Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1985 Mar;48(3):225–228. doi: 10.1136/jnnp.48.3.225

Vasopressin secretion in progressive autonomic failure: evidence for defective afferent cardiovascular pathways.

T D Williams, S L Lightman, R Bannister
PMCID: PMC1028254  PMID: 3981190

Abstract

Patients with progressive autonomic failure with multiple system atrophy show a severely blunted response of plasma arginine vasopressin to the stimulus of head-up tilt. Whether this could be due to lesions either at one or more sites within ascending neural pathways from cardiovascular stretch receptors in the thorax or, alternatively, to lesions affecting vasopressin secreting cells within the hypothalamus was investigated. The arginine vasopressin response to an intravenous infusion of hypertonic saline was determined in six patients with progressive autonomic failure. The mean plasma concentration of arginine vasopressin rose from 1.0 to 3.7 pmol/l, a change comparable to that observed in normal controls. This demonstrates normal functioning of the efferent connections from the osmoreceptors within the hypothalamus and suggests that the loss of vasopressin response to head-up tilt is due to lesions in ascending pathways from cardiovascular receptors. There was a significant rise in mean blood pressure during the infusions on patients with progressive autonomic failure, a change which was not observed with the controls. This may have been at least partly caused by the rise in circulating arginine vasopressin concentrations, since these patients have been reported to be extremely sensitive to the pressor effects of arginine vasopressin.

Full text

PDF
225

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAUNWALD E., WAGNER H. N., Jr The pressor effect of the antidiuretic principle of the posterior pituitary in orthostatic hypotension. J Clin Invest. 1956 Dec;35(12):1412–1418. doi: 10.1172/JCI103398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bannister R., Ardill L., Fentem P. An assessment of various methods of treatment of idiopathic orthostatic hypotension. Q J Med. 1969 Oct;38(152):377–395. [PubMed] [Google Scholar]
  3. Bannister R., Ardill L., Fentem P. Defective autonomic control of blood vessels in idiopathic orthostatic hypotension. Brain. 1967 Dec;90(4):725–746. doi: 10.1093/brain/90.4.725. [DOI] [PubMed] [Google Scholar]
  4. Bannister R., Davies B., Holly E., Rosenthal T., Sever P. Defective cardiovascular reflexes and supersensitivity to sympathomimetic drugs in autonomic failure. Brain. 1979 Mar;102(1):163–176. doi: 10.1093/brain/102.1.163. [DOI] [PubMed] [Google Scholar]
  5. Hanley M. R., Benton H. P., Lightman S. L., Todd K., Bone E. A., Fretten P., Palmer S., Kirk C. J., Michell R. H. A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature. 1984 May 17;309(5965):258–261. doi: 10.1038/309258a0. [DOI] [PubMed] [Google Scholar]
  6. Lightman S. L., Todd K., Everitt B. J. Ascending noradrenergic projections from the brainstem: evidence for a major role in the regulation of blood pressure and vasopressin secretion. Exp Brain Res. 1984;55(1):145–151. doi: 10.1007/BF00240508. [DOI] [PubMed] [Google Scholar]
  7. Luqman W. A., Matej L. A., Smith M. L. Comparison of prolactin levels in human semen and seminal plasma. J Endocrinol. 1979 Apr;81(1):131–133. doi: 10.1677/joe.0.0810131. [DOI] [PubMed] [Google Scholar]
  8. Montani J. P., Liard J. F., Schoun J., Möhring J. Hemodynamic effects of exogenous and endogenous vasopressin at low plasma concentrations in conscious dogs. Circ Res. 1980 Sep;47(3):346–355. doi: 10.1161/01.res.47.3.346. [DOI] [PubMed] [Google Scholar]
  9. Möhring J., Glänzer K., Maciel J. A., Jr, Düsing R., Kramer H. J., Arbogast R., Koch-Weser J. Greatly enhanced pressor response to antidiuretic hormone in patients with impaired cardiovascular reflexes due to idiopathic orthostatic hypotension. J Cardiovasc Pharmacol. 1980 Jul-Aug;2(4):367–376. doi: 10.1097/00005344-198007000-00004. [DOI] [PubMed] [Google Scholar]
  10. Puritz R., Lightman S. L., Wilcox C. S., Forsling M., Bannister R. Blood pressure and vasopressin in progressive autonomic failure. Response to postural stimulation, L-dopa and naloxone. Brain. 1983 Jun;106(Pt 2):503–511. doi: 10.1093/brain/106.2.503. [DOI] [PubMed] [Google Scholar]
  11. Sawchenko P. E., Swanson L. W. Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science. 1981 Nov 6;214(4521):685–687. doi: 10.1126/science.7292008. [DOI] [PubMed] [Google Scholar]
  12. Sawchenko P. E., Swanson L. W. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. 1982 Nov;257(3):275–325. doi: 10.1016/0165-0173(82)90010-8. [DOI] [PubMed] [Google Scholar]
  13. Spokes E. G., Bannister R., Oppenheimer D. R. Multiple system atrophy with autonomic failure: clinical, histological and neurochemical observations on four cases. J Neurol Sci. 1979 Sep;43(1):59–82. doi: 10.1016/0022-510x(79)90073-x. [DOI] [PubMed] [Google Scholar]
  14. Zerbe R. L., Henry D. P., Robertson G. L. Vasopressin response to orthostatic hypotension. Etiologic and clinical implications. Am J Med. 1983 Feb;74(2):265–271. doi: 10.1016/0002-9343(83)90625-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES