Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1994 Jul;71(1):35–39. doi: 10.1136/adc.71.1.35

Interleukin-1 alpha, soluble interleukin-2 receptor, and IgG concentrations in cystic fibrosis treated with prednisolone.

P Greally 1, M J Hussain 1, D Vergani 1, J F Price 1
PMCID: PMC1029909  PMID: 8067791

Abstract

The cytokines interleukin-1 and interleukin-2 participate in the inflammatory response, and may contribute to hypergammaglobulinaemia G and the development of lung injury in cystic fibrosis. Anti-inflammatory treatment with corticosteroids may attenuate this response. The effect of a 12 week course of oral prednisolone on spirometry and serum concentrations of interleukin-1 alpha (IL-1 alpha), soluble interleukin-2 receptor (sIL-2R), and IgG was investigated in 24 children with cystic fibrosis. Prednisolone was administered, in a double blind and placebo controlled manner, at an initial dose of 2 mg/kg daily for 14 days and tapered to 1 mg/kg on alternate days for 10 weeks. The treated group (n = 12) experienced an increase in forced expiratory volume in one second and forced vital capacity at 14 days, however, these changes were smaller at 12 weeks. In the treated group, change in pulmonary function was associated with decreased serum IgG and cytokine concentrations. Prednisolone suppresses serum concentrations of these cytokines, which may participate in the inflammatory response, the excessive synthesis of IgG, and airflow obstruction observed in cystic fibrosis patients.

Full text

PDF
35

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerbach H. S., Williams M., Kirkpatrick J. A., Colten H. R. Alternate-day prednisone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet. 1985 Sep 28;2(8457):686–688. doi: 10.1016/s0140-6736(85)92929-0. [DOI] [PubMed] [Google Scholar]
  2. Bedrossian C. W., Greenberg S. D., Singer D. B., Hansen J. J., Rosenberg H. S. The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum Pathol. 1976 Mar;7(2):195–204. doi: 10.1016/s0046-8177(76)80023-8. [DOI] [PubMed] [Google Scholar]
  3. Bruce M. C., Poncz L., Klinger J. D., Stern R. C., Tomashefski J. F., Jr, Dearborn D. G. Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am Rev Respir Dis. 1985 Sep;132(3):529–535. doi: 10.1164/arrd.1985.132.3.529. [DOI] [PubMed] [Google Scholar]
  4. Corey M., Levison H., Crozier D. Five- to seven-year course of pulmonary function in cystic fibrosis. Am Rev Respir Dis. 1976 Dec;114(6):1085–1092. doi: 10.1164/arrd.1976.114.6.1085. [DOI] [PubMed] [Google Scholar]
  5. Dagli E., Warner J. A., Besley C. R., Warner J. O. Raised serum soluble interleukin-2 receptor concentrations in cystic fibrosis patients with and without evidence of lung disease. Arch Dis Child. 1992 Apr;67(4):479–481. doi: 10.1136/adc.67.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dinarello C. A. Interleukin-1. Rev Infect Dis. 1984 Jan-Feb;6(1):51–95. doi: 10.1093/clinids/6.1.51. [DOI] [PubMed] [Google Scholar]
  7. Espevik T., Waage A., Faxvaag A., Shalaby M. R. Regulation of interleukin-2 and interleukin-6 production from T-cells: involvement of interleukin-1 beta and transforming growth factor-beta. Cell Immunol. 1990 Mar;126(1):47–56. doi: 10.1016/0008-8749(90)90299-7. [DOI] [PubMed] [Google Scholar]
  8. Fick R. B., Jr, Robbins R. A., Squier S. U., Schoderbek W. E., Russ W. D. Complement activation in cystic fibrosis respiratory fluids: in vivo and in vitro generation of C5a and chemotactic activity. Pediatr Res. 1986 Dec;20(12):1258–1268. doi: 10.1203/00006450-198612000-00014. [DOI] [PubMed] [Google Scholar]
  9. Gillis S., Crabtree G. R., Smith K. A. Glucocorticoid-induced inhibition of T cell growth factor production. I. The effect on mitogen-induced lymphocyte proliferation. J Immunol. 1979 Oct;123(4):1624–1631. [PubMed] [Google Scholar]
  10. Gillis S., Crabtree G. R., Smith K. A. Glucocorticoid-induced inhibition of T cell growth factor production. II. The effect on the in vitro generation of cytolytic T cells. J Immunol. 1979 Oct;123(4):1632–1638. [PubMed] [Google Scholar]
  11. Greally P., Hussain M. J., Vergani D., Price J. F. Serum interleukin-1 alpha and soluble interleukin-2 receptor concentrations in cystic fibrosis. Arch Dis Child. 1993 Jun;68(6):785–787. doi: 10.1136/adc.68.6.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horst H. J., Flad H. D. Corticosteroid-interleukin 2 interactions: inhibition of binding of interleukin 2 to interleukin 2 receptors. Clin Exp Immunol. 1987 Apr;68(1):156–161. [PMC free article] [PubMed] [Google Scholar]
  13. Johnson U., Ohlsson K., Olsson I. Effects of granulocyte neutral proteases on complement components. Scand J Immunol. 1976;5(4):421–426. doi: 10.1111/j.1365-3083.1976.tb00296.x. [DOI] [PubMed] [Google Scholar]
  14. Jones M. M., Seilheimer D. K., Pollack M. S., Curry M., Crane M. M., Rossen R. D. Relationship of hypergammaglobulinemia, circulating immune complexes, and histocompatibility antigen profiles in patients with cystic fibrosis. Am Rev Respir Dis. 1989 Dec;140(6):1636–1639. doi: 10.1164/ajrccm/140.6.1636. [DOI] [PubMed] [Google Scholar]
  15. Kharazmi A. Interactions of Pseudomonas aeruginosa proteases with the cells of the immune system. Antibiot Chemother (1971) 1989;42:42–49. doi: 10.1159/000417602. [DOI] [PubMed] [Google Scholar]
  16. Knudsen P. J., Dinarello C. A., Strom T. B. Glucocorticoids inhibit transcriptional and post-transcriptional expression of interleukin 1 in U937 cells. J Immunol. 1987 Dec 15;139(12):4129–4134. [PubMed] [Google Scholar]
  17. Moore S. A., Strieter R. M., Rolfe M. W., Standiford T. J., Burdick M. D., Kunkel S. L. Expression and regulation of human alveolar macrophage-derived interleukin-1 receptor antagonist. Am J Respir Cell Mol Biol. 1992 Jun;6(6):569–575. doi: 10.1165/ajrcmb/6.6.569. [DOI] [PubMed] [Google Scholar]
  18. Moss R. B., Hsu Y. P., Lewiston N. J., Curd J. G., Milgrom H., Hart S., Dyer B., Larrick J. W. Association of systemic immune complexes, complement activation, and antibodies to Pseudomonas aeruginosa lipopolysaccharide and exotoxin A with mortality in cystic fibrosis. Am Rev Respir Dis. 1986 Apr;133(4):648–652. doi: 10.1164/arrd.1986.133.4.648. [DOI] [PubMed] [Google Scholar]
  19. Pantin C. F., Stead R. J., Hodson M. E., Batten J. C. Prednisolone in the treatment of airflow obstruction in adults with cystic fibrosis. Thorax. 1986 Jan;41(1):34–38. doi: 10.1136/thx.41.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenstein B. J., Eigen H. Risks of alternate-day prednisone in patients with cystic fibrosis. Pediatrics. 1991 Feb;87(2):245–246. [PubMed] [Google Scholar]
  21. Rubin L. A., Jay G., Nelson D. L. The released interleukin 2 receptor binds interleukin 2 efficiently. J Immunol. 1986 Dec 15;137(12):3841–3844. [PubMed] [Google Scholar]
  22. Rubin L. A., Kurman C. C., Fritz M. E., Biddison W. E., Boutin B., Yarchoan R., Nelson D. L. Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro. J Immunol. 1985 Nov;135(5):3172–3177. [PubMed] [Google Scholar]
  23. Schiøtz P. O., Nielsen H., Høiby N., Glikmann G., Svehag S. E. Immune complexes in the sputum of patients with cystic fibrosis suffering from chronic Pseudomonas aeruginosa lung infection. Acta Pathol Microbiol Scand C. 1978 Feb;86(1):37–40. doi: 10.1111/j.1699-0463.1978.tb02555.x. [DOI] [PubMed] [Google Scholar]
  24. Sebaldt R. J., Sheller J. R., Oates J. A., Roberts L. J., 2nd, FitzGerald G. A. Inhibition of eicosanoid biosynthesis by glucocorticoids in humans. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6974–6978. doi: 10.1073/pnas.87.18.6974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strieter R. M., Chensue S. W., Basha M. A., Standiford T. J., Lynch J. P., Baggiolini M., Kunkel S. L. Human alveolar macrophage gene expression of interleukin-8 by tumor necrosis factor-alpha, lipopolysaccharide, and interleukin-1 beta. Am J Respir Cell Mol Biol. 1990 Apr;2(4):321–326. doi: 10.1165/ajrcmb/2.4.321. [DOI] [PubMed] [Google Scholar]
  26. Suter S., Schaad U. B., Roux L., Nydegger U. E., Waldvogel F. A. Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J Infect Dis. 1984 Apr;149(4):523–531. doi: 10.1093/infdis/149.4.523. [DOI] [PubMed] [Google Scholar]
  27. Wheeler W. B., Williams M., Matthews W. J., Jr, Colten H. R. Progression of cystic fibrosis lung disease as a function of serum immunoglobulin G levels: a 5-year longitudinal study. J Pediatr. 1984 May;104(5):695–699. doi: 10.1016/s0022-3476(84)80946-4. [DOI] [PubMed] [Google Scholar]
  28. Wisnieski J. J., Todd E. W., Fuller R. K., Jones P. K., Dearborn D. G., Boat T. F., Naff G. B. Immune complexes and complement abnormalities in patients with cystic fibrosis. Increased mortality associated with circulating immune complexes and decreased function of the alternative complement pathway. Am Rev Respir Dis. 1985 Oct;132(4):770–776. doi: 10.1164/arrd.1985.132.4.770. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES