骨, 人工全髋关节置换术, 短柄股骨假体, 假体填充率
Abstract
Objective
Using the mono-energy reconstruction images and X-ray films to investigate whether the ABG Ⅱ short-stem could improve the filling ratio, stability, and alignment in the Dorr type C femur, compared with the Corail long-stem.
Methods
Among patients who were with Dorr type C femurs and treated with total hip arthroplasty between January 2006 and March 2012, 20 patients with a Corail long-stem (Corail group) and 20 patients with an ABG Ⅱ short-stem (ABG Ⅱ group) were randomly selected. The differences in gender, age, body mass index, and preoperative diagnoses between the two groups were not significant (P>0.05). The ABG Ⅱ group was with a mean follow-up of 142 months (range, 102-156 months), and the Corail group was with a mean follow-up of 107 months (range, 91-127 months). There was no significant difference in the Harris score and subjective satisfaction score between the two groups at last follow-up (P>0.05). At last follow-up, dual-energy CT scans with mono-energy image reconstruction were used to calculate the prosthetic filling ratio and to measure the alignment of the prosthesis in the coronal and sagittal positions. Stability assessment was performed based on X-ray films, and the subsidence distance was measured using EBRA-FCA software.
Results
X-ray film observation showed that the prostheses in the two groups were stable and no signs of loosening was found. The incidence of pedestal sign was significantly lower in the ABGⅡ group than in the Corail group (P<0.05), and the incidence of heterotopic ossification was significantly higher in the ABGⅡ group than in the Corail group (P<0.05). The subsidence distance of femoral stem in ABG Ⅱ group was significantly greater than that in Corail group (P<0.05), and the subsidence speed of femoral stem in ABG Ⅱ group was also greater than that in Corail group, but the difference was not significant (P>0.05). The overall prosthesis filling ratio was significantly higher in the ABG Ⅱ group than in the Corail group (P<0.05), while the coronal filling ratio at the lesser trochanter, 2 cm below the lesser trochanter, and 7 cm below the lesser trochanter were not significant (P>0.05). The results of prosthesis alignment showed that there was no significant difference in the sagittal alignment error value and the incidence of coronal and sagittal alignment error >3° between the two groups (P>0.05), while the coronal alignment error value in the ABG Ⅱ group was significantly greater than that in the Corail group (P<0.05).
Conclusion
Although the ABG Ⅱ short-stem avoids the distal-proximal mismatch of the Corail long-stem in the Dorr type C femur and thus achieves a higher filling ratio, it does not appear to achieve better alignment or stability.
Keywords: Dorr type C femur, total hip arthroplasty, short stem prosthesis, prosthesis filling ratio
非骨水泥型股骨柄假体应用于人工全髋关节置换术(total hip arthroplasty,THA)中取得了出色的长期存活率[1]。其通过将假体压入髓腔内获得初始稳定性,随后骨长入将假体牢固锚定于股骨髓腔中,以确保持久固定。但髓腔宽大和骨质条件不佳的Dorr C型股骨[2],对非骨水泥型股骨柄假体的应用提出了挑战。该型股骨髓腔宽大,常需要使用较大的股骨柄,可能会发生近-远端不匹配的情况。目前Dorr C型股骨THA中使用较多的是长柄假体,但我们既往研究表明,约50%的长柄Corail假体在Dorr C型股骨中未达到小转子处冠状面80%的填充率,主要原因是随着Corail柄型号增加,不同部位的宽度增加并不均匀,远端部分增量远大于近端部分[3]。而短柄假体具有特定优势,包括保留骨质多、避免了近-远端不匹配问题、术中骨折发生率较低[4]、更符合生理负荷传导[5]、骨吸收更少[6]等。ABGⅡ(Stryker Howmedica公司,英国)作为一种常见并已成功使用的短柄假体,具有固定良好、填充率高的优点[7],平均10年存活率超过98%[8-9]。目前尚无比较短柄和长柄假体在Dorr C型股骨中应用的报道。
传统CT由于其成像原理,金属假体通常会出现伪影,尽管通过特定手段(如通过提高管电压、管电流,缩小准直范围,减小螺距等)在特定场景下可有效减少伪影,但股骨柄假体本身及周围组织的观测仍受到较大限制[10]。近年来双能CT扫描技术已得到广泛应用并成为研究热点,利用双能CT扫描获得的数据可进行单能量图像重建,极大地减少金属伪影[11]。本研究拟通过在X线片及单能量重建图像上测量,比较ABG Ⅱ和Corail假体在Dorr C型股骨中的填充率、对线和稳定性,以探究短柄假体在Dorr C型股骨中是否具有特定优势。报告如下。
1. 资料与方法
1.1. 研究对象
患者纳入标准:① 行后外侧入路THA治疗的Dorr C型股骨患者。参考Dorr等[2]对股骨的描述,根据围术期正侧位X线片筛选出 C 型股骨;当形态不明显时,应用Nakaya等[12]描述的定量标准进行判断。② 采用ABG Ⅱ或Corail假体。排除标准:明显股骨畸形、严重骨质疏松症、髋关节肿瘤或临床资料不完整。2006年1月—2012年3月共110例患者符合选择标准,随机选取使用Corail假体(Corail组)和ABGⅡ假体(ABGⅡ组)患者各20例,进行X线片拍摄和双能CT扫描。
两组患者性别、年龄、身体质量指数(body mass index,BMI)、术前诊断比较差异均无统计学意义(P>0.05)。ABGⅡ组随访时间102~156个月,平均142个月;Corail组随访时间91~127个月,平均107个月。末次随访时两组Harris评分和主观满意度评分比较差异均无统计学意义(P>0.05)。见表1。
表 1.
Comparison of demographic characteristics and follow-up results between two groups (n=20)
两组患者基线资料及随访资料比较(n=20)
指标 Index |
Corail 组 Corail group |
ABG Ⅱ组 ABG Ⅱ group |
统计量 Statistical value |
P值 P value |
性别(男/女,例) | 9/11 | 9/11 | — | — |
年龄(![]() |
54.40±17.76 | 56.00±9.25 | t=−0.360 | 0.723 |
BMI(![]() |
21.49±1.57 | 23.24±3.42 | t=−2.020 | 0.052 |
诊断(股骨颈骨折/股骨头坏死/骨关节炎/髋关节发育不良/强直性脊柱炎/其他,例) | 3/3/4/5/3/2 | 4/3/5/2/4/2 | χ2=1.680 | 0.891 |
末次随访Harris评分(![]() |
93.9±7.7 | 89.4±6.6 | t=1.990 | 0.054 |
主观满意度评分(![]() |
92.9±9.8 | 92.4±9.1 | t=0.150 | 0.881 |
1.2. 假体介绍
ABGⅡ和Corail假体都是非骨水泥型、干骺端固定柄。ABGⅡ假体是一种由钛、钼、锆和铁制成的解剖型短柄,在干骺端水平,柄上有鳞片状设计,并涂有70 μm厚的羟基磷灰石层;植入物尾部较短且经过超抛光,以避免在该水平通过骨长入与骨干接触。Corail假体是一种由钛、铝、钒等制成的长柄,具有双锥形设计,150 μm厚的羟基磷灰石涂层覆盖整个柄身。
1.3. 观测方法
1.3.1. X线片观测
在末次随访正侧位X线片上,对股骨柄稳定性和应力遮挡,以及点焊征、骨质溶解、透亮线、异位骨化、基座征和股骨柄末端皮质增厚进行评估。其中,根据Engh等[13-14]提出的标准评估股骨柄稳定性和应力遮挡;点焊征定义为桥接假体多孔表面和骨皮质髓腔面的新骨形成;骨质溶解是指具有扇形或囊状的透亮区,或透亮线进行性进展至宽度>2 mm;基座征定义为髓腔内出现新骨部分或全部桥接假体末端与骨皮质;股骨柄末端皮质增生定义为股骨柄末端与骨接触处骨皮质明显增厚。在正位X线片中测量小转子处、小转子下2 cm处、小转子下7 cm处假体填充率。采用EBRA-FCA软件[15-16]测量股骨柄下沉距离,并计算股骨柄下沉速度。
1.3.2. 双能CT扫描观测
末次随访时,在64通道双能CT扫描仪(Revolution CT;GE Healthcare公司,美国)上使用电压在80 kVp和140 kVp之间快速切换的双能成像模式进行检查。扫描参数:光束准直20 mm(32 mm×0.625 mm),螺距1.375∶1,管旋转速度0.8 s/转,管电流550 mA;扫描方向为从头至脚,总曝光时间5.5 s。使用工作站(GE VolumeShare AW4.6;GE Healthcare公司,美国)上的 GSI viewer软件将扫描数据重建为单能量图像。在不应用ASIR-V和图像增强滤波器的情况下使用骨算法,设置0.625 mm作为层间距以及层厚重建单能量图像。与传统CT图像相比,单能量图像具有最佳对比噪声比和最少光束硬化伪影(图1),用于后续分析。
图 1.
Comparison of conventional CT (left) and mono-energy reconstruction (right) images
传统CT(左)与单能量重建图像(右)比较
观测指标:按我们既往研究提出的方法[3]测量单能量图像中假体整体填充率。第1步,测量髓腔内组织体积。选择髓腔中的假体和相应股骨节段作为感兴趣区域,在虚拟现实模式下手动去除皮质骨以外的任何组织;然后使用阈值工具过滤掉CT值1 000~3 000 HU的物质。此步骤去除了皮质骨和股骨柄,在髓腔内和皮质骨以外的组织之间形成了明显间隔;利用这些间隔,手动擦除髓腔外所有组织,从而纠正了上述手动去除皮质骨以外组织后的残留;然后使用体积工具计算髓腔内组织的体积。第2步,测量髓腔内假体体积。标出感兴趣区域后,阈值工具可通过设置CT值>1 500 HU来自动选择假体,计算体积。按以下公式计算填充率:填充率=髓腔内假体体积/(髓腔内假体体积+髓腔内组织体积)。见图2。
图 2.
Process of calculating the overall prosthesis filling ratio
假体整体填充率计算过程
a. 提取髓腔内组织并计算体积;b. 提取金属假体并计算体积;c. 计算填充率
a. Extracted the tissue in the canal and calculated the volume; b. Extracted the metal prothesis and calculated the volume; c. Calculated the filling ratio
分别通过测量冠状面和矢状面上股骨柄轴线与髓腔轴线所成角度表示假体的对线误差[17]。见图3。
图 3.
Femoral stem alignment measurement
假体对线误差测量示意图
a. 冠状位;b. 矢状位
a. Coronal position; b. Sagittal position
1.4. 统计学方法
采用SPSS25.0统计软件进行分析。计量资料行正态性检验,均符合正态分布,数据以均数±标准差表示,组间比较采用独立样本t检验;分类资料组间比较采用Fisher确切概率法或χ2检验;检验水准α=0.05。
2. 结果
X线片观测示,两组患者假体稳定性良好,未见松动征象,亦未见中重度应力遮挡(3、4级)及宽度>2 mm的透亮线。Corail组基座征发生率显著高于ABG Ⅱ组,异位骨化发生率显著低于ABGⅡ组,差异有统计学意义(P<0.05)。ABG Ⅱ组股骨柄下沉距离显著大于Corail组,差异有统计学意义(P<0.05);ABG Ⅱ组股骨柄下沉速度亦大于Corail组,但差异无统计学意义(P>0.05)。其余指标两组差异均无统计学意义(P>0.05)。见表2。
表 2.
Comparison of radiological results between two groups (n=20)
两组患者影像学结果比较(n=20)
指标 Index |
Corail 组 Corail group |
ABG Ⅱ组 ABG Ⅱ group |
效应值(95%CI) Effect value (95%CI) |
P值 P value |
X线片征象 | ||||
轻度应力遮挡(1~2级)(是/否,例) | 8/12 | 12/8 | RR=0.44(0.13,1.58) | 0.206 |
宽度<1 mm透亮线(是/否,例) | 1/19 | 4/16 | RR=0.21(0.02,2.01) | 0.342 |
点焊征(是/否,例) | 15/5 | 14/6 | RR=1.29(0.32,5.18) | 0.723 |
股骨柄末端皮质增厚(是/否,例) | 4/16 | 3/17 | RR=1.42(0.27,7.34) | 1.000 |
基座征(是/否,例) | 12/8 | 3/17 | RR=8.50(1.86,38.82) | 0.003 |
骨质溶解(是/否,例) | 1/19 | 1/19 | RR=1.00(0.06,17.18) | 1.000 |
异位骨化(是/否,例) | 0/20 | 6/14 | RR=0.70(0.53,0.93) | 0.020 |
股骨柄下沉距离(![]() |
1.26±1.22 | 3.06±3.05 | MD=−1.80(−3.24,−0.36) | 0.019 |
股骨柄下沉速度(![]() |
0.14±0.14 | 0.25±0.26 | MD=−0.11(−0.24,0.02) | 0.104 |
假体填充率(![]() |
||||
小转子处 | 0.72±0.08 | 0.75±0.07 | MD=−0.03(−0.08,0.02) | 0.215 |
小转子下2 cm | 0.80±0.08 | 0.80±0.09 | MD=0.00(−0.05,0.05) | 1.000 |
小转子下7 cm | 0.79±0.12 | 0.76±0.08 | MD=0.03(0.03,0.09) | 0.358 |
整体 | 0.29±0.05 | 0.37±0.08 | MD=−0.08(−0.12,−0.04) | <0.001 |
CT观测假体对线误差 | ||||
冠状位对线(![]() |
1.35±1.04 | 2.25±1.51 | MD=−0.90(−1.70,−0.10) | 0.034 |
冠状位对线>3°(是/否,例) | 3/17 | 5/15 | RR=0.53(0.11,2.60) | 0.695 |
矢状位对线(![]() |
2.50±1.91 | 2.05±1.70 | MD=0.45(−0.67,1.57) | 0.427 |
矢状位对线>3°(是/否,例) | 5/15 | 3/17 | RR=1.89(0.36,9.27) | 0.695 |
除ABG Ⅱ组整体假体填充率大于Corail组,差异有统计学意义(P<0.05)外,两组在冠状面测得小转子处、小转子下2 cm、小转子下7 cm处假体填充率差异均无统计学意义(P>0.05)。假体对线结果示,除ABG Ⅱ组冠状位对线误差大于Corail组,差异有统计学意义(P<0.05)外,两组矢状位对线误差及冠状位和矢状位对线>3° 发生率差异均无统计学意义(P>0.05)。见表2。
3. 讨论
本研究通过X线片及单能量重建图像,比较了ABGⅡ与Corail假体在Dorr C型股骨中的填充率、对线及稳定性。结果表明ABG Ⅱ假体整体填充率显著高于Corail假体,但冠状面对线误差显著大于Corail假体,且股骨柄下沉距离显著大于Corail假体,差异均有统计学意义(P<0.05)。尽管ABGⅡ假体避免了Corail假体在Dorr C型股骨中近-远端不匹配的问题,获得了更高填充率,但似乎并不能获得更好的对线或稳定性。
在非骨水泥型股骨柄应用中,适当的压配对于初始固定至关重要。有研究报道假体填充率不足会对临床结果产生负面影响,如骨整合失败、远端肥大、股骨柄下沉、假体无菌性松动等[18-22]。更高的填充率有助于增加假体和骨质的接触面积,Viceconti等[23]报道假体柄与骨质之间缺乏直接接触是假体稳定性不足的主要风险;Tarala等[24]也报道了股骨柄周围的骨长入取决于皮质骨和松质骨与假体的接触面积。本研究中,ABGⅡ假体整体填充率显著高于Corail假体,可能有以下两方面原因。首先,ABGⅡ假体柄较短,避免了近-远端不匹配问题;其次,其厚度大于Corail假体,使得整体填充率更高。
对于长柄在Dorr C型股骨中可能出现的近-远端不匹配问题,我们最初分析认为与假体对线不良有关,本研究结果显示Corail假体冠状面对线不良(>3°)比例为15%(3/20),确实高于既往报道的非Dorr C型股骨中长柄冠状面对线不良比例(4.1%~7.4%)[25-27]。但本研究发现,与长柄相比,短柄ABGⅡ冠状面对线不良风险更大(25%,5/20),主要原因可能是与长柄相比,短柄未延伸至骨干中,在植入过程中缺乏引导作用所致[27-28]。因此,ABGⅡ假体并不能在Dorr C型股骨中取得更好的对线。
ABG Ⅱ假体下沉距离显著高于Corail假体,可能有以下两方面原因。一方面,Corail假体柄更长,容易实现远端与皮质骨的接触。Whiteside等[29]的研究表明通过紧密的远端固定,可以最大限度减少远端和近端微动。在Dorr A、B型股骨中应用Corail假体时不建议远端接触,但在Dorr C型股骨中可以采取远端接触[30]。Worlicek等[17]研究显示,高达92.5%患者(37/40)的Corail假体与皮质骨有远端接触。Reitman 等[31]对33例Dorr C型股骨的锥形柄应用干骺端-骨干的3点固定,平均13年随访未发现翻修或大腿疼痛。在正常股骨中,ABG Ⅱ假体的远端超抛光设计有助于避免远端骨长入,从而减少远端固定造成应力遮挡;然而在Dorr C型股骨中,股骨柄的稳定固定最为关键,ABG Ⅱ假体柄的“烟囱”形态增加了初始固定难度,同时其组织学异常对骨长入不利[2]。另一方面,初始假体下沉发生时,双锥形设计的Corail假体抵抗进一步下沉的能力比解剖型ABG Ⅱ假体更强;另外,Corail假体更大面积和更厚的羟基磷灰石涂层可能获得更好的骨长入。因此,许多研究报道的中短期和长期随访中,长柄非骨水泥型股骨柄在Dorr C型股骨中取得了令人满意的临床结果[31-36]。
本研究尚存在一定局限性。第一,样本量较小,结果存在假阴性可能。第二,本研究均纳入假体功能良好患者进行双能CT扫描,未涉及假体翻修等不良结局患者的相关信息。第三,本研究比较的两种股骨柄除了假体长度有明显区别外,在设计、材料等各方面也并不一致。后续研究若能将同一款假体的长、短两种产品进行比较,将会更有力地明确假体长度对术后假体填充率、对线及稳定性的影响。
综上述,针对Dorr C型股骨,短柄ABG Ⅱ具有许多理论上的优势,但本研究结果显示其并不能获得更好的对线或稳定性,更高的假体填充率并不能作为选择短柄的充分理由。期待将来能够有更多个性化设计和改良后的短柄假体应用于Dorr C型股骨患者,取得良好临床结果。
利益冲突 在课题研究和文章撰写过程中不存在利益冲突;经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道
伦理声明 研究方案经四川大学华西医院伦理审查委员会批准 [2012年268号];临床试验注册号:ChiCTR 1900026467;患者均知情同意
作者贡献声明 包显超、沈彬:研究设计;李明阳:研究实施;武立民:数据收集整理及统计分析;江胜虎:文章撰写
Funding Statement
四川省科技厅重点研发项目(2022YFS0050);四川省自然科学基金项目(2023NSFSC1750)
Foundation of the Science & Technology Department of Sichuan Province (2022YFS0050); Natural Science Foundation of Sichuan Province (2023NSFSC1750)
References
- 1.Khanuja HS, Vakil JJ, Goddard MS, et al Cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg (Am) 2011;93(5):500–509. doi: 10.2106/JBJS.J.00774. [DOI] [PubMed] [Google Scholar]
- 2.Dorr LD, Faugere MC, Mackel AM, et al Structural and cellular assessment of bone quality of proximal femur. Bone. 1993;14(3):231–242. doi: 10.1016/8756-3282(93)90146-2. [DOI] [PubMed] [Google Scholar]
- 3.Li M, Zeng Y, Wu Y, et al Cementless femoral stems with lower canal fill ratio have similar mid-term to long-term outcomes to those with adequate fill ratio in Dorr type C femurs. Arch Orthop Trauma Surg. 2022;142(6):1265–1273. doi: 10.1007/s00402-021-03916-x. [DOI] [PubMed] [Google Scholar]
- 4.Molli RG, Lombardi AV, Berend KR, et al A short tapered stem reduces intraoperative complications in primary total hip arthroplasty. Clin Orthop Relat Res. 2012;470(2):450–461. doi: 10.1007/s11999-011-2068-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Kim YH, Park JW, Kim JS, et al Long-term results and bone remodeling after THA with a short, metaphyseal-fitting anatomic cementless stem. Clin Orthop Relat Res. 2014;472(3):943–950. doi: 10.1007/s11999-013-3354-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Chen HH, Morrey BF, An KN, et al Bone remodeling characteristics of a short-stemmed total hip replacement. J Arthroplasty. 2009;24(6):945–950. doi: 10.1016/j.arth.2008.07.014. [DOI] [PubMed] [Google Scholar]
- 7.Issa K, Stroh AD, Mont MA, et al Effect of bone type on clinical and radiographic outcomes of a proximally-coated cementless stem in primary total hip arthroplasties. J Orthop Res. 2014;32(9):1214–1220. doi: 10.1002/jor.22648. [DOI] [PubMed] [Google Scholar]
- 8.Herrera A, Mateo J, Lobo-Escolar A, et al Long-term outcomes of a new model of anatomical hydroxyapatite-coated hip prosthesis. J Arthroplasty. 2013;28(7):1160–1166. doi: 10.1016/j.arth.2012.06.033. [DOI] [PubMed] [Google Scholar]
- 9.Epinette JA, Asencio G, Essig J, et al Clinical results, radiological findings and survival of a proximally hydroxyapatite-coated hip ABG Ⅱ stem at a minimum of ten years’ follow-up: results of a consecutive multicentre study of 1148 hips in 1053 patients. Bone Joint J. 2013;95-B(12):1610–1616. doi: 10.1302/0301-620X.95B12.31167. [DOI] [PubMed] [Google Scholar]
- 10.Wellenberg RHH, Hakvoort ET, Slump CH, et al Metal artifact reduction techniques in musculoskeletal CT-imaging. Eur J Radiol. 2018;107:60–69. doi: 10.1016/j.ejrad.2018.08.010. [DOI] [PubMed] [Google Scholar]
- 11.Pessis E, Campagna R, Sverzut JM, et al Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics. 2013;33(2):573–583. doi: 10.1148/rg.332125124. [DOI] [PubMed] [Google Scholar]
- 12.Nakaya R, Takao M, Hamada H, et al Reproducibility of the Dorr classification and its quantitative indices on plain radiographs. Orthop Traumatol Surg Res. 2019;105(1):17–21. doi: 10.1016/j.otsr.2018.11.008. [DOI] [PubMed] [Google Scholar]
- 13.Engh CA, Massin P, Suthers KE Roentgenographic assessment of the biologic fixation of porous-surfaced femoral components. Clin Orthop Relat Res. 1990;(257):107–128. [PubMed] [Google Scholar]
- 14.Engh CA, Bobyn JD, Glassman AH Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg (Br) 1987;69(1):45–55. doi: 10.1302/0301-620X.69B1.3818732. [DOI] [PubMed] [Google Scholar]
- 15.Biedermann R, Krismer M, Stöckl B, et al Accuracy of EBRA-FCA in the measurement of migration of femoral components of total hip replacement. Einzel-Bild-Röntgen-Analyse-femoral component analysis. J Bone Joint Surg (Br) 1999;81(2):266–272. doi: 10.1302/0301-620x.81b2.8842. [DOI] [PubMed] [Google Scholar]
- 16.Krismer M, Biedermann R, Stöckl B, et al The prediction of failure of the stem in THR by measurement of early migration using EBRA-FCA. Einzel-Bild-Roentgen-Analyse-femoral component analysis. J Bone Joint Surg (Br) 1999;81(2):273–280. doi: 10.1302/0301-620x.81b2.8840. [DOI] [PubMed] [Google Scholar]
- 17.Worlicek M, Weber M, Wörner M, et al The final implant position of a commonly used collarless straight tapered stem design (Corail®) does not correlate with femoral neck resection height in cement-free total hip arthroplasty: a retrospective computed tomography analysis. J Orthop Traumatol. 2018;19(1):20. doi: 10.1186/s10195-018-0513-z. doi: 10.1186/s10195-018-0513-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Ishii S, Homma Y, Baba T, et al. Does the canal fill ratio and femoral morphology of Asian females influence early radiographic outcomes of total hip arthroplasty with an uncemented proximally coated, tapered-wedge stem? J Arthroplasty, 2016, 31(7): 1524-1528.
- 19.Rattanaprichavej P, Laoruengthana A, Chotanaphuti T, et al Subsidence of hydroxyapatite-coated femoral stem in Dorr type C proximal femoral morphology. J Arthroplasty. 2019;34(9):2011–2015. doi: 10.1016/j.arth.2019.05.017. [DOI] [PubMed] [Google Scholar]
- 20.Hwang KT, Kim YH, Kim YS, et al Total hip arthroplasty using cementless grit-blasted femoral component: a minimum 10-year follow-up study. J Arthroplasty. 2012;27(8):1554–1561. doi: 10.1016/j.arth.2012.02.005. [DOI] [PubMed] [Google Scholar]
- 21.Aldinger PR, Jung AW, Breusch SJ, et al Survival of the cementless Spotorno stem in the second decade. Clin Orthop Relat Res. 2009;467(9):2297–2304. doi: 10.1007/s11999-009-0906-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Streit MR, Innmann MM, Merle C, et al Long-term (20- to 25-year) results of an uncemented tapered titanium femoral component and factors affecting survivorship. Clin Orthop Relat Res. 2013;471(10):3262–3269. doi: 10.1007/s11999-013-3033-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Viceconti M, Pancanti A, Varini E, et al On the biomechanical stability of cementless straight conical hip stems. Proc Inst Mech Eng H. 2006;220(3):473–480. doi: 10.1243/09544119H06904. [DOI] [PubMed] [Google Scholar]
- 24.Tarala M, Janssen D, Verdonschot N Toward a method to simulate the process of bone ingrowth in cementless THA using finite element method. Med Eng Phys. 2013;35(4):543–548. doi: 10.1016/j.medengphy.2012.10.010. [DOI] [PubMed] [Google Scholar]
- 25.Reina N, Salib CG, Perry KI, et al Mild coronal stem malalignment does not negatively impact survivorship or clinical results in uncemented primary total hip arthroplasties with dual-tapered implants. J Arthroplasty. 2019;34(6):1127–1131. doi: 10.1016/j.arth.2019.01.055. [DOI] [PubMed] [Google Scholar]
- 26.Teet JS, Skinner HB, Khoury L The effect of the “mini” incision in total hip arthroplasty on component position. J Arthroplasty. 2006;21(4):503–507. doi: 10.1016/j.arth.2005.06.011. [DOI] [PubMed] [Google Scholar]
- 27.Khalily C, Lester DK Results of a tapered cementless femoral stem implanted in varus. J Arthroplasty. 2002;17(4):463–466. doi: 10.1054/arth.2002.32171. [DOI] [PubMed] [Google Scholar]
- 28.Stulberg SD, Patel RM. The short stem: promises and pitfalls. Bone Joint J, 2013, 95-B(11 Suppl A): 57-62.
- 29.Whiteside LA, Easley JC The effect of collar and distal stem fixation on micromotion of the femoral stem in uncemented total hip arthroplasty. Clin Orthop Relat Res. 1989;(239):145–153. [PubMed] [Google Scholar]
- 30.Young S, Michel MC, Selmi TAS, et al. The Corail® Hip Stem//The Corail® Hip System. Berlin: Springer, 2011: 53-88.
- 31.Reitman RD, Emerson R, Higgins L, et al. Thirteen year results of total hip arthroplasty using a tapered titanium femoral component inserted without cement in patients with type C bone. J Arthroplasty, 2003, 18(7 Suppl 1): 116-121.
- 32.Bonutti PM, Stroh AD, Issa K, et al Proximally coated cementless bipolar hemiarthroplasty in Dorr type C bone. Orthopedics. 2014;37(4):e345–e350. doi: 10.3928/01477447-20140401-54. [DOI] [PubMed] [Google Scholar]
- 33.Tsubosaka M, Hayashi S, Hashimoto S, et al Patients with a Dorr type C femoral bone require attention for using a Summit cementless stem: Results of total hip arthroplasty after a minimum follow-up period of 5 years after insertion of a Summit cementless stem. J Orthop Sci. 2018;23(4):671–675. doi: 10.1016/j.jos.2018.05.001. [DOI] [PubMed] [Google Scholar]
- 34.Kelly SJ, Robbins CE, Bierbaum BE, et al Use of a hydroxyapatite-coated stem in patients with Dorr Type C femoral bone. Clin Orthop Relat Res. 2007;465:112–116. doi: 10.1097/BLO.0b013e318156bf96. [DOI] [PubMed] [Google Scholar]
- 35.Kim JT, Jeong HJ, Lee SJ, et al Does proximally coated single-wedge cementless stem work well in Dorr type C femurs? Minimum 10-year followup. Indian J Orthop. 2019;53(1):94–101. doi: 10.4103/ortho.IJOrtho_160_17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Zhen P, Liu J, Li X, et al Primary total hip arthroplasty using an uncemented Wagner SL stem in elderly patients with Dorr type C femoral bone. J Orthop Surg Res. 2019;14(1):377. doi: 10.1186/s13018-019-1421-5. doi: 10.1186/s13018-019-1421-5. [DOI] [PMC free article] [PubMed] [Google Scholar]