Abstract
Dorsal root ganglia from streptozotocin-diabetic rats and age- and weight-matched control animals were incubated with 4-amino 3H-butyric acid. A significant reduction in uptake was observed in the diabetic animals. The incorporation of 3H-leucine into protein was also significantly reduced but the results did not allow a conclusion as to whether this was a secondary or an independent effect. These findings are discussed in relation both to the abnormalities known to develop in diabetic rats and to the causation of human diabetic neuropathy.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baliga B. S., Pronczuk A. W., Munro H. N. Mechanism of cycloheximide inhibition of protein synthesis in a cell-free system prepared from rat liver. J Biol Chem. 1969 Aug 25;244(16):4480–4489. [PubMed] [Google Scholar]
- Black M. M., Lasek R. J. Slow components of axonal transport: two cytoskeletal networks. J Cell Biol. 1980 Aug;86(2):616–623. doi: 10.1083/jcb.86.2.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bond J. S. Failure to demonstrate increased protein turnover and intracellular proteinase activity in livers of mice with streptozotocin-induced diabetes. Diabetes. 1980 Aug;29(8):648–654. doi: 10.2337/diab.29.8.648. [DOI] [PubMed] [Google Scholar]
- Burnham P. A., Silva J. A., Varon S. Anabolic responses of embryonic dorsal root ganglia to nerve growth factor, insulin, concanavalin A or serum in vitro. J Neurochem. 1974 Oct;23(4):689–695. doi: 10.1111/j.1471-4159.1974.tb04392.x. [DOI] [PubMed] [Google Scholar]
- Cavanagh J. B., Chen F. C. Amino acid incorporation in protein during the "silent phase" before organo-mercury and p-bromophenylacetylurea neuropathy in the rat. Acta Neuropathol. 1971;19(3):216–224. doi: 10.1007/BF00684598. [DOI] [PubMed] [Google Scholar]
- Chihara E. Impairment of protein synthesis in the retinal tissue in diabetic rabbits: secondary reduction of fast axonal transport. J Neurochem. 1981 Jul;37(1):247–250. doi: 10.1111/j.1471-4159.1981.tb05316.x. [DOI] [PubMed] [Google Scholar]
- Das P. K., Bray G. M., Aguayo A. J., Rasminsky M. Diminished ouabain-sensitive, sodium-potassium ATPase activity in sciatic nerves of rats with streptozotocin-induced diabetes. Exp Neurol. 1976 Oct;53(1):285–288. doi: 10.1016/0014-4886(76)90299-5. [DOI] [PubMed] [Google Scholar]
- ELIASSON S. G. NERVE CONDUCTION CHANGES IN EXPERIMENTAL DIABETES. J Clin Invest. 1964 Dec;43:2353–2358. doi: 10.1172/JCI105109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillon K. R., Hawthorne J. N. Transport of myo-inositol into endoneurial preparations of sciatic nerve from normal and streptozotocin-diabetic rats. Biochem J. 1983 Mar 15;210(3):775–781. doi: 10.1042/bj2100775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene D. A., De Jesus P. V., Jr, Winegrad A. I. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest. 1975 Jun;55(6):1326–1336. doi: 10.1172/JCI108052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakobsen J. Early and preventable changes of peripheral nerve structure and function in insulin-deficient diabetic rats. J Neurol Neurosurg Psychiatry. 1979 Jun;42(6):509–518. doi: 10.1136/jnnp.42.6.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakobsen J., Sidenius P. Decreased axonal transport of structural proteins in streptozotocin diabetic rats. J Clin Invest. 1980 Aug;66(2):292–297. doi: 10.1172/JCI109856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer J. H., Tomlinson D. R. Prevention of defects of axonal transport and nerve conduction velocity by oral administration of myo-inositol or an aldose reductase inhibitor in streptozotocin-diabetic rats. Diabetologia. 1983 Nov;25(5):433–438. doi: 10.1007/BF00282524. [DOI] [PubMed] [Google Scholar]
- Natarajan V., Dyck P. J., Schmid H. H. Alterations of inositol lipid metabolism of rat sciatic nerve in streptozotocin-induced diabetes. J Neurochem. 1981 Feb;36(2):413–419. doi: 10.1111/j.1471-4159.1981.tb01609.x. [DOI] [PubMed] [Google Scholar]
- Oldfors A. Nerve fibre degeneration of the central and peripheral nervous systems in severe protein deprivation in rats. Acta Neuropathol. 1981;54(2):121–127. doi: 10.1007/BF00689404. [DOI] [PubMed] [Google Scholar]
- Oldfors A., Ullman M. Motor nerve conduction velocity and nerve fibre diameter in experimental protein deprivation. Studies on rat peripheral nerve during development. Acta Neuropathol. 1980;51(3):215–221. doi: 10.1007/BF00687388. [DOI] [PubMed] [Google Scholar]
- Oldfors A., Ullman M. Motor nerve conduction velocity and nerve fibre diameter in experimental protein deprivation. Studies on rat peripheral nerve during development. Acta Neuropathol. 1980;51(3):215–221. doi: 10.1007/BF00687388. [DOI] [PubMed] [Google Scholar]
- Palmano K. P., Whiting P. H., Hawthorne J. N. Free and lipid myo-inositol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem J. 1977 Oct 1;167(1):229–235. doi: 10.1042/bj1670229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma A. K., Thomas P. K., Gabriel G., Stolinski C., Dockery P., Hollins G. W. Peripheral nerve abnormalities in the diabetic mutant mouse. Diabetes. 1983 Dec;32(12):1152–1161. doi: 10.2337/diab.32.12.1152. [DOI] [PubMed] [Google Scholar]
- Sidenius P., Jakobsen J. Axonal transport in early experimental diabetes. Brain Res. 1979 Sep 14;173(2):315–330. doi: 10.1016/0006-8993(79)90631-0. [DOI] [PubMed] [Google Scholar]
- Sidenius P., Jakobsen J. Reduced perikaryal volume of lower motor and primary sensory neurons in early experimental diabetes. Diabetes. 1980 Mar;29(3):182–186. doi: 10.2337/diab.29.3.182. [DOI] [PubMed] [Google Scholar]
- Sidenius P., Jakobsen J. Reversibility and preventability of the decrease in slow axonal transport velocity in experimental diabetes. Diabetes. 1982 Aug;31(8 Pt 1):689–693. doi: 10.2337/diab.31.8.689. [DOI] [PubMed] [Google Scholar]
- Simmons D. A., Winegrad A. I., Martin D. B. Significance of tissue myo-inositol concentrations in metabolic regulation in nerve. Science. 1982 Aug 27;217(4562):848–851. doi: 10.1126/science.6285474. [DOI] [PubMed] [Google Scholar]
- Spritz N., Singh H., Marinan B. Metabolism of peripheral nerve myelin in experimental diabetes. J Clin Invest. 1975 May;55(5):1049–1056. doi: 10.1172/JCI108005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P. K., Jefferys J. G., Sharma A. K., Bajada S. Nerve conduction velocity in experimental diabetes in the rat and rabbit. J Neurol Neurosurg Psychiatry. 1981 Mar;44(3):233–238. doi: 10.1136/jnnp.44.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yue D. K., Hanwell M. A., Satchell P. M., Turtle J. R. The effect of aldose reductase inhibition on motor nerve conduction velocity in diabetic rats. Diabetes. 1982 Sep;31(9):789–794. doi: 10.2337/diab.31.9.789. [DOI] [PubMed] [Google Scholar]
