Abstract
接受体外受精-胚胎移植(IVF-ET)治疗的不孕女性往往表现出焦虑、抑郁以及感知压力等心理困扰,这种不良的心理状态可通过心理-神经-免疫-内分泌网络影响母胎界面的免疫稳态、囊胚的孵化和母亲子宫内膜的容受性,进而影响胚胎滋养层的增殖、侵袭、血管重塑等,降低了胚胎移植的成功率,且进一步加重患者的心理痛苦,形成恶性循环。因此IVF-ET治疗前后应充分发挥夫妻之间积极的伴侣效应或使用认知行为疗法、针灸、瑜伽等方式来进行心理干预,通过改善焦虑、抑郁状态,提高IVF-ET治疗后的临床妊娠率、持续妊娠率和活产率。本文综述了接受IVF-ET治疗者的焦虑、抑郁状态对IVF-ET治疗结局的影响及可能的机制,以及心理干预在IVF-ET治疗实践中的应用等研究进展,以期为改善IVF-ET治疗结局提供新思路。
Keywords: 体外受精-胚胎移植, 心理因素, 胚胎移植结局, 心理干预, 综述
Abstract
Infertile women who receive in vitro fertilization-embryo transfer (IVF-ET) often present psychological distress such as anxiety, depression and perceived stress. This adverse psychological state can affect the immune homeostasis at the mother-fetus interface, the incubation of blastula and the receptivity of the maternal endometrium through the psycho-neuro-immuno-endocrine network, which in turns affect the proliferation, invasion and vascular remodeling of the embryo trophoblast, and reduces the success rate of embryo transfer. This adverse outcome of embryo transfer will further aggravate the psychological pain of patients, forming a vicious circle. The positive partner effect between husband and wife or the use of cognitive behavioral therapy, acupuncture, yoga and other measures for psychological intervention before and after IVF-ET, may break the vicious cycle and improve clinical pregnancy rate, continuous pregnancy rate and live birth rate after IVF-ET by alleviating anxiety and depression. This article reviews the research progress on anxiety and depression states in women receiving IVF-ET and the impact on outcome of IVF-ET and related mechanisms, as well as the application of psychological intervention for alleviating anxiety and depression, so as to provide insights in improving the outcome of IVF-ET.
Keywords: In vitro fertilization-embryo transfer, Psychological factor, Embryo transfer outcome, Psychological intervention, Review
已有文献报道,前三个IVF治疗周期临床妊娠率分别为52%、41%和28%,可见很大一部分接受IVF治疗的夫妻会经历不良的胚胎移植结局,甚至有15%的夫妻困扰于胚胎反复种植失败[1]。临床研究发现,若寻求IVF治疗的夫妻表现出明显的感知压力、焦虑以及抑郁,则往往预示不良的胚胎移植结局[2-4],这些夫妻是否需要进行心理干预?本文主要针对患者在进行IVF-ET前后的心理变化、异常的心理状态对胚胎移植结局的影响以及可能存在的影响机制、应用心理干预的意义进行综述,以期为临床改善IVF-ET结局提供思路。
1. IVF-ET患者存在焦虑和抑郁心理状态
接受IVF-ET治疗的夫妻自然受孕往往无法获得正常妊娠或活产,这种低下的生育能力会给夫妻带来来自家庭和社会的各种心理压力,导致患者出现自我价值降低、情感压力升高、自尊心受挫、焦虑、压抑等心理状态。且接受IVF-ET治疗本身也是引起心理痛苦的危险因素。Xu等[5]统计了不孕妇女在接受IVF治疗期间的心理状态,发现近40%的患者表现出焦虑症状,近30%的患者处于抑郁状态,还有21.3%的患者同时处于焦虑和抑郁状态。胚胎移植是整个治疗过程中的关键步骤,患者在胚胎移植前后所表现出的焦虑、抑郁状态往往会更加显著。Awtani等[6]在四个不同城市进行的一项研究结果显示,焦虑和压力存在于整个治疗过程中,但在胚胎移植后等待妊娠结果的阶段,患者的焦虑程度最显著,且相较于特质焦虑,其状态焦虑水平更高。这种焦虑可以一直持续到获得阳性妊娠结果。这种辅助生殖技术治疗失败对患者来说也是一个非常大的打击,易导致患者出现较高的焦虑和抑郁评分[7]。且随着IVF治疗周期的重复进行,患者的自我效能尤其是心理弹性显著下降[8],提示胚胎移植失败的患者产生心理痛苦后可能因其对不良情绪的调节能力下降而导致不良情绪持续存在。
2. 焦虑和抑郁状态影响IVF-ET结局
早期研究认为,接受IVF-ET治疗者在治疗前和治疗过程中的焦虑和抑郁水平对IVF-ET治疗的取消率以及妊娠率无影响[9],但近年研究则提示不同的结果。一项纳入304例不孕妇女的哈萨克斯坦多中心研究显示,以生育问题问卷评估的不孕相关压力(包括社会问题、性问题、人际关系问题、拒绝无子女生活方式和为人父母的需要五个方面)水平越高,IVF治疗后成功妊娠的概率越低[2]。同样,较高的焦虑评分,无论是状态焦虑还是特质焦虑均与IVF治疗后临床妊娠率显著降低有关[3]。Turner等[8]使用logistic回归模型进一步证实了这些相关性,同时强调较高的妊娠率主要与取卵前一天较低的压力和焦虑水平以及较高的自我效能有关;但这种相关性不能排除患者在取卵前就可能已经通过超声检查等手段了解自身卵泡情况,卵泡数越多,压力、焦虑等心理痛苦的水平就越低,怀孕的概率也会相对较高。排除患者对自身卵泡内膜情况的认知这一因素的影响,瑞典全国范围内一项纳入23 557例受试者的研究结果显示,第一个IVF治疗周期前已诊断为焦虑症或抑郁症者IVF治疗后妊娠率较低[4]。另外,Zhou等[10]通过测定唾液α-淀粉酶的含量来衡量患者的压力水平,同样发现第一个IVF-ET治疗周期开始前唾液α-淀粉酶高水平(高压力的客观指标)会增加IVF-ET治疗后妊娠失败风险,并提出预测妊娠失败的唾液α-淀粉酶临界值在女性伴侣、男性伴侣以及夫妻中分别为136、149、288 μmol/L。上述研究结果提示,无论是通过问卷、量表主观评估,还是通过唾液α-淀粉酶客观衡量,所测得的焦虑和抑郁状态与IVF后的妊娠率降低均相关。
3. 焦虑和抑郁状态导致不良IVF-ET结局的内在机制
一个成功的IVF-ET治疗周期至少需要一个优质的胚胎、有良好容受性的子宫内膜以及两者之间的相互协调,而焦虑和抑郁状态会通过心理-神经-免疫-内分泌网络打破两者之间的平衡。
3.1. 心理-免疫机制
胚胎携带的抗原一半来自父亲的同种异体抗原,胚胎移植的过程相当于半同种异体移植,母体免疫系统会对胚胎的父系抗原产生免疫攻击。因此,在围着床期,母体免疫细胞对胎儿的耐受性对于胚胎移植后的成功妊娠至关重要。众所周知,母胎界面局部Th1细胞型免疫抑制和Th2细胞型免疫优势的免疫特征在诱导和维持母体对胚胎的免疫耐受中发挥了重要作用。大量文献表明,焦虑、抑郁以及心理压力等不良的心理状态会导致Th1细胞/Th2细胞的平衡向Th1细胞发生偏倚,与高水平的肿瘤坏死因子-α[11-12]、IL-1β[13]、C反应蛋白[12]、IL-2[14]等细胞因子相关。研究发现,抑郁症患者血浆γ干扰素/IL-4和γ干扰素/TGF-β1比值明显升高[15],可知这种Th1细胞/Th2细胞偏倚并不仅仅是Th1细胞因子的绝对增多或Th2细胞因子的绝对减少,而是相对的。总之,当患者出现焦虑、抑郁、感知到心理压力等异常心理状态时,Th1细胞/Th2细胞免疫平衡就会被打破,向Th1细胞偏倚,从而导致不良的胚胎移植结局。
与成功怀孕的女性相比,有反复流产史的女性Th1细胞和Th17细胞显著增加,其中Th17细胞比例甚至约高出成功怀孕女性的三倍[16];Treg细胞明显减少[17],Th17细胞/Treg细胞比值显著升高[18],异常的心理状态与Th17细胞/Treg细胞的平衡偏倚有关。因此,在围着床期,除了Th1细胞/Th2细胞免疫平衡,Th17细胞/Treg细胞之间的平衡状态也对胚胎移植后的着床至关重要。一项针对怀孕24~28周孕妇的横断面研究发现,IL-17A较高的妊娠期妇女情绪智力得分较低,产前窘迫评分较高[19],表明心理状态的改变与Th17细胞及其细胞因子的合成、分泌模式改变有关。更多的研究结果也显示,严重焦虑和共病抑郁的患者出现了以IL-17A为代表的Th17细胞因子分泌增加[14],以及抑郁症患者出现以TGF-β1为代表的Treg细胞因子分泌减少[15]。这些数据均为不良的心理状态与Th17细胞/Treg细胞平衡紊乱相关提供了证据。
因此,对于异常的心理状态,无论是焦虑、抑郁还是感知到的心理压力,都应该积极干预,在围着床期调整Th1细胞/Th2细胞和Th17细胞/Treg细胞之间的平衡,以改善母胎界面的免疫状态,可能有助于增加IVF治疗后胚胎移植的成功率。
3.2. 心理-内分泌机制
在体外受精后的胚胎移植过程中,内分泌稳态在保证包括滋养层细胞增殖、迁移、侵袭以及蜕膜血管重塑等关键环节的正常进行中是必不可少的,而焦虑、抑郁等不良的心理状态可能通过扰乱甲状腺和肾上腺正常的激素分泌导致围着床期胚胎移植失败。
3.2.1. 与焦虑、抑郁相关的甲状腺功能紊乱引起围着床期胚胎移植失败
甲状腺功能属于心理-神经-免疫-内分泌网络的重要一环。近期,一项针对21项研究共纳入了36 174例抑郁症或焦虑症患者的meta分析显示,患有自身免疫性甲状腺疾病、亚临床或显性甲状腺功能减退者均表现出更高的焦虑和抑郁水平[20]。在青少年抑郁症患者中同样存在促甲状腺激素水平升高的现象[21]。有研究表明,甲状腺功能减退与焦虑和抑郁水平呈正相关,甲状腺功能亢进则与过去一年的重度抑郁显著相关[22]。虽然焦虑、抑郁状态与异常的甲状腺功能之间的因果关系缺乏随机对照试验证实,但这种相关性提示焦虑、抑郁状态往往伴随甲状腺功能异常。
在胚胎移植过程中,维持甲状腺激素水平在一个正常、稳定的范围内是必不可少的。有研究发现,相较于成功妊娠的女性,胚胎植入失败者血清和卵泡液中的游离甲状腺素水平较低[23]。在胚胎培养过程中,经过甲状腺激素处理后的胚胎在囊胚形成和孵化率方面表现出明显的优势,胚胎质量明显改善,细胞总数增加,凋亡细胞比例减少[24]。除囊胚正常发育、孵化外,胚胎的成功植入还需要母体具备良好的子宫内膜容受性,有助于胚胎移植后的组织重塑和血管生成。在体外培养过程中发现甲状腺激素还可以促进滋养层细胞增殖[25]。甲状腺功能减退大鼠可因子宫中甲状腺激素受体α1、甲状腺激素受体β1、促甲状腺激素受体、ERK1/2和视黄酸受体等蛋白及其mRNA的表达降低,导致胚胎植入部位的数量减少,经过甲状腺激素治疗后,这些蛋白水平又可恢复正常,因此甲状腺激素水平稳定在正常范围内有助于胚胎成功植入子宫内膜[26]。甲状腺激素可以上调与其功能相关的甲状腺激素受体α和甲状腺激素受体β,以及上调在围着床期发挥重要作用的ERK1/2蛋白[27],而且与之相关的ERK/MAPK通路的激活可进一步促进参与血管生成蛋白的表达,如血管内皮生长因子通过影响子宫内膜的血管化诱导子宫内膜组织重塑而改变子宫内膜的容受性[28]。此外,MMP和TIMP是滋养层细胞迁移至母体蜕膜和蜕膜细胞外基质重塑的重要调节因子,两者之间的平衡是胚胎成功植入的关键之一。有研究发现,甲状腺功能减退患者胎盘中MMP和TIMP的表达显著下调,引起MMP和TIMP之间的平衡改变,同时Norch靶基因的表达也显著下调,反映了Norch通路的激活水平下降,进一步影响滋养层细胞发挥功能和胎盘血管生成[25],这些变化均提示甲状腺激素对围着床期的胚胎-子宫内膜相互作用的重要性。由此可见,无论是焦虑还是抑郁,都与甲状腺功能紊乱相关,而甲状腺激素在围着床期的许多关键事件中起调节作用,包括囊胚的孵化、滋养层侵袭和蜕膜组织的重塑以及相关血管生成等,但能否通过心理疏导改善甲状腺功能进而影响胚胎植入的结局还需要进一步研究。
3.2.2. 与焦虑、抑郁相关的肾上腺激素分泌紊乱引起围着床期胚胎移植失败
众所周知,下丘脑-垂体-肾上腺轴是应激反应的主要神经内分泌调节器,通过分泌各种应激激素(儿茶酚胺、皮质醇等)对机体应激作出反应。研究发现,孕妇体内皮质醇的水平和焦虑评分显著相关,存在高度焦虑的孕妇往往皮质醇水平较高[29]。胎盘滋养层细胞表达高水平的多种糖皮质激素受体亚型,对应激激素皮质醇产生反应。研究发现,糖皮质激素受体αA的表达与早产女性胎盘质量呈负相关,表明皮质醇可能通过结合糖皮质激素受体αA调节胎盘生长;而糖皮质激素受体αC结合糖皮质激素后则参与诱导细胞凋亡[30]。皮质醇可通过结合相应受体和影响基因转录来调节基因表达,因此应激相关的胚胎移植失败可能与皮质醇介导的滋养层信号以及功能的改变有关。一项探索性研究发现,GM-CSF可增加既往有流产史的妇女的持续妊娠率,减少早期妊娠丢失的风险[31];而人重组G-CSF能够通过上调G-CSF受体、胸腺肽磷酸化酶(参与局部血管生成)、整合素α-V/β-3(与细胞迁移和胚胎植入有关)、纤溶酶原激活物尿激酶受体(与细胞迁移有关)以及CD40及其配体CD40L(参与细胞增殖控制)靶基因mRNA的表达从而促进胚胎的植入[32]。同时,G-CSF可诱导PI3K/Akt和ERK1/2通路的激活从而增加滋养层细胞中MMP-2活性和血管内皮生长因子的分泌[33],提高胚胎植入的成功率。研究发现,在妊娠早期皮质醇可依赖DNA甲基化抑制滋养层细胞中GM-CSF和G-CSF的表达,并可独立于集落刺激因子的下调引起滋养层细胞侵袭减少[34],从而对细胞黏附、滋养层细胞的侵袭、体内血管重塑以及胎盘着床和功能性胎盘发育等胚胎植入的重要环节产生负面影响。综上所述,异常的心理状态通过下丘脑-垂体-肾上腺轴上调皮质醇的表达,进而抑制GM-CSF和G-CSF的表达,导致有助于围着床期胚胎植入的相关基因的转录和表达下调,从而出现异常的滋养层细胞增殖、迁移、侵袭以及蜕膜血管重塑,最终导致胚胎移植失败。
4. 心理疏导干预对IVF-ET结局的影响
患者在IVF-ET前后产生的焦虑、抑郁状态及其对胚胎移植结局的不良影响都提示了心理疏导的必要性。一般来说,到生殖中心就诊的夫妻对IVF-ET相关知识知之甚少,未知会使其在IVF治疗期间处于焦虑和高压力状态。因此认知行为疗法通常用于夫妻IVF治疗期间的心理疏导。有研究通过组织接受认知行为疗法的受试者观看辅助生殖干预的录像,并邀请相关医务人员回答受试者的疑问,发现女性受试者的症状分级测试(包括焦虑、抑郁、躯体化和不足感四个方面)的总得分显著改善[35]。认知行为疗法在减轻这些受试者焦虑抑郁的同时,似乎对IVF-ET治疗的成功率也有影响。Gorayeb等[36]对心理干预组进行了不孕因素的讨论以及体外受精的科普,发现心理干预组(39.8%)的妊娠率显著高于对照组(23.2%)。近期,一项系统回顾和meta分析显示,认知行为治疗和认知相关治疗显著提高了接受IVF-ET治疗女性的妊娠率[37]。
患者在IVF-ET治疗期间,发挥积极的伴侣效应似乎也是一种有效的心理疏导方法。早在1998年,Boivin等[38]就提出虽然女性在IVF治疗期间比男性更痛苦,但男性和女性对卵母细胞提取、受精、胚胎移植和验孕日的情绪和社会反应是一致的,且伴侣之间的焦虑、抑郁情绪以及压力指数呈显著正相关[13],而伴侣的响应性行为可以保护脆弱或有更大外部压力的个体[39]。以上研究提示发挥积极的伴侣效应在IVF-ET过程中的必要性。
心理疏导的方法还有很多,如针灸、瑜伽等,有助于营造并维持放松的状态。其中针灸作为一种中医传统疗法,以个性化原则辨证论治,可在胚胎移植前后进行干预,已被多项随机对照试验证实可以缓解不孕相关的压力和焦虑,改善自我效能[40-41],从而显著提高患者IVF-ET治疗后的临床妊娠率(63.9%和33.3%)、持续妊娠率(55.6%和30.6%)和活产率(52.8%和40.3%)[42]。患者在进行IVF前,练习瑜伽(每周2次,持续6周)对大脑、身体、精神和思想的放松作用也是显著的,有助于调节中枢神经系统和刺激生殖器官的活性,减轻压力,增加IVF治疗的成功率[43]。
综上,认知行为疗法、积极的伴侣效应、针灸、瑜伽等心理疏导方法可改善患者不良的心理状态,为提高IVF-ET成功率提供了新的思路。
5. 结语
迄今,IVF后胚胎移植失败尤其是反复胚胎移植失败仍然是临床上令人困惑的问题。不孕妇女在接受IVF-ET治疗期间所表现出来的焦虑、抑郁状态可通过心理-神经-免疫-内分泌网络影响母胎界面的免疫稳态和内分泌平衡,进而影响围着床期囊胚的孵化、滋养层侵袭、蜕膜组织的重塑以及血管生成,最终可导致IVF后胚胎移植的成功率下降。心理因素在导致不良的IVF-ET结局中扮演的角色还需要更多严谨的研究来论证,如焦虑、抑郁状态与异常的甲状腺功能和母胎界面的免疫紊乱之间的因果关系尚缺乏直接证据,希望今后通过随机对照试验进一步验证。认知行为疗法、积极的伴侣效应、针灸、瑜伽等心理干预措施不仅能改善不良的心理状态,还能提高患者IVF-ET治疗后的临床妊娠率、持续妊娠率和活产率。与常规辅助生殖技术比较,心理疏导不仅操作简便而且经济有效,值得更深入地探讨不同心理干预措施在IVF-ET治疗中的应用。
Acknowledgments
研究得到国家自然科学基金(81874484)支持
Acknowledgments
This work was supported by National Natural Science Foundation of China (81874484)
[缩略语]
体外受精(in vitro fertilization,IVF);体外受精-胚胎移植(IVF-embryo transfer,IVF-ET);辅助性T细胞(helper T cell,Th细胞);白介素(interleukin,IL);转化生长因子(transforming growth factor,TGF);调节性T细胞(regulatory T cell,Treg细胞);胞外信号调节激酶(extracellular signal-regulated kinase,ERK);丝裂原激活蛋白激酶(mitogen activation protein kinase,MAPK);基质金属蛋白酶(matrix metalloproteinase,MMP);组织金属蛋白酶抑制物(tissue inhibitor of metallo-proteinase,TIMP);粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF);粒细胞集落刺激因子(granulocyte colony stimulating factor,G-CSF)
利益冲突声明
所有作者均声明不存在利益冲突
Conflict of Interests
The authors declare that there is no conflict of interests
参考文献
- 1.BUSNELLI A, RESCHINI M, CARDELLICCHIO L, et al. How common is real repeated implantation failure? An indirect estimate of the prevalence[J]. Reprod Biomed Online, 2020, 40(1): 91-97. 10.1016/j.rbmo.2019.10.014 [DOI] [PubMed] [Google Scholar]
- 2.AIMAGAMBETOVA G, ISSANOV A, TERZIC S, et al. The effect of psychological distress on IVF outcomes: Reality or speculations?[J/OL]. PLoS One, 2020, 15(12): e0242024. 10.1371/journal.pone.0242024 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.BAPAYEVA G, AIMAGAMBETOVA G, ISSANOV A, et al. The effect of stress, anxiety and depression on in vitro fertilization outcome in Kazakhstani public clinical setting: a cross-sectional study[J]. J Clin Med, 2021, 10(5): 937. 10.3390/jcm10050937 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.CESTA C E, VIKTORIN A, OLSSON H, et al. Depression, anxiety, and antidepressant treatment in women: association with in vitro fertilization outcome[J]. Fertil Steril, 2016, 105(6): 1594-1602.e3. 10.1016/j.fertnstert.2016.01.036 [DOI] [PubMed] [Google Scholar]
- 5.XU H, OUYANG N, LI R, et al. The effects of anxiety and depression on in vitro fertilisation outcomes of infertile Chinese women[J]. Psychol Health Med, 2017, 22(1): 37-43. 10.1080/13548506.2016.1218031 [DOI] [PubMed] [Google Scholar]
- 6.AWTANI M, KAPOOR G K, KAUR P, et al. Anxiety and stress at different stages of treatment in women undergoing in vitro fertilization-intracytoplasmic sperm injection[J]. J Hum Reprod Sci, 2019, 12(1): 47-52. 10.4103/jhrs.jhrs_23_18 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.MAROUFIZADEH S, KARIMI E, VESALI S, et al. Anxiety and depression after failure of assisted reproductive treatment among patients experiencing infertility[J]. Int J Gynaecol Obstet, 2015, 130(3): 253-256. 10.1016/j.ijgo.2015.03.044 [DOI] [PubMed] [Google Scholar]
- 8.TURNER K, REYNOLDS-MAY M F, ZITEK E M, et al. Stress and anxiety scores in first and repeat IVF cycles: a pilot study[J/OL]. PLoS One, 2013, 8(5): e63743. 10.1371/journal.pone.0063743 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.LINTSEN A M, VERHAAK C M, EIJKEMANS M J, et al. Anxiety and depression have no influence on the cancellation and pregnancy rates of a first IVF or ICSI treatment[J]. Hum Reprod, 2009, 24(5): 1092-1098. 10.1093/humrep/den491 [DOI] [PubMed] [Google Scholar]
- 10.ZHOU F J, CAI Y N, DONG Y Z. Stress increases the risk of pregnancy failure in couples undergoing IVF[J]. Stress, 2019, 22(4): 414-420. 10.1080/10253890.2019.1584181 [DOI] [PubMed] [Google Scholar]
- 11.DOWLATI Y, HERRMANN N, SWARDFAGER W, et al. A meta-analysis of cytokines in major depression[J]. Biol Psychiatry, 2010, 67(5): 446-457. 10.1016/j.biopsych.2009.09.033 [DOI] [PubMed] [Google Scholar]
- 12.DUIVIS H E, VOGELZANGS N, KUPPER N, et al. Differential association of somatic and cognitive symptoms of depression and anxiety with inflammation: findings from the Netherlands Study of Depression and Anxiety (NESDA)[J]. Psychoneuroendocrinology, 2013, 38(9): 1573-1585. 10.1016/j.psyneuen.2013.01.002 [DOI] [PubMed] [Google Scholar]
- 13.HAIMOVICI F, ANDERSON J L, BATES G W, et al. Stress, anxiety, and depression of both partners in infertile couples are associated with cytokine levels and adverse IVF outcome[J/OL]. Am J Reprod Immunol, 2018, 79(4): e12832. 10.1111/aji.12832 [DOI] [PubMed] [Google Scholar]
- 14.LEFF GELMAN P, MANCILLA-HERRERA I, FLORES-RAMOS M, et al. The cytokine profile of women with severe anxiety and depression during pregnancy[J]. BMC Psychiatry, 2019, 19(1): 104. 10.1186/s12888-019-2087-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.MYINT A M, LEONARD B E, STEINBUSCH H W, et al. Th1, Th2, and Th3 cytokine alterations in major depression[J]. J Affect Disord, 2005, 88(2): 167-173. 10.1016/j.jad.2005.07.008 [DOI] [PubMed] [Google Scholar]
- 16.LISSAUER D, GOODYEAR O, KHANUM R, et al. Profile of maternal CD4 T-cell effector function during normal pregnancy and in women with a history of recurrent miscarriage[J]. Clin Sci (Lond), 2014, 126(5): 347-354. 10.1042/cs20130247 [DOI] [PubMed] [Google Scholar]
- 17.SAIFI B, REZAEE S A, TAJIK N, et al. Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window[J]. Reprod Biomed Online, 2014, 29(4): 481-489. 10.1016/j.rbmo.2014.06.008 [DOI] [PubMed] [Google Scholar]
- 18.QIAN J, ZHANG N, LIN J, et al. Distinct pattern of Th17/Treg cells in pregnant women with a history of unexplained recurrent spontaneous abortion[J]. Biosci Trends, 2018, 12(2): 157-167. 10.5582/bst.2018.01012 [DOI] [PubMed] [Google Scholar]
- 19.MOORE T A, CASE A J, MATHEWS T L, et al. Interleukin-17A and chronic stress in pregnant women at 24-28 weeks gestation[J]. Nurs Res, 2019, 68(2): 167-173. 10.1097/nnr.0000000000000334 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.SIEGMANN E M, MÜLLER H, LUECKE C, et al. Association of depression and anxiety disorders with autoimmune thyroiditis: a systematic review and meta-analysis[J]. JAMA Psychiatry, 2018, 75(6): 577-584. 10.1001/jamapsychiatry.2018.0190 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.HIRTZ R, LIBUDA L, HINNEY A, et al. Lack of evidence for a relationship between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axis in adolescent depression[J]. Front Endocrinol (Lausanne), 2021, 12: 662243. 10.3389/fendo.2021.662243 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.ITTERMANN T, VÖLZKE H, BAUMEISTER S E, et al. Diagnosed thyroid disorders are associated with depression and anxiety[J]. Soc Psychiatry Psychiatr Epidemiol, 2015, 50(9): 1417-1425. 10.1007/s00127-015-1043-0 [DOI] [PubMed] [Google Scholar]
- 23.CAI Y Y, LIN N, ZHONG L P, et al. Serum and follicular fluid thyroid hormone levels and assisted reproductive technology outcomes[J]. Reprod Biol Endocrinol, 2019, 17(1): 90. 10.1186/s12958-019-0529-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.ASHKAR F A, SEMPLE E, SCHMIDT C H, et al. Thyroid hormone supplementation improves bovine embryo development in vitro[J]. Hum Reprod, 2010, 25(2): 334-344. 10.1093/humrep/dep394 [DOI] [PubMed] [Google Scholar]
- 25.PICCIRILLI D, BALDINI E, MASSIMIANI M, et al. Thyroid hormone regulates protease expression and activation of Notch signaling in implantation and embryo development[J]. J Endocrinol, 2018, 236(1): 1-12. 10.1530/joe-17-0436 [DOI] [PubMed] [Google Scholar]
- 26.SALLEH N, SAYEM A, GIRIBABU N, et al. Expression of proteins related to thyroid hormone function in the uterus is down-regulated at the day of implantation in hypothyroid pregnant rats[J]. Cell Biol Int, 2019, 43(5): 486-494. 10.1002/cbin.11114 [DOI] [PubMed] [Google Scholar]
- 27.SAYEM A S M, GIRIBABU N, MUNIANDY S, et al. Effects of thyroxine on expression of proteins related to thyroid hormone functions (TR-alpha, TR-beta, RXR and ERK1/2) in uterus during peri-implantation period[J]. Biomed Pharmacother, 2017, 96: 1016-1021. 10.1016/j.biopha.2017.11.128 [DOI] [PubMed] [Google Scholar]
- 28.NICOLAS S, ABDELLATEF S, HADDAD M A, et al. Hypoxia and EGF stimulation regulate VEGF expression in human glioblastoma multiforme (GBM) cells by differential regulation of the PI3K/Rho-GTPase and MAPK pathways[J]. Cells, 2019, 8(11): 1397. 10.3390/cells8111397 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.LEFF-GELMAN P, FLORES-RAMOS M, AEÁ C, et al. Cortisol and DHEA-S levels in pregnant women with severe anxiety[J]. BMC Psychiatry, 2020, 20(1): 393. 10.1186/s12888-020-02788-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.SAIF Z, HODYL N A, STARK M J, et al. Expression of eight glucocorticoid receptor isoforms in the human preterm placenta vary with fetal sex and birthweight[J]. Placenta, 2015, 36(7): 723-730. 10.1016/j.placenta.2015.05.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.ZIEBE S, LOFT A, POVLSEN B B, et al. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization[J]. Fertil Steril, 2013, 99(6): 1600-1609. 10.1016/j.fertnstert.2012.12.043 [DOI] [PubMed] [Google Scholar]
- 32.RAHMATI M, PETITBARAT M, DUBANCHET S, et al. Granulocyte-colony stimulating factor related pathways tested on an endometrial ex-vivo model[J/OL]. PLoS One, 2014, 9(9): e102286. 10.1371/journal.pone.0102286 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.FURMENTO V A, MARINO J, BLANK V C, et al. The granulocyte colony-stimulating factor (G-CSF) upregulates metalloproteinase-2 and VEGF through PI3K/Akt and ERK1/2 activation in human trophoblast Swan 71 cells[J]. Placenta, 2014, 35(11): 937-946. 10.1016/j.placenta.2014.09.003 [DOI] [PubMed] [Google Scholar]
- 34.SMITH A, WITTE E, MCGEE D, et al. Cortisol inhibits CSF2 and CSF3 via DNA methylation and inhibits invasion in first-trimester trophoblast cells[J]. Am J Reprod Immunol, 2017, 78(5): 10.1111/aji.12741. 10.1111/aji.12741 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.TARABUSI M, VOLPE A, FACCHINETTI F. Psychological group support attenuates distress of waiting in couples scheduled for assisted reproduction[J]. J Psychosom Obstet Gynaecol, 2004, 25(3-4): 273-279. 10.1080/01674820400017905 [DOI] [PubMed] [Google Scholar]
- 36.GORAYEB R, BORSARI A C, ROSA-E-SILVA A C, et al. Brief cognitive behavioral intervention in groups in a Brazilian assisted reproduction program[J]. Behav Med, 2012, 38(2): 29-35. 10.1080/08964289.2012.654834 [DOI] [PubMed] [Google Scholar]
- 37.LI YQ, SHI Y, XU C, et al. Cognitive behavioural therapy improves pregnancy outcomes of in vitro fertilization-embryo transfer treatment: a systematic review and meta-analysis[J]. J Int Med Res, 2021, 49(11): 3000605211050798. 10.1177/03000605211050798 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.BOIVIN J, ANDERSSON L, SKOOG-SVANBERG A, et al. Psychological reactions during in-vitro fertilization: similar response pattern in husbands and wives[J]. Hum Reprod, 1998, 13(11): 3262-3267. 10.1093/humrep/13.11.3262 [DOI] [PubMed] [Google Scholar]
- 39.PIETROMONACO P R, OVERALL N C, POWERS S I. Depressive symptoms, external stress, and marital adjustment: the buffering effect of partner’s responsive behavior[J]. Soc Psychol Personal Sci, 2022, 13(1): 220-232. 10.1177/19485506211001687 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.SMITH C A, USSHER J M, PERZ J, et al. The effect of acupuncture on psychosocial outcomes for women experiencing infertility: a pilot randomized controlled trial[J]. J Altern Complement Med, 2011, 17(10): 923-930. 10.1089/acm.2010.0380 [DOI] [PubMed] [Google Scholar]
- 41.SMITH C A, DE LACEY S, CHAPMAN M, et al. The effects of acupuncture on the secondary outcomes of anxiety and quality of life for women undergoing IVF: a randomized controlled trial[J]. Acta Obstet Gynecol Scand, 2019, 98(4): 460-469. 10.1111/aogs.13528 [DOI] [PubMed] [Google Scholar]
- 42.GUVEN P G, CAYIR Y, BOREKCI B. Effectiveness of acupuncture on pregnancy success rates for women undergoing in vitro fertilization: a randomized controlled trial[J]. Taiwan J Obstet Gynecol, 2020, 59(2): 282-286. 10.1016/j.tjog.2020.01.018 [DOI] [PubMed] [Google Scholar]
- 43.KIRCA N, PASINLIOGLU T. The effect of yoga on stress level in infertile women[J]. Perspect Psychiatr Care, 2019, 55(2): 319-327. 10.1111/ppc.12352 [DOI] [PubMed] [Google Scholar]