Skip to main content
Frontiers in Cellular and Infection Microbiology logoLink to Frontiers in Cellular and Infection Microbiology
. 2023 Jun 12;13:1215579. doi: 10.3389/fcimb.2023.1215579

Enlargement of the knowledge of Cortinarius section Anomali (Agaricales, Basidiomycota): introducing three new species from China

Qiu-Yue Zhang 1, Can Jin 1, Hong-Min Zhou 1, Zi-Yan Ma 1, Yi-Zhe Zhang 2, Jia-Qi Liang 2, Jing Si 1,*, Hai-Jiao Li 2,*
PMCID: PMC10291886  PMID: 37377645

Abstract

Cortinarius is a globally distributed agaricoid genus that has been well studied in Europe and America with over 1,000 described species. However, as part of an ongoing effort to investigate the diversity of Cortinarius section Anomali in China, the resource investigation and classification research are still limited, and the species diversity has not been clarified by far. During the re-examination of the Chinese Cortinarius specimens, C. cinnamomeolilacinus, C. subclackamasensis, and C. tropicus, belonging to the sect. Anomali, were described in China as new to science based on morphological examination and phylogenetic analysis. The three new species are described and illustrated in detail according to the Chinese materials. The phylogenetic analysis based on internal transcribed spacer sequences confirmed the placement of the three species in the Cortinarius sect. Anomali clade. Phylogenetically related and morphologically similar species to these three new species are discussed.

Keywords: fungi diversity, morphology, new taxa, phylogeny, taxonomy

1. Introduction

Cortinarius (Pers.) Gray, established based on Cortinarius violaceus (L.) Gray, is the largest genus of Agaricales with a worldwide distribution (Clements and Shear, 1931; Garnica et al., 2016; Varga et al., 2019). It is mainly marked by a fugacious veil enveloping the basidiocarp and a cortina, which initially covers the lamellae, but later vanishes in expanding basidiocarps (Stensrud et al., 2014). Macroscopically, members of this genus are highly variable, with their basidiocarps, lamellae, and basidiospores varying considerably in size, shape, or color (Peintner et al., 2004; Frøslev et al., 2006; Niskanen et al., 2009; Niskanen et al., 2013; Liimatainen et al., 2014; Liimatainen et al., 2015; Niskanen et al., 2016). Cortinarius species are widely reported in temperate and subtropical forests and form mycorrhizal associations with ectotrophic trees, such as plants of the Cistaceae, Fagaceae, Malvaceae, Nothofagaceae, Pinaceae, and Salicaceae families (Singer, 1986; Frøslev et al., 2006; Soop et al., 2018). With the advances in taxonomy and molecular biology techniques, increases have been detected in the number of species in the genus Cortinarius. To date, more than 5,000 scientific names in the genus have been published as listed in the Index Fungorum (http://www.indexfungorum.org/Names/names.asp, 2023), and about 2,000 species are estimated in the Dictionary of Fungi, 10th edition (Ammirati et al., 2007; Kirk et al., 2008; Brandrud et al., 2014).

Owing to the considerable morphological variations in this genus, the subdivision of Cortinarius into subgeneric units has caused some problems (Peintner et al., 2004). Morphologically, Cortinarius has been divided into several different subgenera and infrageneric sections by various taxonomists, which results in taxonomic chaos and indicates that morphology alone is insufficient for recognizing natural units in this group of fungi (Garnica et al., 2005; Garnica et al., 2009). In recent research, phylogenetic analyses of the genus have contributed to the delimitation of taxonomic entities within the genus (Peintner et al., 2003; Suarez-Santiago et al., 2009; Dima et al., 2016; Dima et al., 2021).

Cortinarius sect. Anomali Konrad & Maubl., a species-rich group, is established based on Cortinarius anomalus (Fr.) Fr. It is characterized by a telamonioid/sericeocyboid appearance, often with yellowish to brownish universal veil remnants on the stipe, typically young bluish lamellae, and subglobose to broadly ellipsoid or rarely ellipsoid, verrucose spores (Dima et al., 2016; Dima et al., 2021). Anomali was originally placed by Brandrud et al. (1989) as a section of subgenus Telamonia Melot but not belong to the subgenus Telamonia s. str. based on later phylogenetic data (Høiland and Holst-Jensen, 2000; Peintner et al., 2004; Garnica et al., 2005; Niskanen et al., 2009). Later, many species were added or transferred to sect. Anomali, causing confusions in the classification of sect. Anomali. No consensus on the content or placement of this section have been reached to date (Bidaud et al., 1992; Bidaud et al., 1994; Consiglio et al., 2005; Consiglio et al., 2006; Consiglio, 2012; Dima et al., 2016). For instances, C. spilomeus (Fr.) Fr. and C. bolaris (Pers.) Fr. have been included in the section, and sometimes have been separated in another sect. Spilomei (Moënne-Locc. & Reumaux) Consiglio, D. Antonini & M. Antonini (Dima et al., 2016). Some phylogenetic studies show that sect. Anomali is a monophyletic group in the genus Cortinarius, without any traditional subgenera (Dima et al., 2016; Dima et al., 2021). The classification of sect. Anomali has been studied previously and systematically in Europe and North America, but rarely in Asia and Africa (Kauffman, 1905; Murrill, 1946; Dima et al., 2016; Ammirati et al., 2017). In China, about 163 Cortinarius species, including dozens of new species, have been described in the past 10 years, with only three species belonging to the sect. Anomali (Wei and Yao, 2013; Xie et al., 2019; Luo and Bau, 2021; Xie et al., 2021; Xie, 2022). On this basis, more taxa of the genus are waiting to be discovered in China.

In this study, we conducted taxonomic and phylogenetic studies of Cortinarius sect. Anomali in China. Three new species were found during the intensive fieldwork and are described here based on their morphological and ecological characteristics, as well as phylogenetic evidence.

2. Materials and methods

2.1. Morphological studies

All specimens have been deposited in the National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control (NIOHP, China CDC). Macro-morphological descriptions were based on field notes and dried specimens. Microscopic features were examined and described in 5% KOH, Congo Red, or Melzer’s reagent and observed under a Nikon Eclipse 80i microscope (Nikon, Tokyo, Japan) with a magnification of up to ×1,000. Thirty basidiospores were measured per collection (excluding apiculus and ornamentation), and the averages (av. X) and quotients (av. Q = L/B) were calculated. Color terms are cited from Anonymous (1969) as well as Kornerup and Wanscher (1978).

2.2. DNA extraction and sequencing

A Phire® Plant Direct PCR Kit (Finnzymes Oy, Finland) was used to obtain PCR products from dried specimens, according to the manufacturer’s instructions and as described previously by Li et al. (2015), with some modifications. The following primer pairs were used to amplify the internal transcribed spacer (ITS): ITS5 (5′‐GGA AGT AAA AGT CGT AAC AAG G‐3′) and ITS4 (5′‐TCC TCC GCT TAT TGATAT GC‐3′) (White et al., 1990). The PCR procedure was as follows: initial denaturation at 98 °C for 5 min, followed by 35 cycles at 98 °C for 5 s, 58 °C for 5 s, and 72 °C for 5 s, and a final extension of 72 °C for 10 min. The PCR products were purified and sequenced by Sangon Biotech, China. The newly generated sequences from this study have been deposited in GenBank and are listed in Table 1 .

Table 1.

Taxa information and GenBank accession numbers of the sequences used in this study.

Species Specimen no. Locality Section ITS no.
Cortinarius albidipes WTU: JFA12420 Colorado, US Anomali MZ580486
C. albidipes NYS-F-000129 (holotype) New York, US Anomali MZ580485
C. albidipes MQ18-CMMF001826 Québec, Canada Anomali MN750945
C. albidipes HRL0614 Québec, Canada Anomali KJ705108
C. albidipes CNV98 New Hampshire, US Anomali MT345274
C. albidoavellaneus MICH10313 (holotype) Michigan, US Anomali MZ580483
C. albocyaneus CFP1482 Italy Anomali KX302202
C. albocyaneus CFP1177 (epitype) Sweden Anomali KX302206
C. albocyaneus NYS-F-000864 (holotype) New York, US Anomali MZ580482
C. albomalus iNAT59505932 New Jersey, US Anomali MW305253
C. albomalus H7000816 (holotype) Ontario, Canada Anomali MZ568645
C. albomalus HRL2777 Ontario, Canada Anomali MN751632
C. anocorium H7068022 (holotype) Florida, US Anomali MZ568646
C. anomalodelicatus TN11-241 Alaska, US Anomali MZ580481
C. anomalodelicatus JFA8146 (holotype) Colorado, US Anomali MZ580480
C. anomalomontanus JFA9919 (holotype) Wyoming, US Anomali MZ580478
C. anomalomontanus JFA9973 Wyoming, US Anomali MZ580479
C. anomalopacificus JFA11887 California, US Anomali MZ580471
C. anomalopacificus DBB11745 (holotype) California, US Anomali MZ663774
C. anomalopacificus DBB27748 California, US Anomali MZ663775
C. anomalopacificus TN12-271 California, US Anomali MZ663776
C. anomalopacificus TN12-301 California, US Anomali MZ663777
C. anomalopacificus TN12-093 California, US Anomali MZ580473
C. anomalopacificus TN12-074 California, US Anomali MZ580469
C. anomalopacificus TN12-253 California, US Anomali MZ580468
C. anomalopacificus TN12-091 California, US Anomali MZ580472
C. anomalopacificus TN12-161 California, US Anomali MZ580474
C. anomalopacificus TN12-164 California, US Anomali MZ580475
C. anomalovelatus JFA13109 (holotype) Washington, US Anomali FJ717605
C. anomalovelatus DBB23800 Oregon, US Anomali MZ663776
C. anomalovelatus PK4741 British Columbia, Canada Anomali FJ039655
C. anomalovelatus JFA13109 (holotype) Washington, US Anomali KJ019014
C. anomalus NL-5414 Massachusetts, US Anomali MZ663777
C. anomalus CNV9 New Hampshire, US Anomali MT345186
C. anomalus MQ18-HL1492-QFB30079 Québec, Canada Anomali MN750971
C. anomalus TENN067720 North Carolina, US Anomali MZ663778
C. anomalus TENN067730 North Carolina, US Anomali MZ663779
C. anomalus CFP1154 (neotype) Sweden Anomali KX302224
C. barlowensis TN07-366 Washington, US Anomali KJ019015
C. barlowensis MN British Columbia, Canada Anomali FJ157009
C. barlowensis JFA13140 (holotype) Washington, US Anomali FJ717554
C. bolaris 3861 Québec, Canada Bolares KJ705110
C. bolaris CFP1008 (neotype) Sweden Bolares KX302233
C. bolaris TENN61650 Tennessee, US Bolares FJ596851
C. brevissimus Cort H2QY2 New York, US Anomali JX030219
C. brevissimus NYS-F-000541 (holotype) New York, US Anomali MZ580467
C. caeruleoanomalus JFA13084 (holotype) Tennessee, US Anomali MZ663780
C. caeruleoanomalus TENN068383 North Carolina, US Anomali KY744156
C. caesiellus MICH10325 (holotype) Michigan, US Anomali MZ580484
C. caesiifolius SAT13-298-15 Oregon, US Anomali MZ048733
C. caesiifolius MICH10326 (holotype) Washington, US Anomali MZ580462
C. caesiifolius TN12-136 California, US Anomali MZ580465
C. caesiifolius TN07-489 Washington, US Anomali MZ580466
C. caesiifolius DBB37600 Minnesota, US Anomali MZ663781
C. caesiifolius JMB10-20-2007-15 Washington, US Anomali FJ717517
C. caesiifolius TN12-066 California, US Anomali MZ580463
C. caesiifolius TN12-136 California, US Anomali MZ580465
C. caesiifolius TN12-118 California, US Anomali MZ580464
C. camphoratus EH23 British Columbia, Canada Camphorati FJ717505
C. caninus JFA7985 Ontario, Canada Anomali MZ580454
C. caninus NS18 California, US Anomali MZ663782
C. caninus JFA10347 Wyoming, US Anomali MZ580459
C. caninus JFA9425 Wyoming, US Anomali MZ580461
C. caninus JFA12434 Wyoming, US Anomali MZ580456
C. caninus JFA9470 Wyoming, US Anomali MZ580457
C. caninus JFA10348 Wyoming, US Anomali MZ580460
C. caninus JFA8009 Minnesota, US Anomali MZ580455
C. caninus JFA9920 Wyoming, US Anomali MZ580458
C. caninus CFP627 (epitype) Sweden Anomali KX302250
C. caninus TH4Cc British Columbia, Canada Anomali KF753582
C. cinnamomeolilacinus Li 140805-18 Yunnan, China Anomali OQ913389*
C. cinnamomeolilacinus tcmb 005 Yunnan, China Anomali OQ913388*
C. cinnamomeolilacinus TCWH 007 (holotype) Yunnan, China Anomali OQ913384*
C. cinnamomeolilacinus LLLJ 20170805-002 Yunnan, China Anomali OQ913386*
C. cinnamomeolilacinus WX 20170922065 Yunnan, China Anomali OQ913392*
C. cinnamomeolilacinus LYWF015 Yunnan, China Anomali OQ913387*
C. cinnamomeolilacinus Li 180825-21 Yunnan, China Anomali OQ913390*
C. cinnamomeolilacinus YNLF20220814-155 Yunnan, China Anomali OQ913393*
C. cinnamomeolilacinus Li 130908-29 Yunnan, China Anomali OQ913391*
C. cinnamomeolilacinus Li 161015-10 Guizhou, China Anomali OQ913385*
C. clackamasensis JFA11616 (holotype) Oregon, US Anomali MZ580452
C. clackamasensis OSC114858 Oregon, US Anomali EU669315
C. clackamasensis TN11-451 Washington, US Anomali MZ580453
C. clackamasensis OSC109672 Oregon, US Anomali EU652360
C. clintonianus DBB21645 British Columbia, Canada Anomali MZ663783
C. clintonianus JFA8329 Ontario, Canada Anomali MZ580451
C. clintonianus MIN896348 Minnesota, US Anomali MZ663784
C. clintonianus NYS-F-000786 (holotype) New York, US Anomali MZ580450
C. clintonianus MQ18-CMMF002618 Québec, Canada Anomali MN751121
C. clintonianus 136C Michigan, US Anomali FJ769528
C. clintonianus SDL13 British Columbia, Canada Anomali KM403009
C. deceptivus iNAT56430786 New York, US Anomali MT939445
C. deceptivus NL-5180 New York, US Anomali MZ663785
C. deceptivus WTU-F-69333 New Hampshire, US Anomali MZ663786
C. deceptivus WTU-F-69313 Massachusetts, US Anomali MZ663787
C. deceptivus MICH10343 (syntype) New York, US Anomali MZ663788
C. durifoliorum PDD101829 (holotype) New Zealand Anomali KJ635210
C. dysodes PDD70499 (holotype) New Zealand Camphorati GU233340
C. epsomiensis K(M)74963 (holotype) UK Anomali MK010952
C. epsomiensis TN06-165 Finland Anomali KX302258
C. eunomalus PDD94040 (holotype) New Zealand incertae sedis JQ287690
C. ferrusinus JB8106 13 (holotype) Spain Spilomei KY657254
C. harvardensis NL-5415 (holotype) Massachusetts, US Anomali MZ663789
C. harvardensis MQ18-HL1449-QFB30070 Québec, Canada Anomali MN751560
C. harvardensis MQ17058-QFB29566 Québec, Canada Anomali MN751559
C. harvardensis clone ads9.e Nova Scotia, Canada Anomali MK131480
C. holophaeus UBC-F17161 British Columbia, Canada Anomali GQ159904
C. holophaeus UBC-F17157 British Columbia, Canada Anomali GQ159900
C. huddartensis DBB12118 (holotype) California, US Anomali MZ663790
C. huddartensis src174 California, US Anomali DQ974719
C. ionomataius PDD89089 (holotype) New Zealand incertae sedis GU222303
C. jonimitchelliae HL03-339 (holotype) Sweden Anomali KX302253
C. kranabetteri TN11-287 (holotype) Alberta, Canada Anomali MZ580449
C. kranabetteri UBC-F16436 British Columbia, Canada Anomali FJ039657
C. kranabetteri UBC-F16435 British Columbia, Canada Anomali FJ039656
C. latiodistributus JFA13487 Washington, US Anomali MZ663793
C. latiodistributus YM187 Japan Anomali AB848436
C. latiodistributus OSC115143 Washington, US Anomali EU652359
C. latiodistributus DB6359 Norway Anomali MZ663792
C. latiodistributus TN02-490 Finland Anomali MZ580448
C. latiodistributus SMIA46 British Columbia, Canada Anomali FJ039658
C. latiodistributus OSC114595 Washington, US Anomali EU837213
C. latiodistributus DB6139 (holotype) Sweden Anomali MZ663791_
C. latiodistributus SMI16 British Columbia, Canada Anomali FJ157134
C. lepidopus DB6253 Hungary Anomali MZ663794
C. lepidopus 170817-24 Heilongjiang, China Anomali OQ913382*
C. lepidopus 170817-29 Heilongjiang, China Anomali OQ913383*
C. lividomalvaceus JMT-15102001 (holotype) France Anomali KY315416
C. modestus TN10-035 Québec, Canada Anomali MZ580447
C. modestus MQ17140-QFB29648 Québec, Canada Anomali MN751561
C. modestus NYS-F-001966 (holotype) New York, US Anomali MZ580446
C. modestus MQ17272-QFB29780 Québec, Canada Anomali MN751565
C. modestus MQ18-HL0629-QFB30005 Québec, Canada Anomali MN751564
C. modestus 2313-QFB25737 Québec, Canada Anomali KJ705109
C. nettieae JFA9613 (holotype) Washington, US Anomali MZ580442
C. nettieae JFA8747 Oregon, US Anomali MZ580443
C. nettieae TN09-167 Oregon, US Anomali MZ580444
C. nettieae TN09-176 Oregon, US Anomali MZ580445
C. nettieae DAVFP27503 British Columbia, Canada Anomali EU821675
C. ochraceodiscus DJM2195 (holotype) Minnesota, US Anomali MZ663795
C. ochraceodiscus DJM2194 Minnesota, US Anomali MZ663796
C. pelerinii XC2012-21 (holotype) France Anomali MH784627
C. perrotensis TENN071126 (holotype) Québec, Canada Anomali KX897405
C. perviolaceus FN05_2 New York, US Anomali KU878589
C. perviolaceus HBK-M11-2 Tennessee, US Anomali MG982536
C. perviolaceus FLAS-F61753 Florida, US Anomali MH281882
C. perviolaceus JFA9132 Florida, US Anomali MZ580441
C. perviolaceus JFA9124 Florida, US Anomali MZ580439
C. perviolaceus FLAS-F32992 (holotype) Florida, US Anomali MZ580438
C. perviolaceus JFA13070 Tennessee, US Anomali MZ663799
C. perviolaceus JFA9128 Florida, US Anomali MZ580440
C. perviolaceus 3Bart56R New Hampshire, US Anomali HQ022110
C. perviolaceus NL-5173 Massachusetts, US Anomali MZ663798
C. perviolaceus FLAS-F61648 Florida, US Anomali MH212024
C. perviolaceus WU-Myc 44566 Georgia, US Anomali MZ663797
C. perviolaceus FLAS-MES-2177 Florida, US Anomali MT415970
C. putorius TN12-230 California, US Camphorati KR011123
C. rarus JLF8707 Oregon, US Anomali MW341328
C. rarus JLF8771 Oregon, US Anomali MW341331
C. rarus JLF3304 California, US Anomali MF135162
C. rarus ADP-140531–1 Washington, US Anomali MZ663801
C. rarus DBB04712 (holotype) California, US Anomali MZ663800
C. rattinoides PDD88283 (holotype) New Zealand Anomali JX000375
C. sclerophyllarum HO-A20430A6 (paratype) Australia Anomali AY669637
C. sericeolazulinus JFA12053 (holotype) Costa Rica Anomali EF420146
C. spilomeus CFP1137 (neotype) Sweden Spilomei KX302267
C. spilomeus SMI297 British Columbia, Canada Spilomei FJ039659
C. subclackamasensis BJMTG20170830-34 Beijing, China Anomali OQ913395*
C. subclackamasensis 20190822-11 Hebei, China Anomali OQ913396*
C. subclackamasensis Li 170818-16 (holotype) Heilongjiang, China Anomali OQ913394*
C. subclackamasensis Li 170818-01 Heilongjiang, China Anomali OQ913397*
C. subclackamasensis YJ4 China Anomali OM867684
C. subclackamasensis HBAU15437 China Anomali MW862347
C. subclackamasensis HBAU15679 China Anomali MZ145077
C. subclackamasensis HBAU15672 China Anomali MZ145076
C. subclackamasensis 110116MFBPC490 China Anomali MW554249
C. suecicolor PDD74698 (holotype) New Zealand Anomali JX000360
C. tabularis CFP949 (epitype) Sweden Anomali KX302275
C. tabularis IK98-1190 Finland Anomali KX302269
C. tabularis TN11-219 Alaska, US Anomali MZ580437
C. tasmacamphoratus HO A20606A0 Tasmania, Australia Camphorati AY669633
C. tasmacamphoratus BH2055F Tasmania, Australia Camphorati JF960672
C. tetonensis ME12-B10 Alaska, US Anomali JX436875
C. tetonensis ME12-B4 Alaska, US Anomali JX436874
C. tetonensis ME12-D3 Alaska, US Anomali JX436876
C. tetonensis JFA10350 (holotype) Wyoming, US Anomali MZ580436
C. tetonensis JFA10349 Wyoming, US Anomali U56024
C. tetonensis 36_N343 Svalbard, Norway Anomali HQ445618
C. tristis s. Garnica TUB011917 Chile Anomali AY669648
C. tropicus Li 150728-63 Yunnan, China Anomali OQ913381*
C. tropicus tcqushi006 (holotype) Yunnan, China Anomali OQ913379*
C. tropicus Li 150728-56 Yunnan, China Anomali OQ913380*
Cortinarius aff. nettiae MQ17280-QFB29788 Québec, Canada Anomali MN750925
Cortinarius aff. nettiae MQ17300-QFB29808 Québec, Canada Anomali MN750926
Cortinarius LHJ sp. 1 SC20170921-025 Guizhou, China Anomali OQ920005*
Cortinarius LHJ sp. 2 190527-01 Tibet, China Anomali OQ920004*
Cortinarius LHJ sp. 3 170805-35 Yunnan, China Anomali OQ920003*
Cortinarius sp. Pj3-mOTU024 Japan Anomali LC260432
Cortinarius sp. 1 7-70M6 California, US Anomali JQ393041
Cortinarius sp. 2 YM73 Japan Anomali LC175532
Cortinarius sp. 3 GO-2010-171 Mexico Anomali KC152091
Cortinarius sp. 4 F18506 British Columbia, Canada Anomali FJ157104
Cortinarius sp. 5 TN10-141 Québec, Canada Anomali MZ821030
Cortinarius sp. 6 OUC97234 British Columbia, Canada Anomali DQ097877
Cortinarius sp. 6 HRL1598-QFB32934 Québec, Canada Anomali MW845268
Cortinarius sp. 7 YM1162 Japan Anomali LC175062
Cortinarius sp. 8 OUC97199 British Columbia, Canada Anomali DQ093855
Cortinarius sp. 9 JLP2431 Oregon, US Anomali DQ377379
Cortinarius sp. 10 QFB28611 Québec, Canada Anomali MN992356
Cortinarius sp. 11 Pdmt24 Japan Anomali AB251830
Cortinarius sp. 12 HV_D8 Alaska, US Anomali JX630733
Cortinarius sp. 12 ME12-D2 Alaska, US Anomali JX436862
Cortinarius sp. 12 MEN-JG-096 Svalbard, Norway Anomali JF304376
Cortinarius sp. 13 Russell iNaturalist 8602253 Indiana, US Anomali MZ710565
Cortinarius sp. 13 YM873 Japan Anomali AB848465
Cortinarius sp. 15 MQ21-HRL2477-QFB32937 Québec, Canada Anomali MW845269
Cortinarius sp. 15 PERTH06437109 Australia Anomali MG553013
Cortinarius sp. 16 PDD10596 New Zealand Anomali MH101576
Cortinarius sp. 17 NVE433 Colombia Anomali KF937326
Cortinarius sp. 17 NVE219 Colombia Anomali KF937328
Cortinarius sp. 18 PERTH06659462 Australia Anomali MG553083
Cortinarius sp. 19 BH3573F Tasmania, Australia Camphorati JF960738
Cortinarius sp. 20 SWUBC741 British Columbia, Canada Spilomei DQ481671
Cortinarius sp. 20 WUBC747 British Columbia, Canada Spilomei DQ481752
Cortinarius sp. 21 PDD:107722 New Zealand incertae sedis KT875175

New species are in bold. Newly generated sequences are marked with asterisk (*).

2.3. Phylogenetic analysis

New sequences generated in this study and additional sequences retrieved from GenBank ( Table 1 ) were aligned using BioEdit 7.0.5.3 (Hall, 1999) and ClustalX 1.83 (Thompson et al., 1997), followed by manual adjustments. Sequences of Cortinarius bolaris (sect. Bolares) were used as outgroups (Hughes et al., 2009; Dima et al., 2021). The maximum likelihood (ML) and Bayesian inference (BI) methods were used for the phylogenetic analysis. The best-fit model was selected by ModelFinder (Kalyaanamoorthy et al., 2017), adopting Akaike information criterion (AIC). The ML analysis was carried out using RAxML 8.2.12 (Stamatakis, 2006; Silvestro and Michalak, 2012), and the BI tree reconstruction was reconstructed using MrBayes 3.2.5 (Ronquist et al., 2012). Four Markov chains were run for two runs from random starting trees for 10 million generations, and the trees were sampled every 1,000 generations. The burn-in was set to discard 25% of the trees. A majority rule consensus tree of all remaining trees was calculated. The sequence alignment was deposited at TreeBase (submission ID: 30414). Branches that received bootstrap supports for ML and Bayesian posterior probabilities (BPP) greater than or equal to 75% (ML) and 0.95 (BPP) were considered significantly supported.

3. Results

3.1. Phylogeny

The ITS dataset comprised 229 fungal collections representing approximately 81 taxa of the genus Cortinarius. ModelFinder suggested that GTR + I + G was the best-fit model of nucleotide evolution for BI. The Bayesian analysis resulted in a concordant topology with an average standard deviation of split frequencies of 0.005575. The ML and BI analyses resulted in nearly identical topologies, and thus only the ML tree is presented with the bootstrap supports for ML and BPP when they were greater than or equal to 50% and 0.90, respectively.

Our phylogeny, which is inferred from ITS sequences ( Figure 1 ), is similar to those of Dima et al (Dima et al., 2016; Dima et al., 2021). The phylogenetic analysis showed five sections, and each section formed separate monophyletic lineages with strong statistical support. Section Anomali formed a distinct highly supported clade (ML = 99 and BPP = 1) and was separated from other sections. Three new species, namely, C. cinnamomeolilacinus (ML = 98 and BPP = 1), C. subclackamasensis (ML = 86 and BPP = 0.99), and C. tropicus (ML = 100 and BPP = 1), nested within the sect. Anomali clade, and formed an independent lineage with high statistical supports, respectively. It is worth noting that collections of C. cinnamomeolilacinus had genetic distances in our phylogeny. However, there were only four base pair differences between them, which were below 1.5% nucleotide differences in the ITS regions. Morphologically, there were no obvious differences of these C. cinnamomeolilacinus collections.

Figure 1.

Figure 1

Maximum likelihood (ML) tree illustrating the phylogeny of Cortinarius section Anomali based on ITS sequences. Branches are labeled with ML bootstrap > 50% and Bayesian posterior probabilities (BPP) > 0.90, respectively. New species are highlighted in bold.

3.2. Taxonomy

Cortinarius cinnamomeolilacinus Q.Y. Zhang, Jing Si & Hai J. Li, sp. nov. Figure 2 .

Figure 2.

Figure 2

Basidiomata and microscopic structures of Cortinarius cinnamomeolilacinus. (A-G) Basidiomata (A, B) TCWH007; (C, D) Li 180825-21; (E) LLLJ20170805-002; (F) tcmb005; (G) 180825-21), (H) Basidiospores, (I-J) Basidia and basidioles, (K) Pileipellis, (L) Hypodermium of pileipellis, and (M) Context hyphae.

MycoBank: 848613

Diagnosis. — This species is characterized by its small basidiomata, more or less hygrophanous, lilac pileal surface with cinnamon buff to brownish cinnamon center, and pale gray to whitish toward margin, subglobose to broadly ellipsoid basidiospores (7−8.5 × 5.8−6.8 μm); it is gregarious on ground dominant with Fagaceae or Pinaceae.

Type. — China, Yunnan Province, Baoshan, Tengchong, Wuhe Town, Lushan, Alt: 1989 m, N: 24°54′06.98″, E: 98°36′30.37″, on ground dominant with Fagaceae, 8 August 2016, TCWH 007 (holotype), and GenBank accession number for ITS: OQ913384.

Etymology. — cinnamomeolilacinus refers to its more or less lilac pileal surface with a cinnamon center.

Habitat and distribution. — Scattered or gregarious on ground dominant with Fagaceae or Pinaceae. Currently, it is only found in tropical Guizhou and Yunnan (nine collections) in summer and autumn.

Macrostructures. — Basidiomata small. Pileus 15−52 mm in diam., hemispheric when young, then convex to plano-convex, some with a low umbo, margin narrowly when young, surface smooth to finely felty, color evenly pale silvery gray to lilac [15A(2−4)], the disc slightly more brownish, cinnamon buff, cinnamon to brownish cinnamon [5B(4−5)], pale gray to whitish (1A1−1B1) toward margin, even to rugulose, hygrophanous. Lamellae adnate with decurrent tooth to slightly adnexed, close, violet (16A4−16A5) when young, then grayish violet [16B4−16C5], pale silvery gray to pale drab gray (16B2−16D2), finally pale brown to cinnamon [6D(4−8)]. Stipe 30- to 70- mm long, apex 4−6 mm in diam., and base 5−10 mm in diam., usually clavate to cylindrical, even or slightly bulbous at base, fragile, shiny, covered with white fibrillose, apex violet [16A(4−5)] when young, later pale brownish (6B2−6D2), other part pale silvery gray [15A(2−3)], pale white veil (1A2) usually sparse, forming yellow [3A(3−4)] floccose-girdles on the stipe, often becoming pale yellow [4B(3−5)], sometimes indistinct, basal mycelium white (1A1). Context in pileus solid, firm, sometimes hollow in stipe, pale silvery gray [16B4−16C5] when fresh, finally pale brown to cinnamon in age [6D(4−8)]. Odor and taste of context strongly fungoid.

Microstructures. — Basidiospores [150/5/5] (6.8−) 7−8.5 (−8.8) × (5.5−) 5.8−6.8 (−7) μm, av. 7.7 × 6.1 μm, Q = 1.22−1.29, av. Q = 1.26, subglobose to broadly ellipsoid, buff to cinnamon-buff, coarsely verrucose, non-dextrinoid. Basidia 4-spored, 29−33 × 6−7 μm, clavate, colorless, or yellowish. Lamella trama hyphae smooth, parallel, 5- to 12- μm wide. Lamellae edge fertile, with some small clavate sterile cells. Pileipellis duplex: Epicutis thin to ± well developed, hyphae ± cylindrical, moderately to strongly interwoven, 5- to 8- μm wide, hyaline or yellowish, smooth to encrusted; hypocutis ± cellular or hyphae more interwoven and radially arranged, cylindrical to enlarged, hyaline to yellowish, smooth to encrusted, (3.5) 4−18 (20) μm wide. Clamp connections present.

Remarks. — Cortinarius albomalus Liimat. & Niskanen and C. cinnamomeolilacinus have similar basidiomata. However, C. albomalus has smaller basidiospores (6.5−7.5 × 5.5−6 µm) and is distributed in North America (Dima et al., 2021; Liimatainen and Niskanen, 2021). Cortinarius pastoralis Soop, H. Lindstr., Dima, Niskanen, Liimat. & Kytöv. and C. cinnamomeolilacinus share pale buff or brownish pilei, but C. pastoralis has larger basidiospores (8.5−9 × 7−8 μm; Dima et al., 2016). Cortinarius albocyaneus Fr. is similar to C. cinnamomeolilacinus with grayish ochraceous to whitish pilei, but C. albocyaneus has larger basidiomata (40−70 mm) and basidiospores (8.5−9.0 × 6.0−7.5 μm), is found in Europe, and is common in northeastern North America (Dima et al., 2021). Cortinarius anomalovelatus Ammirati, Berbee, E. Harrower, Liimat. & Niskanen has grayish-to-white basidiomata and subglobose to broadly ellipsoid basidiospores, which are similar to those of C. cinnamomeolilacinus, but C. anomalovelatus has a heavier universal veil and a grayish-blue to violet pileal surface, and is usually found in western North America (Dima et al., 2021).

Additional specimens (paratypes) examined. — China, Guizhou Province, Liupanshui, Lingshan Temple, on ground of Fagaceae, Alt: 1929 m, N: 26°37′35.94″, E: 104°48′54.95″, October 15, 2016, Li 161015-10; Yunnan Province, Baoshan, Longling County, Longjiang Town, Laohuangtian, on ground dominant with Fagaceae, Alt: 1773 m, N: 24°41′31.01″, E: 98°42′55.24″, 5 August 2017, LLLJ 20170805-002; Longyang District, Wafang Town, Dapingdi, on ground of Pinus yunnanensis, Alt: 1921.9 m, N: 25°21′35.82″, E: 99°4′45.73″, 6 August 2018, LYWF015; Tengchong, Mangbang Town, Hongdoushu, on ground dominant with Fagaceae, Alt: 1772 m, N: 24°54′52″, E: 98°37′59″, 8 August 2018, tcmb 005; Menglian Town, Xiamenglian Village, on ground of mixed forests composed of Fagaceae and P. yunnanensis, 5 August 2014, Li 140805-18; Chuxiong Yi Autonomous Prefecture, Zixi Mountain, near King Baotou, on ground of mixed forest composed of Fagaceae and P. yunnanensis, Alt: 1926 m, N: 25°1′3″, E: 101°24′7″, 25 August 2018, Li 180825-21; Yuxi, Huaning County, on ground dominant with Fagaceae, 8 September 2013, Li 130908-29; Zhaotong, Weixin County, Miaogou Town, Zhashigou Village, on ground dominant with Fagaceae, Alt: 1450 m, N: 27°47′6″, E: 104°49′18″, 22 September 2017, WX 20170922065.

Cortinarius subclackamasensis Q.Y. Zhang, Jing Si & Hai J. Li, sp. nov. Figure 3 .

Figure 3.

Figure 3

Basidiomata and microscopic structures of Cortinarius subclackamasensis. (A-C) Basidiomata (A Li 170818-16; B Li 170818-02; C Li 170818-01), (D) Basidiospores, (E) Hymenium in trama, (F) One basidium, (G) Epicutis of pileipellis, (H) Hypodermium of pileipellis, and (I) Context hyphae.

MycoBank: 848614

Diagnosis. — This species notably has small- to medium-sized basidiomata, buff-yellow and plano-convex pilei, ellipsoid to oblong ellipsoid basidiospores (9.5−10.8 × 5.8−6.8 μm); it is gregarious on ground of Salix or other deciduous trees and distributed in temperate China.

Type. — China, Heilongjiang Province, Huzhong, Huzhong Forest Farm, near Dongfanghong Line 31, on ground of Salix, 18 August 2017, Li 170818-16 (holotype), GenBank accession number for ITS: OQ913394.

Etymology. — Subclackamasensis refers to its morphological similarity to C. clackamasensis.

Habitat and distribution. — Scattered or gregarious on ground of Salix or other deciduous trees. Currently, it is found in Northeast and North China in summer.

Macrostructures. — Basidiomata small to medium sized. Pileus 30−60 mm in diam., hemispheric to subhemispheric when young, becoming plano-convex, then depressed at center and wrinkled, margin sharp sometimes waves; surface moist to hygrophanous when young, with fibrous veil remnants; buff yellow (4A4), to light honey yellow (4/5B4), somewhat lighter olivaceous buff (4C4) at margin, finely radially striate with age. Lamellae adnexed-emarginate, moderately crowded to crowded, vinaceous (9F6) or peach (6A6) when young, somewhat darkening on manipulation, edge even, somewhat lighter. Stipe 40- to 60- mm long, 5- to 10- mm thick above, qual to somewhat clavate, white, and cream with age. Universal veil usually sparse, thin, and somewhat glossy, cream (4A2/3) to light yellow (4A4), flocculose or forming a week girdle on the stipe. Context rather thick, especially in pileus center, brittle, weakly light honey yellow (4/5B4) with age. Odor and taste of context strongly fungoid.

Microstructures. — Basidiospores [90/3/3] 9.5−10.8 (−11) × (5.5−) 5.8−6.8 μm, av. 9.9 × 6.3 μm, Q = 1.56−1.60, av. Q = 1.59, ellipsoid to oblong ellipsoid, weekly to moderately, but distinctly verrucose, indextrinoid to weakly dextrinoid. Basidia 4-spored, 22−25 × 8−11 μm, clavate, colorless or yellowish. Lamella trama hyphae smooth, parallel, 4- to 12- μm wide. Lamellae edge fertile, with some small clavate sterile cells. Pileipellis duplex: Epicutis about 27- to 32 -μm thick, hyphae (6−) 11- to 16- μm wide, in upper part loosely entangled; hypocutis distinct well-developed, colorless or yellowish, irregular, interwoven, with some intracellular pigments, 18−28.5 μm in diam. Clamp connections present.

Remarks. — Phylogenetically, C. latiodistributus Dima, Ammirati, Niskanen, Kytöv., Liimat. & Brandrud, C. clackamasensis Ammirati, Liimat., Niskanen & Dima, and Cortinarius sp. 12 are closely related to C. subclackamasensis. Cortinarius latiodistributus has violet to pallid brown pilei, and shorter basidiospores (7−9.5 μm). Cortinarius clackamasensis has wider basidiospores (9−11 × 6.5−7.5 μm, av. 9.7 × 6.5 μm, Q = 1.4−1.5), grows on the ground under mixed conifers composed of Picea, Pinus, and Abies, and is distributed in the US (Dima et al., 2021). Similar to C. subclackamasensis, C. clintonianus Peck, and C. anomalopacificus Bojantchev, Liimat., Niskanen, Dima & Ammirati have yellowish and plano-convex basidiomata. However, the basidiospores in C. clintonianus and C. anomalopacificus are shorter (6.7−8.1 × 5.6−6.3 μm vs. 6.5−7 × 5−6 μm; Dima et al., 2021).

Additional specimens (paratypes) examined. — China, Beijing, Mentougou District, Xiaolongmen National Forest Park, 30 August 2017, BJMTG20170830-34; Hebei Province, Baoding, Fuping County, Dongxiaguan Town, Zhujiaying Village, Tianshengqiao, 22 August 2019, 20190822-11; Heilongjiang Province, Huzhong, Huzhong forest farm, near Dongfanghong Line 31, on ground of Salix, 18 August 2017, Li 170818-01 and Li 170818-02.

Cortinarius tropicus Q.Y. Zhang, Jing Si & Hai J. Li, sp. nov. Figure 4 .

Figure 4.

Figure 4

Basidiomata and microscopic structures of Cortinarius tropicus. (A-E) Basidiomata (tcqushi 006, Holotype), (F) Basidiospores, (G-H) Basidia and basidioles, (I) Epicutis of pileipellis, (J) Hypodermium of pileipellis, and (K) Context hyphae.

MycoBank: 848616

Diagnosis. — This species notably has small basidiomata, violet to dark violet pileal surface with fibrillose disc and nearly glabrous, cream to pale violet margin, subglobose to broadly ellipsoid basidiospores (6−8 × 5−6 μm); it is scattered or gregarious on ground dominant with Fagaceae.

Type. — China, Yunnan Province, Baoshan, Tengchong, Qushi Town, Qingqiao Village, Alt: 1490 m, N: 25°17′17″, E: 98°35′26″, on ground dominant with Fagaceae, 6 August 2016, tcqushi 006 (holotype), GenBank accession number for ITS: OQ913379.

Etymology. — tropicus refers to its tropical distribution in Southwest China.

Habitat and distribution. — Scattered or gregarious on ground dominant with Fagaceae. Currently, it is only found in tropical Yunnan (three collections) in summer.

Macrostructures. — Basidiomata small. Pileus 20−45 mm in diam., hemispheric to subhemispheric when young, becoming obtusely conical, conico-convex, broadly umbonate, pale brown [5D(4−5)] at center and gradually paler toward margin when young, violet (17B8) to dark violet (17F8) when mature, disc grayish violet (15E5) to dark violet (17F8), margin cream (4A2/3) to pale violet [16A(2−3)], fibrillose at disc and nearly glabrous near margin, somewhat hygrophanous, margin decurved. Lamellae adnexed-emarginate, subclose, purplish to pale violet lilac [16D(4−6)], finally ± pale brown to cinnamon (16D3-16E3). Stipe 50- to 80- mm long, apex 3 to 5 mm in diam., base 5−10 mm in diam., enlarged, narrowly clavate, surface grayish (16B2) with dark violet [16F(3−4)] streaks or silvery violet (16A3) on upper half and watery brownish below, veil usually sparse, forming floccose-girdles on the stipe, often at first brownish (6B2-6C2) then becoming pale yellow [4A(2-3)], sometimes indistinct, and basal mycelium whitish. Context in pileus solid, firm, violet to silvery violet [16C(4−6)] when fresh, finally pale brown to cinnamon (16D4−16F4) in age. Odor and taste of context strongly fungoid.

Microstructures. — Basidiospores [90/3/3] 6−8 × 5−6 μm, av. 7.4 × 5.9 μm, Q = 1.21−1.29, av. Q = 1.25, subglobose to broadly ellipsoid, buff to cinnamon-buff, coarsely verrucose, non-dextrinoid to slightly dextrinoid. Basidia 4-spored, 30−42 × 7−11 μm, clavate, colorless or yellowish. Lamella trama hyphae hyaline, smooth, parallel, 5- to 13- μm wide. Pileipellis duplex: Epicutis well developed, hyaline or yellow to ochraceous, smooth, cylindrical, radially arranged, ± interwoven, 4−10 μm wide; hypocutis distinct, colorless or yellowish, smooth to slightly encrusted, cylindrical to enlarged, radially oriented, ± interwoven, (4)6- to 15(17)- μm wide. Clamp connections present.

Remarks. — Cortinarius perviolaceus Murrill is easily confused with C. tropicus because of its violet pilei, but C. perviolaceus has smaller basidiomata (8−22 mm vs. 20−45 mm) and wider basidiospores (6−6.5 μm vs. 5−6 μm; Dima et al., 2021). Cortinarius anomalus has similar pilei with blue tinge when young and larger basidiospores (8−9 × 6−7 μm; Dima et al., 2016). Cortinarius anomalovelatus, C. deceptivus Kauffman, and C. harvardensis L. Nagy, Dima & Ammirati formed a sister group with C. tropicus. Compared with the new species, C. anomalovelatus has wider basidiospores (6.3−7 μm vs. 5−6 μm), C. deceptivus produces larger basidiospores (7.8−9.3 × 6−7.4 μm), and C. harvardensis has bluish to violet pileus, lamellae, and stipe, and slightly bigger basidiospores (7.5−8.5 × 5.5−6.5 μm; Dima et al., 2021).

Additional specimens (paratypes) examined. — CHINA. Yunnan Province, Dehong Dai and Jingpo Autonomous Prefecture, Mang City, Jiangdong Town, Daxinzhai, Alt: 1619 m, N: 24°27′54″, E: 98°18′56″, on ground dominant with Fagaceae, 28 July 2015, Li 150728-56 and Li 150728-63.

4. Discussion

Cortinarius, the largest agaric genus worldwide, contains important ectomycorrhizal fungi, among which sect. Anomali represents a monophyletic, species-rich group of this genus (Dima et al., 2016; Garnica et al., 2016; Soop et al., 2019; Dima et al., 2021; Liimatainen and Niskanen, 2021; Xie, 2022). Species recognition based on morphology is difficult in Cortinarius lineages due to overlapping characteristics and variations within species. Notably, the basidiospore size helps identify some species when used in correlation with other characteristics (Frøslev et al., 2006; Niskanen et al., 2013; Liimatainen et al., 2014; Liimatainen et al., 2015; Niskanen et al., 2016).

According to our phylogenetic analysis, sect. Anomali indicated a widely distributed lineage of Cortinarius in both the northern and southern Hemispheres. Furthermore, certain patterns of distribution correlated with ecology and plant hosts. Cortinarius albocyaneus exhibited regional patterns of distribution with conifers in northern Michigan and northern Europe. Several species, including Cortinarius brevissimus Peck, C. caeruleoanomalus Dima, Matheny, K. Hughes & Ammirati, C. deceptivus, C. harvardensis, C. modestus Rob. Henry, C. perrotensis A. Paul, Matheny & Lebeuf, and C. perviolaceus, occurred in hardwood, mixed hardwood conifer, and/or conifer forests in eastern North America. Cortinarius rarus Bojantchev, Ammirati, Parker, Liimat., Niskanen & Dima displayed regional patterns of distribution associated with mountain conifer forests (Dima et al., 2016; Dima et al., 2021).

Current studies related to this genus have indicated significant regional variations. Classical European species were examined and typified by Dima et al. (2016) before species from other parts of the world were studied. In sect. Anomali, more than 50 binomials were introduced in the last century, mainly from Europe, with fewer from elsewhere, but only about 20% of these names have been in general use (Dima et al., 2021). China is geographically located in East Asia and has a land area comparable with that of the entire Europe, various climate types ranging from the temperate to the tropical climate, as well as a complex and diverse habitat, which provides an ideal place for the survival of Cortinarius species. However, the resource investigation and taxonomic research on Cortinarius have not yet been extensively carried out in China. Currently, there have been reports of a total of 163 taxa of the genus in China, with only three species in the sect. Anomali, viz. C. caninus (Fr.) Fr., C. albocyaneus, and C. tabularis (Fr.) Fr. Therefore, the collection of more samples from China and exploration of multigene phylogeny are urgently needed to systematically elucidate the diversity of Cortinarius s.l.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/nuccore/OQ913379,OQ913380,OQ913381,OQ913382,OQ913383,OQ913384,OQ913385,OQ913386,OQ913387,OQ913388,OQ913389,OQ913390,OQ913391,OQ913392,OQ913393,OQ913394,OQ913395,OQ913396,OQ913397,OQ920003,OQ920004,OQ920005.

Author contributions

Q-YZ, CJ, H-MZ, Z-YM, Y-ZZ, J-QL, JS, and H-JL designed the research and contributed to data analysis and interpretation. Q-YZ, CJ, H-MZ and Z-YM prepared the samples and drafted the manuscript. Y-ZZ, J-QL, Z-YM, JS, and H-JL conducted the molecular experiments and analyzed the data. JS and H-JL discussed the results and edited the manuscript. All authors contributed to the article and approved the submitted version.

Acknowledgments

The authors would like to express their deep appreciations to Xian-Hu Kang, Xi-Shang Li, Chao Guo, Guang-Jie Liu, Cheng-Sheng Li, Dan Jiang, Ping Wang, Wen-Song Chen, and Zhi-Wen Liu (Yunnan CDC, China) for helping during field collections.

Funding Statement

The research was supported by the National Natural Science Foundation of China (Nos. 32270016, 32270021, and 32070016).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  1. Ammirati J., Garnica S., Halling R. E., Mata M., Mueller G. M., Carranza J. (2007). New Cortinarius species associated with Quercus and Comarostaphylis in Costa Rica. Can. J. Bot. 85, 794–812. doi:  10.1139/B07-067 [DOI] [Google Scholar]
  2. Ammirati J. F., Niskanen T., Liimatainen K., Dimitar B., Peintner U., Kuhnert-Finkernagel R., et al. (2017). Spring and early summer species of Cortinarius, subgenus Telamonia, section Colymbadini and /Flavobasilis, in the mountains of western north America. Mycologia 109, 443–458. doi:  10.1080/00275514.2017.1349468 [DOI] [PubMed] [Google Scholar]
  3. Anonymous (1969). Flora of British fungi. colour identification chart (London: Her Majesty’s Stationery Office; ). [Google Scholar]
  4. Bidaud A., Moënne-Loccoz P., Reumaux P. (1992). Atlas des cortinaires. pars IV (France: Fédération Mycologique Dauphiné-Savoie; ). [Google Scholar]
  5. Bidaud A., Reumaux P., Moënne-Loccoz P. (1994). Novitates – validates – genre Cortinarius . Docums. Mycol. 24, 39–45. [Google Scholar]
  6. Brandrud T. E., Dima B., Schmidt-Stohn G., Bellù F., Frøslev T. G., Oertel B., et al. (2014). Cortinarius subgenus Phlegmacium section Multiformes in Europe. J. Des. J.E.C. 16, 162–199. [Google Scholar]
  7. Brandrud T. E., Lindström H., Marklund H., Melot J., Muskos S. (1989). Cortinarius flora photographica I (Swedish version). Sweden, Matfors, Cortinarius HB. pp. 1–60. [Google Scholar]
  8. Clements F. E., Shear C. L. (1931). The genera of fungi (New York: Hafner Publishing Co.). [Google Scholar]
  9. Consiglio G. (2012). Il genere cortinarius in italia. parte sesta. Luglio, Associazione Micologica Bresadola. [Google Scholar]
  10. Consiglio G., Antonini D., Antonini M. (2005). Il genere cortinarius in Italia. parte terza. Italy, Trento, Associazione Micologica Bresadola, pp. 1–44. [Google Scholar]
  11. Consiglio G., Antonini D., Antonini M. (2006). Il genere cortinarius in italia. Luglio, Associazione Micologica Bresadola, Fondazione Centro Studi Micologici. [Google Scholar]
  12. Dima B., Liimatainen K., Niskanen T., Bojantchev D., Harrower E., Papp V., et al. (2021). Type studies and fourteen new north American species of Cortinarius section Anomali reveal high continental species diversity. Mycol. Prog. 20, 1399–1439. doi:  10.1007/s11557-021-01738-0 [DOI] [Google Scholar]
  13. Dima B., Lindstrom H., Liimatainen K., Olson A., Soop K., Kytovuori I., et al. (2016). Typification of friesian names in Cortinarius sections Anomali, Spilomei, and Bolares, and description of two new species from northern Europe. Mycol. Prog. 15, 903–919. doi:  10.1007/s11557-016-1217-5 [DOI] [Google Scholar]
  14. Frøslev T. G., Brandrud T. E., Jeppesen T. S. (2006). New species and combinations in Cortinarius subgenus Phlegmacium section Calochroi . Mycotaxon 97, 367–377. [Google Scholar]
  15. Garnica S., Schon M. E., Abarenkov K., Riess K., Liimatainen K., Niskanen T., et al. (2016). Determining threshold values for barcoding fungi: lessons from Cortinarius (Basidiomycota), a highly diverse and widespread ectomycorrhizal genus. FEMS Microbiol. Ecol. 92, 4. doi:  10.1093/femsec/fiw045 [DOI] [PubMed] [Google Scholar]
  16. Garnica S., Weiss M., Oertel B., Ammirati J., Oberwinkler F. (2009). Phylogenetic relationships in Cortinarius, section Calochroi, inferred from nuclear DNA sequences. BMC Evol. Biol. 9, 1. doi:  10.1186/1471-2148-9-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garnica S., Weiss M., Oertel B., Oberwinkler F. (2005). A framework for a phylogenetic classification in the genus Cortinarius (Basidiomycota, agaricales) derived from morphological and molecular data. Can. J. Bot. 83, 1457–1477. doi:  10.1139/b05-107 [DOI] [Google Scholar]
  18. Hall T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98. [Google Scholar]
  19. Høiland K., Holst-Jensen A. (2000). Cortinarius phylogeny and possible taxonomic implications of ITS rDNA sequences. Mycologia 92, 694–710. doi:  10.1080/00275514.2000.12061210 [DOI] [Google Scholar]
  20. Hughes K. W., Petersen R. H., Lickey E. B. (2009). Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species' delimitation across basidiomycete fungi. New Phytol. 182, 795–798. doi:  10.1111/j.1469-8137.2009.02802.x [DOI] [PubMed] [Google Scholar]
  21. Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., von Haeseler A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. doi:  10.1038/nmeth.4285 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kauffman C. H. (1905). The genus Cortinarius: a preliminary study. Bull. Torr. Bot. Club. 32, 301–325. doi:  10.2307/2478812 [DOI] [Google Scholar]
  23. Kirk P. M., Cannon P. E., Minter D. W., Stalpers J. A. (2008). Dictionary of the fungi. 10 edition (Wallingford: CABI International; ). [Google Scholar]
  24. Kornerup A., Wanscher J. H. (1978). Methuen Handbook of color. 3rd Ed. Ed. Methuen E. (London: Co., Ltd.). [Google Scholar]
  25. Li H. J., Xie J. W., Zhang S., Zhou Y. J., Ma P. B., Zhou J., et al. (2015). Amanita subpallidorosea, a new lethal fungus from China. Mycol. Prog. 14, 43. doi:  10.1007/s11557-015-1055-x [DOI] [Google Scholar]
  26. Liimatainen K., Niskanen T. (2021). Nomenclatural novelties. Index Fungorum 487, 1–7. [Google Scholar]
  27. Liimatainen K., Niskanen T., Ammirati J., Kytovuori I., Dima B. (2015). Cortinarius, subgenus Telamonia, section Disjungendi, cryptic species in north America and Europe. Mycol. Prog. 14, 1016. doi:  10.1007/s11557-014-1016-9 [DOI] [Google Scholar]
  28. Liimatainen K., Niskanen T., Dima B., Kytovuori I., Ammirati J. F., Froslev T. G. (2014). The largest type study of agaricales species to date: bringing identification and nomenclature of Phlegmacium (Cortinarius, agaricales) into the DNA era. Persoonia 33, 98–140. doi:  10.3767/003158514X684681 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Luo Y., Bau T. (2021). Cortinarius jiaoheensis (Cortinariaceae), a new species of Cortinarius subgenus Telamonia section Flexipedes, from northeast China. Phytotaxa 494, 113–121. doi:  10.11646/phytotaxa.494.1.7 [DOI] [Google Scholar]
  30. Murrill W. A. (1946). More fungi from Florida. Lloydia 8, 263–290. [Google Scholar]
  31. Niskanen T., Kytovuori I., Liimatainen K., Lindstrom H. (2013). The species of Cortinarius, section Bovini, associated with conifers in northern Europe. Mycologia 105, 977–993. doi:  10.3852/12-320 [DOI] [PubMed] [Google Scholar]
  32. Niskanen T., Liimatainen K., Kytovuori I. (2009). Cortinarius sect. Brunnei (Basidiomycota, agaricales) in north Europe. Mycol. Res. 113, 182–206. doi:  10.1016/j.mycres.2008.10.006 [DOI] [PubMed] [Google Scholar]
  33. Niskanen T., Liimatainen K., Kytövuori I., Lindström H., Dentinger B., Ammirati J. F. (2016). Cortinarius subgenus Callistei in north America and Europe–type studies, diversity, and distribution of species. Mycologia 108, 1018–1027. doi:  10.3852/16-033 [DOI] [PubMed] [Google Scholar]
  34. Peintner U., Moncalvo J. M., Vilgalys R. (2004). Toward a better understanding of the infrageneric relationships in Cortinarius (Agaricales, basidiomycota). Mycologia 96, 1042–1058. doi:  10.1080/15572536.2005.11832904 [DOI] [PubMed] [Google Scholar]
  35. Peintner U., Moser M., Thomas K. A., Manimohan P. (2003). First records of ectomycorrhizal Cortinarius species (Agaricales, basidiomycetes) from tropical India and their phylogenetic position based on rDNA ITS sequences. Mycol. Res. 107, 485–494. doi:  10.1017/S0953756203007585 [DOI] [PubMed] [Google Scholar]
  36. Ronquist F., Teslenko M., van der Mark P., Avres D. L., Darling A., Höhna S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice, across a large model space. Syst. Biol. 61, 539–542. doi:  10.1093/sysbio/sys029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Silvestro D., Michalak I. (2012). RaxmlGUI: a graphical front-end for RAxML. Org. Divers. Evol. 12, 335–337. doi:  10.1007/s13127-011-0056-0 [DOI] [Google Scholar]
  38. Singer R. (1986). The agaricales in modern taxonomy. 4th ed (Germany: Koenigstein, Koeltz Scientific Books; ). [Google Scholar]
  39. Soop K., Dima B., Cooper J. A., Park D., Oertel B. (2019). A phylogenetic approach to a global supraspecific taxonomy of Cortinarius (Agaricales) with an emphasis on the southern mycota. Persoonia 42, 261–290. doi:  10.3767/persoonia.2019.42.10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Soop K., Wallace M., Dima B. (2018). New Cortinarius (Agaricales) species described from new Zealand. New Z. J. Bot. 56, 163–182. doi:  10.1080/0028825X.2018.1436574 [DOI] [Google Scholar]
  41. Stamatakis A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinf. (Oxford England) 22, 2688–2690. doi:  10.1093/bioinformatics/btl446 [DOI] [PubMed] [Google Scholar]
  42. Stensrud Ø., Orr R. J. S., Reier-Røberg K., Schumacher T., Orr R., Høiland K. (2014). Phylogenetic relationships in Cortinarius with focus on north European species. Karstenia 54, 57–71. doi:  10.29203/ka.2014.464 [DOI] [Google Scholar]
  43. Suarez-Santiago V. N., Ortega A., Peintner U., Lopez-Flores I. (2009). Study on Cortinarius subgenus Telamonia section Hydrocybe in Europe, with especial emphasis on Mediterranean taxa. Mycol. Res. 113, 1070–1090. doi:  10.1016/j.mycres.2009.07.006 [DOI] [PubMed] [Google Scholar]
  44. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882. doi:  10.1093/nar/25.24.4876 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Varga T., Krizsan K., Cs F., Dima B., Sanchez-Garcia M., Sanchez-Ramirez S., et al. (2019). Megaphylogeny resolves global patterns of mushroom diversification. Nat. Ecol. Evol. 3, 668–678. doi:  10.1038/s41559-019-0834-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wei T. Z., Yao Y. J. (2013). Cortinarius korfii: a new species from China. Mycosystema 32, 557–562. doi:  10.13346/j.mycosystema.2013.03.017 [DOI] [Google Scholar]
  47. White T. J., Bruns T. D., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR protocols: a guide to methods and applications. Eds. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (US: New York Academic Press; ), 315–322. doi:  10.1016/B978-0-12-372180-8.50042-1 [DOI] [Google Scholar]
  48. Xie M. L. (2022). Taxonomic, molecular phylogenetic and biogeographic studies of cortinarius in china. PhD thesis (China: Northeast Normal University; ), 1–314. [Google Scholar]
  49. Xie M. L., Li D., Wei S. L., Ji R. Q., Li Y. (2019). Cortinarius subcaesiobrunneus sp. nov., (Cortinariaceae, agaricales) a new species from northwest China. Phytotaxa 392, 217–224. doi:  10.11646/phytotaxa.392.3.4 [DOI] [Google Scholar]
  50. Xie M. L., Wei T. Z., Dima B., Fu Y. P., Ji R. Q., Li Y. (2021). Cortinarius khinganensis (Agaricales), a new species of section Illumini from northeast China. Phytotaxa 500, 1–10. doi:  10.11646/phytotaxa.500.1.1 [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/nuccore/OQ913379,OQ913380,OQ913381,OQ913382,OQ913383,OQ913384,OQ913385,OQ913386,OQ913387,OQ913388,OQ913389,OQ913390,OQ913391,OQ913392,OQ913393,OQ913394,OQ913395,OQ913396,OQ913397,OQ920003,OQ920004,OQ920005.


Articles from Frontiers in Cellular and Infection Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES