Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1993 Nov;69(5 Spec No):493–497. doi: 10.1136/adc.69.5_spec_no.493

Non-invasive measurement of intracranial pressure in the newborn and the infant: the Rotterdam teletransducer.

J L Wayenberg 1, C Raftopoulos 1, D Vermeylen 1, A Pardou 1
PMCID: PMC1029591  PMID: 8285752

Abstract

Knowledge of intracranial pressure may be important in many clinical situations in neonates and young infants. The best way to obtain this information would be a non-traumatic procedure. In order to test the reliability of a new fontanometer, the Rotterdam teletransducer, 25 simultaneous measurements of cerebrospinal fluid (CSF) pressure and anterior fontanelle pressure (AFP) were performed. Mean (SD) difference between CSF pressure and AFP was -0.2 (1.8) mm Hg (95% confidence interval from -0.48 to -0.88 mm Hg). The AFP was also measured in 60 healthy children (15 premature, 30 term newborn babies, and 15 infants). The different aspects of AFP were analysed and normal values computed. These results suggest that the Rotterdam teletransducer gives reliable continuous information about intracranial pressure and can be used in clinical practice. Interpretation of AFP plots must take the influence of postconceptional age and the physiological occurrence of pressure waves into account.

Full text

PDF
493

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avezaat C. J., van Eijndhoven J. H. Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir (Wien) 1986;79(1):13–29. doi: 10.1007/BF01403461. [DOI] [PubMed] [Google Scholar]
  2. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
  3. De Jong D. A., Maas A. I., v d Voort E. Non-invasive intracranial pressure monitoring. A technique for reproducible fontanelle pressure measurements. Z Kinderchir. 1984 Aug;39(4):274–276. doi: 10.1055/s-2008-1044227. [DOI] [PubMed] [Google Scholar]
  4. Horbar J. D., Yeager S., Philip A. G., Lucey J. F. Effect of application force on noninvasive measurements of intracranial pressure. Pediatrics. 1980 Sep;66(3):455–457. [PubMed] [Google Scholar]
  5. Kaiser A. M., Whitelaw A. G. Normal cerebrospinal fluid pressure in the newborn. Neuropediatrics. 1986 May;17(2):100–102. doi: 10.1055/s-2008-1052509. [DOI] [PubMed] [Google Scholar]
  6. LUNDBERG N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36(149):1–193. [PubMed] [Google Scholar]
  7. Levene M. I., Evans D. H., Forde A., Archer L. N. Value of intracranial pressure monitoring of asphyxiated newborn infants. Dev Med Child Neurol. 1987 Jun;29(3):311–319. doi: 10.1111/j.1469-8749.1987.tb02484.x. [DOI] [PubMed] [Google Scholar]
  8. Marmarou A., Shulman K., LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975 Nov;43(5):523–534. doi: 10.3171/jns.1975.43.5.0523. [DOI] [PubMed] [Google Scholar]
  9. Martin G. Lundberg's B waves as a feature of normal intracranial pressure. Surg Neurol. 1978 Jun;9(6):347–348. [PubMed] [Google Scholar]
  10. Mautner-Huppert D., Haberl R. L., Dirnagl U., Villringer A., Schmiedek P., Einhäupl K. B-waves in healthy persons. Neurol Res. 1989 Dec;11(4):194–196. doi: 10.1080/01616412.1989.11739891. [DOI] [PubMed] [Google Scholar]
  11. Mehta A., Wright B. M., Shore C. Clinical fontanometry in the newborn. Lancet. 1988 Apr 2;1(8588):754–756. doi: 10.1016/s0140-6736(88)91551-6. [DOI] [PubMed] [Google Scholar]
  12. Menke J. A., Miles R., McIlhany M., Bashiru M., Chua C., Schwied E., Menten T. G., Khanna N. N. The fontanelle tonometer: a noninvasive method for measurement of intracranial pressure. J Pediatr. 1982 Jun;100(6):960–963. doi: 10.1016/s0022-3476(82)80528-3. [DOI] [PubMed] [Google Scholar]
  13. Newell D. W., Aaslid R., Stooss R., Reulen H. J. The relationship of blood flow velocity fluctuations to intracranial pressure B waves. J Neurosurg. 1992 Mar;76(3):415–421. doi: 10.3171/jns.1992.76.3.0415. [DOI] [PubMed] [Google Scholar]
  14. Philip A. G., Long J. G., Donn S. M. Intracranial pressure. Sequential measurements in full-term and preterm infants. Am J Dis Child. 1981 Jun;135(6):521–524. [PubMed] [Google Scholar]
  15. Raju T. N., Doshi U. V., Vidyasagar D. Cerebral perfusion pressure studies in healthy preterm and term newborn infants. J Pediatr. 1982 Jan;100(1):139–142. doi: 10.1016/s0022-3476(82)80255-2. [DOI] [PubMed] [Google Scholar]
  16. Robinson R. O., Rolfe P., Sutton P. Non-invasive method for measuring intracranial pressure in normal newborn infants. Dev Med Child Neurol. 1977 Jun;19(3):305–308. doi: 10.1111/j.1469-8749.1977.tb08365.x. [DOI] [PubMed] [Google Scholar]
  17. Rochefort M. J., Rolfe P., Wilkinson A. R. New fontanometer for continuous estimation of intracranial pressure in the newborn. Arch Dis Child. 1987 Feb;62(2):152–155. doi: 10.1136/adc.62.2.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schettini A., Walsh E. K. Experimental identification of the subararachnoid and subpial compartments by intracranial pressure measurements. J Neurosurg. 1974 May;40(5):609–616. doi: 10.3171/jns.1974.40.5.0609. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES