Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1986 Apr;49(4):431–434. doi: 10.1136/jnnp.49.4.431

Comparison of fast flow and initial slope index values for cerebral blood flow following subarachnoid haemorrhage.

P G Richards, T Tsutsui, L Symon, A Jabre, J Rosenstein, S Redmond
PMCID: PMC1028771  PMID: 3701353

Abstract

Forty five patients with subarachnoid haemorrhage proved by lumbar puncture underwent serial measurements of cerebral blood flow and central conduction time. When the initial slope index (ISI) value for cerebral blood flow is considered there is a clear relationship between reduction of cerebral blood flow and deteriorating clinical grade. This relationship is not so clearly demonstrated using the fast flow (f1) value for cerebral blood flow. When cerebral blood flow is compared to central conduction time those patients with a central conduction time longer than 6 X 4 ms have a significantly lower CBFisi but not a significant lower CBFf1. Furthermore, using the ISI value, there is a linear relationship between the fall in cerebral blood flow and the lengthening of CCT below a threshold blood flow of about 35 ml/100 g/min. This relationship is not demonstrated with the CBFf1 value. It therefore appears that the ISI value for cerebral blood flow shows a greater correlation between clinical and electrophysiological events than the f1 value.

Full text

PDF
431

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astrup J., Symon L., Branston N. M., Lassen N. A. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke. 1977 Jan-Feb;8(1):51–57. doi: 10.1161/01.str.8.1.51. [DOI] [PubMed] [Google Scholar]
  2. Branston N. M., Symon L., Crockard H. A., Pasztor E. Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol. 1974 Nov;45(2):195–208. doi: 10.1016/0014-4886(74)90112-5. [DOI] [PubMed] [Google Scholar]
  3. Doyle T. F., Martins A. N., Kobrine A. I. Estimating total cerebral blood flow from the initial slope of hydrogen washout curves. Stroke. 1975 Mar-Apr;6(2):149–152. doi: 10.1161/01.str.6.2.149. [DOI] [PubMed] [Google Scholar]
  4. Hargadine J. R., Branston N. M., Symon L. Central conduction time in primate brain ischemia -- a study in baboons. Stroke. 1980 Nov-Dec;11(6):637–642. doi: 10.1161/01.str.11.6.637. [DOI] [PubMed] [Google Scholar]
  5. Heiss W. D., Hayakawa T., Waltz A. G. Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. Arch Neurol. 1976 Dec;33(12):813–820. doi: 10.1001/archneur.1976.00500120017003. [DOI] [PubMed] [Google Scholar]
  6. Hoedt-Rasmussen K., Skinhoj E. In vivo measurements of the relative weights of gray and white matter in the human brain. Neurology. 1966 May;16(5):515–520. doi: 10.1212/wnl.16.5.515. [DOI] [PubMed] [Google Scholar]
  7. Hume A. L., Cant B. R. Conduction time in central somatosensory pathways in man. Electroencephalogr Clin Neurophysiol. 1978 Sep;45(3):361–375. doi: 10.1016/0013-4694(78)90188-8. [DOI] [PubMed] [Google Scholar]
  8. Hunt W. E., Hess R. M. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968 Jan;28(1):14–20. doi: 10.3171/jns.1968.28.1.0014. [DOI] [PubMed] [Google Scholar]
  9. Obrist W. D., Thompson H. K., Jr, King C. H., Wang H. S. Determination of regional cerebral blood flow by inhalation of 133-Xenon. Circ Res. 1967 Jan;20(1):124–135. doi: 10.1161/01.res.20.1.124. [DOI] [PubMed] [Google Scholar]
  10. Obrist W. D., Thompson H. K., Jr, Wang H. S., Wilkinson W. E. Regional cerebral blood flow estimated by 133-xenon inhalation. Stroke. 1975 May-Jun;6(3):245–256. doi: 10.1161/01.str.6.3.245. [DOI] [PubMed] [Google Scholar]
  11. Risberg J., Ali Z., Wilson E. M., Wills E. L., Halsey J. H. Regional cerebral blood flow by 133xenon inhalation. Stroke. 1975 Mar-Apr;6(2):142–148. doi: 10.1161/01.str.6.2.142. [DOI] [PubMed] [Google Scholar]
  12. Risberg J. Regional cerebral blood flow measurements by 133Xe-inhalation: methodology and applications in neuropsychology and psychiatry. Brain Lang. 1980 Jan;9(1):9–34. doi: 10.1016/0093-934x(80)90069-3. [DOI] [PubMed] [Google Scholar]
  13. Rosenstein J., Suzuki M., Symon L., Redmond S. Clinical use of a portable bedside cerebral blood flow machine in the management of aneurysmal subarachnoid hemorrhage. Neurosurgery. 1984 Oct;15(4):519–525. doi: 10.1227/00006123-198410000-00008. [DOI] [PubMed] [Google Scholar]
  14. Symon L., Hargadine J., Zawirski M., Branston N. Central conduction time as an index of ischaemia in subarachnoid haemorrhage. J Neurol Sci. 1979 Dec;44(1):95–103. doi: 10.1016/0022-510x(79)90227-2. [DOI] [PubMed] [Google Scholar]
  15. Wang A. D., Cone J., Symon L., Costa e Silva I. E. Somatosensory evoked potential monitoring during the management of aneurysmal SAH. J Neurosurg. 1984 Feb;60(2):264–268. doi: 10.3171/jns.1984.60.2.0264. [DOI] [PubMed] [Google Scholar]
  16. Wollman H., Alexander S. C., Cohen P. J., Stephen G. W., Zeiger L. S. Two-compartment analysis of the blood flow in the human brain. Acta Neurol Scand Suppl. 1965;14:79–82. doi: 10.1111/j.1600-0404.1965.tb01959.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES