Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1993 May;68(5 Spec No):612–616. doi: 10.1136/adc.68.5_spec_no.612

Management of the asphyxiated full term infant.

M I Levene 1
PMCID: PMC1029319  PMID: 8323371

Full text

PDF
612

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adsett D. B., Fitz C. R., Hill A. Hypoxic-ischaemic cerebral injury in the term newborn: correlation of CT findings with neurological outcome. Dev Med Child Neurol. 1985 Apr;27(2):155–160. doi: 10.1111/j.1469-8749.1985.tb03764.x. [DOI] [PubMed] [Google Scholar]
  2. Altman D. I., Young R. S., Yagel S. K. Effects of dexamethasone in hypoxic-ischemic brain injury in the neonatal rat. Biol Neonate. 1984;46(3):149–156. doi: 10.1159/000242058. [DOI] [PubMed] [Google Scholar]
  3. De Souza S. W., Dobbing J. Cerebral oedema in developing brain. 3. Brain water and electrolytes in immature asphyxiated rats treated with dexamethasone. Biol Neonate. 1973;22(5):388–397. doi: 10.1159/000240571. [DOI] [PubMed] [Google Scholar]
  4. Ergander U., Eriksson M., Zetterström R. Severe neonatal asphyxia. Incidence and prediction of outcome in the Stockholm area. Acta Paediatr Scand. 1983 May;72(3):321–325. doi: 10.1111/j.1651-2227.1983.tb09722.x. [DOI] [PubMed] [Google Scholar]
  5. Gibson N. A., Brezinova V., Levene M. I. Somatosensory evoked potentials in the term newborn. Electroencephalogr Clin Neurophysiol. 1992 Jan-Feb;84(1):26–31. doi: 10.1016/0168-5597(92)90065-j. [DOI] [PubMed] [Google Scholar]
  6. Goldberg R. N., Moscoso P., Bauer C. R., Bloom F. L., Curless R. G., Burke B., Bancalari E. Use of barbiturate therapy in severe perinatal asphyxia: a randomized controlled trial. J Pediatr. 1986 Nov;109(5):851–856. doi: 10.1016/s0022-3476(86)80713-2. [DOI] [PubMed] [Google Scholar]
  7. Hattori H., Wasterlain C. G. Posthypoxic glucose supplement reduces hypoxic-ischemic brain damage in the neonatal rat. Ann Neurol. 1990 Aug;28(2):122–128. doi: 10.1002/ana.410280203. [DOI] [PubMed] [Google Scholar]
  8. Hull J., Dodd K. L. Falling incidence of hypoxic-ischaemic encephalopathy in term infants. Br J Obstet Gynaecol. 1992 May;99(5):386–391. doi: 10.1111/j.1471-0528.1992.tb13754.x. [DOI] [PubMed] [Google Scholar]
  9. Jensen F. E., Applegate C. D., Holtzman D., Belin T. R., Burchfiel J. L. Epileptogenic effect of hypoxia in the immature rodent brain. Ann Neurol. 1991 Jun;29(6):629–637. doi: 10.1002/ana.410290610. [DOI] [PubMed] [Google Scholar]
  10. Levene M. I., Evans D. H., Forde A., Archer L. N. Value of intracranial pressure monitoring of asphyxiated newborn infants. Dev Med Child Neurol. 1987 Jun;29(3):311–319. doi: 10.1111/j.1469-8749.1987.tb02484.x. [DOI] [PubMed] [Google Scholar]
  11. Levene M. I., Evans D. H. Medical management of raised intracranial pressure after severe birth asphyxia. Arch Dis Child. 1985 Jan;60(1):12–16. doi: 10.1136/adc.60.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levene M. I., Fenton A. C., Evans D. H., Archer L. N., Shortland D. B., Gibson N. A. Severe birth asphyxia and abnormal cerebral blood-flow velocity. Dev Med Child Neurol. 1989 Aug;31(4):427–434. doi: 10.1111/j.1469-8749.1989.tb04020.x. [DOI] [PubMed] [Google Scholar]
  13. Levene M. I., Sands C., Grindulis H., Moore J. R. Comparison of two methods of predicting outcome in perinatal asphyxia. Lancet. 1986 Jan 11;1(8472):67–69. doi: 10.1016/s0140-6736(86)90718-x. [DOI] [PubMed] [Google Scholar]
  14. Levene M. Role of excitatory amino acid antagonists in the management of birth asphyxia. Biol Neonate. 1992;62(4):248–251. doi: 10.1159/000243878. [DOI] [PubMed] [Google Scholar]
  15. Lipp-Zwahlen A. E., Deonna T., Chrzanowski R., Micheli J. L., Calame A. Temporal evolution of hypoxic-ischaemic brain lesions in asphyxiated full-term newborns as assessed by computerized tomography. Neuroradiology. 1985;27(2):138–144. doi: 10.1007/BF00343785. [DOI] [PubMed] [Google Scholar]
  16. Lipper E. G., Voorhies T. M., Ross G., Vannucci R. C., Auld P. A. Early predictors of one-year outcome for infants asphyxiated at birth. Dev Med Child Neurol. 1986 Jun;28(3):303–309. doi: 10.1111/j.1469-8749.1986.tb03877.x. [DOI] [PubMed] [Google Scholar]
  17. McDonald J. W., Roeser N. F., Silverstein F. S., Johnston M. V. Quantitative assessment of neuroprotection against NMDA-induced brain injury. Exp Neurol. 1989 Dec;106(3):289–296. doi: 10.1016/0014-4886(89)90162-3. [DOI] [PubMed] [Google Scholar]
  18. McDonald J. W., Silverstein F. S., Cardona D., Hudson C., Chen R., Johnston M. V. Systemic administration of MK-801 protects against N-methyl-D-aspartate- and quisqualate-mediated neurotoxicity in perinatal rats. Neuroscience. 1990;36(3):589–599. doi: 10.1016/0306-4522(90)90002-l. [DOI] [PubMed] [Google Scholar]
  19. Myers R. E., Yamaguchi S. Nervous system effects of cardiac arrest in monkeys. Preservation of vision. Arch Neurol. 1977 Feb;34(2):65–74. doi: 10.1001/archneur.1977.00500140019003. [DOI] [PubMed] [Google Scholar]
  20. Palmer C., Vannucci R. C., Towfighi J. Reduction of perinatal hypoxic-ischemic brain damage with allopurinol. Pediatr Res. 1990 Apr;27(4 Pt 1):332–336. doi: 10.1203/00006450-199004000-00003. [DOI] [PubMed] [Google Scholar]
  21. Pourcyrous M., Leffler C. W., Mirro R., Busija D. W. Brain superoxide anion generation during asphyxia and reventilation in newborn pigs. Pediatr Res. 1990 Dec;28(6):618–621. doi: 10.1203/00006450-199012000-00015. [DOI] [PubMed] [Google Scholar]
  22. Sheldon R. A., Partridge J. C., Ferriero D. M. Postischemic hyperglycemia is not protective to the neonatal rat brain. Pediatr Res. 1992 Oct;32(4):489–493. doi: 10.1203/00006450-199210000-00022. [DOI] [PubMed] [Google Scholar]
  23. Taylor M. J., Murphy W. J., Whyte H. E. Prognostic reliability of somatosensory and visual evoked potentials of asphyxiated term infants. Dev Med Child Neurol. 1992 Jun;34(6):507–515. doi: 10.1111/j.1469-8749.1992.tb11471.x. [DOI] [PubMed] [Google Scholar]
  24. Vannucci R. C., Mujsce D. J. Effect of glucose on perinatal hypoxic-ischemic brain damage. Biol Neonate. 1992;62(4):215–224. doi: 10.1159/000243874. [DOI] [PubMed] [Google Scholar]
  25. Wasterlain C. G. Effects of neonatal status epilepticus on rat brain development. Neurology. 1976 Oct;26(10):975–986. doi: 10.1212/wnl.26.10.975. [DOI] [PubMed] [Google Scholar]
  26. Williams C. E., Gunn A. J., Mallard C., Gluckman P. D. Outcome after ischemia in the developing sheep brain: an electroencephalographic and histological study. Ann Neurol. 1992 Jan;31(1):14–21. doi: 10.1002/ana.410310104. [DOI] [PubMed] [Google Scholar]
  27. Williams C. E., Gunn A. J., Synek B., Gluckman P. D. Delayed seizures occurring with hypoxic-ischemic encephalopathy in the fetal sheep. Pediatr Res. 1990 Jun;27(6):561–565. doi: 10.1203/00006450-199006000-00004. [DOI] [PubMed] [Google Scholar]
  28. Wolf G., Keilhoff G., Fischer S., Hass P. Subcutaneously applied magnesium protects reliably against quinolinate-induced N-methyl-D-aspartate (NMDA)-mediated neurodegeneration and convulsions in rats: are there therapeutical implications. Neurosci Lett. 1990 Sep 4;117(1-2):207–211. doi: 10.1016/0304-3940(90)90145-y. [DOI] [PubMed] [Google Scholar]
  29. Wyatt J. S., Edwards A. D., Azzopardi D., Reynolds E. O. Magnetic resonance and near infrared spectroscopy for investigation of perinatal hypoxic-ischaemic brain injury. Arch Dis Child. 1989 Jul;64(7 Spec No):953–963. doi: 10.1136/adc.64.7_spec_no.953. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES