Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1985 Nov;48(11):1140–1146. doi: 10.1136/jnnp.48.11.1140

Verapamil-induced changes in central conduction in patients with multiple sclerosis.

R L Gilmore, E J Kasarskis, R G McAllister
PMCID: PMC1028574  PMID: 3001232

Abstract

The electrophysiological characteristics of demyelinated axons are sensitive to changes in plasma calcium concentration. This study investigated the effect of verapamil, a calcium antagonist drug, on brainstem auditory, visual, and somatosensory evoked potentials in multiple sclerosis patients. Eight clinically stable patients with abnormal visual and/or brainstem auditory evoked potentials and four normal volunteers were studied. During intravenous infusions of verapamil (mean plasma concentration = 130.0 +/- 56.4 ng/ml), the latencies of peaks III and V were shortened (p less than 0.05) in multiple sclerosis patients with abnormally prolonged BAEPs. The I-III (delta = 0.08 ms), III-V (delta = 0.46 ms), and I-V (delta = 0.53 ms) interpeak intervals, and the P100 latency (delta = 10.15 ms) of the visual evoked potential were similarly affected in these patients. In contrast, normal evoked potentials of both multiple sclerosis patients and control subjects were not altered compared to baseline recordings obtained 24 hours earlier. Intravenous verapamil, therefore, alters the BAEPs and VEPs of some multiple sclerosis patients with demyelinated auditory and visual pathways by shortening pathologically prolonged latencies toward normal. The present study suggests pharmacological manipulation of calcium-dependent processes, possibly at the level of the demyelinated axon, can acutely facilitate central conduction of electrical impulses in some patients with clinically stable multiple sclerosis.

Full text

PDF
1140

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajada S., Mastaglia F. L., Black J. L., Collins D. W. Effects of induced hyperthermia on visual evoked potentials and saccade parameters in normal subjects and multiple sclerosis patients. J Neurol Neurosurg Psychiatry. 1980 Sep;43(9):849–852. doi: 10.1136/jnnp.43.9.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrett E. F., Barret J. N. Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones. J Physiol. 1976 Mar;255(3):737–774. doi: 10.1113/jphysiol.1976.sp011306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bostock H., Sears T. A. The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J Physiol. 1978 Jul;280:273–301. doi: 10.1113/jphysiol.1978.sp012384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bumgartner J., Epstein C. M. Voluntary alteration of visual evoked potentials. Ann Neurol. 1982 Nov;12(5):475–478. doi: 10.1002/ana.410120511. [DOI] [PubMed] [Google Scholar]
  5. Chiu S. Y., Ritchie J. M. Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres. Nature. 1980 Mar 13;284(5752):170–171. doi: 10.1038/284170a0. [DOI] [PubMed] [Google Scholar]
  6. Dau P. C., Petajan J. H., Johnson K. P., Panitch H. S., Bornstein M. B. Plasmapheresis in multiple sclerosis: preliminary findings. Neurology. 1980 Oct;30(10):1023–1028. doi: 10.1212/wnl.30.10.1023. [DOI] [PubMed] [Google Scholar]
  7. Davis F. A., Becker F. O., Michael J. A., Sorensen E. Effect of intravenous sodium bicarbonate, disodium edetate (Na2EDTA), and hyperventilation on visual and oculomotor signs in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1970 Dec;33(6):723–732. doi: 10.1136/jnnp.33.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis F. A., Schauf C. L. Approaches to the development of pharmacological interventions in multiple sclerosis. Adv Neurol. 1981;31:505–510. [PubMed] [Google Scholar]
  9. Eckert R., Tillotson D. Potassium activation associated with intraneuronal free calcium. Science. 1978 Apr 28;200(4340):437–439. doi: 10.1126/science.644308. [DOI] [PubMed] [Google Scholar]
  10. Hamann S. R., Todd G. D., McAllister R. G., Jr The pharmacology of verapamil. V. Tissue distribution of verapamil and norverapamil in rat and dog. Pharmacology. 1983;27(1):1–8. doi: 10.1159/000137823. [DOI] [PubMed] [Google Scholar]
  11. Heyer C. B., Lux H. D. Control of the delayed outward potassium currents in bursting pace-maker neurones of the snail, Helix pomatia. J Physiol. 1976 Nov;262(2):349–382. doi: 10.1113/jphysiol.1976.sp011599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kazis A., Vlaikidis N., Xafenias D., Papanastasiou J., Pappa P. Fever and evoked potentials in multiple sclerosis. J Neurol. 1982;227(1):1–10. doi: 10.1007/BF00313541. [DOI] [PubMed] [Google Scholar]
  13. Lastimosa A. C., Bass N. H., Stanback K., Norvell E. E. Lumbar spinal cord and early cortical evoked potentials after tibial nerve stimulation: effects of stature on normative data. Electroencephalogr Clin Neurophysiol. 1982 Nov;54(5):499–507. doi: 10.1016/0013-4694(82)90035-9. [DOI] [PubMed] [Google Scholar]
  14. Matthews W. B., Read D. J., Pountney E. Effect of raising body temperature on visual and somatosensory evoked potentials in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 1979 Mar;42(3):250–255. doi: 10.1136/jnnp.42.3.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matthews W. B., Small D. G. Serial recording of visual and somatosensory evoked potentials in multiple sclerosis. J Neurol Sci. 1979 Jan;40(1):11–21. doi: 10.1016/0022-510x(79)90004-2. [DOI] [PubMed] [Google Scholar]
  16. McDonald W. I., Sears T. A. The effects of experimental demyelination on conduction in the central nervous system. Brain. 1970;93(3):583–598. doi: 10.1093/brain/93.3.583. [DOI] [PubMed] [Google Scholar]
  17. Meech R. W. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp Biochem Physiol A Comp Physiol. 1972 Jun 1;42(2):493–499. doi: 10.1016/0300-9629(72)90128-4. [DOI] [PubMed] [Google Scholar]
  18. Meech R. W., Standen N. B. Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. J Physiol. 1975 Jul;249(2):211–239. doi: 10.1113/jphysiol.1975.sp011012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mertin J., Rudge P., Kremer M., Healey M. J., Knight S. C., Compston A., Batchelor J. R., Thompson E. J., Halliday A. M., Denman M. Double-blind controlled trial of immunosuppression in the treatment of multiple sclerosis: final report. Lancet. 1982 Aug 14;2(8294):351–354. doi: 10.1016/s0140-6736(82)90547-5. [DOI] [PubMed] [Google Scholar]
  20. Nuwer M. R., Namerow N. S. Somatosensory evoked potential testing in multiple sclerosis. Adv Neurol. 1981;31:183–199. [PubMed] [Google Scholar]
  21. Peroutka S. J., Allen G. S. Calcium channel antagonist binding sites labeled by 3H-nimodipine in human brain. J Neurosurg. 1983 Dec;59(6):933–937. doi: 10.3171/jns.1983.59.6.0933. [DOI] [PubMed] [Google Scholar]
  22. Rasminsky M., Sears T. A. Internodal conduction in undissected demyelinated nerve fibres. J Physiol. 1972 Dec;227(2):323–350. doi: 10.1113/jphysiol.1972.sp010035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SCHUMACHER G. A., BEEBE G., KIBLER R. F., KURLAND L. T., KURTZKE J. F., MCDOWELL F., NAGLER B., SIBLEY W. A., TOURTELLOTTE W. W., WILLMON T. L. PROBLEMS OF EXPERIMENTAL TRIALS OF THERAPY IN MULTIPLE SCLEROSIS: REPORT BY THE PANEL ON THE EVALUATION OF EXPERIMENTAL TRIALS OF THERAPY IN MULTIPLE SCLEROSIS. Ann N Y Acad Sci. 1965 Mar 31;122:552–568. doi: 10.1111/j.1749-6632.1965.tb20235.x. [DOI] [PubMed] [Google Scholar]
  24. Schauf C. L., Davis F. A. Impulse conduction in multiple sclerosis: a theoretical basis for modification by temperature and pharmacological agents. J Neurol Neurosurg Psychiatry. 1974 Feb;37(2):152–161. doi: 10.1136/jnnp.37.2.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sears E. S., McCammon A., Bigelow R., Hayman L. A. Maximizing the harvest of contrast enhancing lesions in multiple sclerosis. Neurology. 1982 Aug;32(8):815–820. doi: 10.1212/wnl.32.8.815. [DOI] [PubMed] [Google Scholar]
  26. Sherratt R. M., Bostock H., Sears T. A. Effects of 4-aminopyridine on normal and demyelinated mammalian nerve fibres. Nature. 1980 Feb 7;283(5747):570–572. doi: 10.1038/283570a0. [DOI] [PubMed] [Google Scholar]
  27. Todd G. D., Bourne D. W., McAllister R. G., Jr Measurement of verapamil concentrations in plasma by gas chromatography and high pressure liquid chromatography. Ther Drug Monit. 1980;2(4):411–416. [PubMed] [Google Scholar]
  28. Waxman S. G. Membranes, myelin, and the pathophysiology of multiple sclerosis. N Engl J Med. 1982 Jun 24;306(25):1529–1533. doi: 10.1056/NEJM198206243062505. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES