Skip to main content
Molecules logoLink to Molecules
. 2023 Jun 13;28(12):4744. doi: 10.3390/molecules28124744

Anti-Inflammatory and Cytotoxic Activities of Clerodane-Type Diterpenes

Rubria Marlen Martínez-Casares 1, Liliana Hernández-Vázquez 1, Angelica Mandujano 2, Leonor Sánchez-Pérez 2, Salud Pérez-Gutiérrez 1, Julia Pérez-Ramos 1,*
Editor: Domenico Trombetta
PMCID: PMC10303976  PMID: 37375299

Abstract

The secondary metabolites of clerodane diterpenoids have been found in several plant species from various families and in other organisms. In this review, we included articles on clerodanes and neo-clerodanes with cytotoxic or anti-inflammatory activity from 2015 to February 2023. A search was conducted in the following databases: PubMed, Google Scholar and Science Direct, using the keywords clerodanes or neo-clerodanes with cytotoxicity or anti-inflammatory activity. In this work, we present studies on these diterpenes with anti-inflammatory effects from 18 species belonging to 7 families and those with cytotoxic activity from 25 species belonging to 9 families. These plants are mostly from the Lamiaceae, Salicaceae, Menispermaceae and Euphorbiaceae families. In summary, clerodane diterpenes have activity against different cell cancer lines. Specific antiproliferative mechanisms related to the wide range of clerodanes known today have been described, since many of these compounds have been identified, some of which we barely know their properties. It is very possible that there are even more compounds than those described today, in such a way that makes it an open field to discover. Furthermore, some diterpenes presented in this review have already-known therapeutic targets, and therefore, their potential adverse effects can be predicted in some way.

Keywords: clerodane, neo-clerodane, anti-inflammatory, cytotoxic activities

1. Introduction

Diterpenes are metabolites that come from isoprene units; these compounds can be classified according to their structure [1]. One type of diterpene is clerodanes, which are found in a wide range of plant species, especially those from the Labiatae, Euphorbiaceae and Verbenaceae families [2,3]; they have also been found in bacteria, fungi and marine sponges. This type of diterpene has been extensively studied due to many of them having biological activity [1,2,3,4]. For example, clerodin has anthelminthic activity [5]; salvinorin A is an agonist of κ-opioid receptor-serotonin-2A [6] with potential for use as a treatment in neuropsychiatric disorders [7]; tinosinenosides A–C show cytotoxicity effects against HeLa [8]; and columbin has anti-inflammatory and anticancer efficacy [4].

Clerodanes are secondary metabolites; when these compounds are obtained from plants, they are biosynthesized in the chloroplasts from geranylgeranyl pyrophosphate, producing a labdane-type precursor skeleton, which can be transformed to a halimane-type intermediate, and then converted to either cis- or trans- clerodanes [3] (Figure 1a).

Figure 1.

Figure 1

(a) Biosynthesis of clerodanes and (b) general structure of clerodanes.

Clerodanes are bicyclic diterpenoids with a fused ring of decalin structure (C1–C10) and a side chain of six carbons at C9. They are classified according to the configuration at the ring fusion and the substituents in C8 and C9 into four types: trans-cis, trans-trans, cis-cis and cis-trans (Figure 1b). About 25% have a cis ring fusion, and 75% have 5:10 trans ring fusion [9].

In this review, we have included clerodanes and neo-clerodanes and their enantiomers ent-neo-clerodanes (Figure 2). Additionally, carbons 12 to 16 are usually oxidized to diene, furan, lactone or hydrofurofuran, which give structural characteristics to clerodane [10].

Figure 2.

Figure 2

Absolute clerodane configuration.

Cancer is a global health problem and is currently one of the main causes contributing to premature death worldwide [11]. At the present time, even with the great advances in medicine in our understanding and treatment of cancer with multimodal therapies including immunotherapy, gene-targeted therapy, chemotherapy, hormonal therapy and cancer vaccines [12] against specific cell targets, there are needs that have not been covered. These include more effective therapies, with fewer adverse effects, but also therapies at a more affordable cost. Thus, there is still a need to investigate more effective and less toxic compounds. Most of the chemotherapeutic drugs (nearly 65%) that are used in current cancer treatment regimens were originally isolated from natural products or their derivatives such as plants or microorganisms [13]. For instance, paclitaxel, a diterpene isolated from Taxus brevifolia (yew trees), classified as a taxane, is used in the therapy of various types of cancers [14]. Other examples include anthracyclines derived from Streptomyces strains, among them being doxorubicin, bleomycin and many others [13]. The cytotoxic activity of several clerodanes in different cancer cell lines has been described [1].

On the other hand, inflammation is an immune response to different stimuli, such as pathogens such as viruses and bacteria, traumas and chemical irritants [15]; that is to say, inflammation is a protective response of the body against harmful stimuli. Additionally, long-term inflammation could lead to several symptoms, such as pain, fatigue, insomnia, depression and gastrointestinal problems [16]. Chronic inflammation is associated with diseases such as cancer, diabetes and arthritis [17]. The inflammatory response leads to the production of pro-inflammatory mediators, such as cytokines, serotonin, leukotrienes and histamine [18]. These mediators promote vascular permeability, leukocyte migration, blood vessel dilatation and pain. The anti-inflammatory activity of terpenes, such as carvacrol, some carotenes and diterpenes, such as clerodanes, and triterpenes, has been studied [2,19].

In this review, 158 clerodanes and 70 neo-clerodanes (1, 56, 57, 7173, 94132, 141158, 184187, 196, 197 and 207210) with cytotoxic and anti-inflammatory activities reported from 2015 to February of 2023 were included. A total of 56 articles were found; in Table 1, the plants, family, collection place and part of the plants from which the clerodanes and neo-clerodanes were isolated are shown.

Table 1.

Part of plant, family and collection place of plants that contained clerodanes or neo-cleordanes.

Plant Family Part of Plant Collection Place
Ajuga decumbens [20] Lamiaceae Aerial parts Pingtan island of Fujian Province.
Anacolosa clarkia [21] Olacaceae Fruit, leaves and twigs of the plant Bana Forest Preserve in Danang. NCI Natural Products Repository.
Casearia corymbosa [22] Salicaceae Stem bark Othón P. Blanco, Quintana Roo, Mexico.
Casearia graveolens [23] Salicaceae Twigs Chiang Rai Province, northern Thailand.
Casearia grewiifolia [24,25] Salicaceae Fresh fruits Khon Kaen University campus.
Leaves Phu Loc–Thua Thien Hue, Vietnam.
Casearia kurzii [26,27,28,29] Salicaceae Fruit, leaves and twigs Bana Forest Preserve in Danang, Vietnam.
Twigs and leaves Xishuangbanna County, Yunn an Province, P. R. China.
Casearia sylvestris [30] Salicaceae Leaves Parque Estadual Carlos Botelho (São Miguel Arcanjo, São Paulo State.)
Croton caudatus [31] Euphorbiaceae Leaves and twigs Xishuangbanna Prefecture, Yunnan Province, P. R. China.
Croton crassifolius [32,33,34] Euphorbiaceae Roots Yulin City, Guangxi Province, China.
Southeast China, Thailand, Vietnam, and Laos.
Fujian Province, People’s Republic of China.
Croton echioides [35] Euphorbiaceae Stems Brazil
Croton oligandrus [36] Euphorbiaceae Bark Mount Eloundem, Central Region, Cameroon.
Gottschelia schizopleura [37] Cephaloziellaceae Aerial parts Mount Alab, Sabah, North Borneo, Malaysia.
Laetia corymbulosa [38] Salicaceae Bark The plant was provided by NCI/NIH (Frederick, MD, U.S.).
Linaria japonica [39] Plantaginaceae Whole plants Hiroshima, Japan.
Polyalthia longifolia [40] Annonaceae Seeds Tirupati, India.
Polyalthia laui [41] Annonaceae Roots Hainan Province, China.
Salvia amarissima [42,43,44] Lamiaceae Leaves and flowers Teotihuacan, State of Mexico.
Aerial portions Teotihuacan Valley
Salvia involucrata [45] Lamiaceae Aerial parts Municipality of Xilitla, State of San Luis Potosí, Mexico.
Salvia leucantha [46] Lamiaceae Aerial parts Yunnan Province, China.
Scutellaria barbata [47,48,49,50] Lamiaceae Whole plant Linyi district, Shandong Province, China.
Aerial parts Purchased in a drugstore of Liaoning Guodayizhi Pharmaceutical Co., Ltd. China.
Aerial parts Purchased from Bozhou Herbal Market in Anhui Province, China
Scutellaria strigillosa [51,52] Lamiaceae Whole plants Yantai district, Shandong Province, China.
Whole plants Hebei, Shandong, Zhejiang and Jilin Provinces, China
Sheareria nana [53] Asteraceae Whole herb Jishou, Hunan Province, China.
Tinospora capillipes [54] Menispermaceae Whole herb Xishuangbanna County, Yunnan Province, China.
Tinospora cordifolia [55] Menispermaceae Stems India
Tinospora sagittata [56] Menispermaceae Roots Anguo Medicine market in Hebei Province, China.
Ajuga pantantha [57,58] Lamiaceae Aerial parts Yunnan Province, China.
Aerial parts Purchased from Anhui Province, China.
Callicarpa arborea [59] Lamiaceae Twigs Xishuangbanna and Yuanyang Prefectures.
Callicarpa cathayana [60] Lamiaceae Dried aerial parts Bozhou Herbal Market in Anhui Province, China.
Callicarpa hypoleucophylla [61] Lamiaceae Leaves and twigs Kaohsiung city, Taiwan.
Croton crassifolius [32,62] Euphorbiaceae Roots Guangxi Province, China.
Croton floribundus [63] Euphorbiaceae Roots Provided by the company Mudas Nativas e Exóticas.
LTDA of CNPJ, Araraquara Brazil.
Croton laui [64] Euphorbiaceae Leaves Hainan Province, China.
Croton poomae [65] Euphorbiaceae Leaves and stems Bung Kan Province, Thailand.
Dodonaea viscosa [66] Sapindaceae Leaves Sierra de Huautla, Morelos State, Mexico.
Dysoxylum lukii. [67] Meliaceae Twigs and leaves Xishuangbanna County, Yunnan Province, China.
Jamesoniella autumnalis [68] Adelanthaceae Whole plant Wangtiane park, Changbaishan City, Jilin Province, China.
Monoon membranifolium [69] Annonaceae Twig extract Thailand and Peninsula Malaysia.
Nepeta suavis [70] Lamiaceae Roots Found in central and southern Europe, North Africa and southern Asia.
Polyalthia longifolia [71] Annonaceae Seeds Seshachalam hills,
Tirupati, India.
Scutellaria barbata [72] Lamiaceae Aerial parts Baise city, Guangxi Province, China.
Teucrium fructicans [73] Lamiaceae Aerial parts Jiansu Province, China.
Tinospora crispa [74,75] Menispermaceae Stems Mengla County, Yunnan Province, China.
Vines and leaves Longzhou County, Guangxi Province, China.
Tinospora sagittata [76] Menispermaceae Tuberous roots Shiyan city of Hubei Province, China.

Clerodanes and neo-clerodanes with cytotoxic activity are shown in Table 2, and their structures are shown in Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13.

Table 2.

Clerodane diterpenes with cytotoxic activity.

Plant Source Compound Name Methods Results References
Ajuga
decumbens
Compound 1 CCK8 method
A549
HeLa
IC50 µM
71.4
71.6
[20]
Ajugamarin A1 (2) A549
HeLa
76.7
5.39 × 10−7
Anacolosa clarkii Anacolosin A (3) SRB assay
A-673
SJCRH30
D283
Hep293TT
TGI μM
1.10
0.52
0.70
1.00
[21]
Anacolosin B (4) A-673
SJCRH30
D283
Hep293TT
1.00
0.50
0.60
0.90
Anacolosin C (5) A-673
SJCRH30
D283
Hep293TT
1.10
0.67
0.66
1.00
Anacolosin D (6) A-673
SJCRH30
D283
Hep293TT
1.20
0.73
0.66
0.80
Anacolosin E (7) A-673
SJCRH30
D283
Hep293TT
3.10
1.90
2.00
1.80
Anacolosin F (8) A-673
SJCRH30
D283
Hep293TT
4.10
2.30
2.30
3.20
Corymbulosin X (9) A-673
SJCRH30
D283
Hep293TT
0.70
0.34
0.36
0.22
Corymbulosin Y (10) A-673
SJCRH30
D283
Hep293TT
1.00
0.44
0.70
0.28
Compound 11 A-673
SJCRH30
D283
Hep293TT
1.70
0.80
1.10
0.60
Caseamembrin S (12) A-673
SJCRH30
D283
Hep293TT
0.90
0.36
0.50
0.30
Casearia
corymbosa
Casearborin c (13) SRB assay
HeLa
SiHa
Vero
CC50µM (SI)
13.44
77.36
50.26
[22]
Casearia graveolens Caseariagraveolin (14) REMA assay
KB
MCF-7
IC50 μM
2.48
6.63
[23]
Casearia grewiifolia Caseargrewiin M (15) MTT assay
BT474
Chago-K1
Hep-G2
KATO-III
SW620
IC50 µg/mL
6.30
6.10
4.64
5.50
5.50
[24,25]
Caseargrewiin G (16) BT474
Chago-K1
Hep-G2
KATO-III
SW620
5.67
6.10
0.90
5.46
3.85
Caseagrewiifolin B (17) WST-1 assay
KB
Hep-G2
IC50 μM
6.2
7.0
Caseanigrescen D (18) KB
Hep-G2
LU-1
MCF-7
NIH-3T3
0.5
0.3
0.9
0.8
0.3
Casearia
kurzii
Kurziterpene A (19) MTT assay
A549,
HeLa
HepG2
IC50 μM
40.8
>60
>60
[26,27,28,29]
Kurziterpene B (20) A549
HeLa
Hep-G2
19.7
12.1
49.3
Kurziterpene C (21) A549,
HeLa
Hep-G2
>60
49.4
>60
Kurziterpene D (22) A549,
HeLa
Hep-G2
18.3
9.0
>60
Kurziterpene E (23) A549,
HeLa
Hep-G2
10.2
5.3
10.7
Analysis via flow cytometry Apoptosis of HeLa
(2R,5S,6S,8R,9R,10S,18S,19S)-2,19-diacetoyloxy-6,18-dimethoxy-18,19-epoxycleroda-3,13(16),14-triene (24) MTT assay
A549
HeLa
Hep-G2
IC50 μM
>60
17.9
>60
Corymbulosin M (25) A549
HeLa
Hep-G2
5.5
4.1
9.3
Analysis via flow cytometry Apoptosis of HeLa
Caseamembrin B (26) MTT assay
A549
HeLa
Hep-G2
IC50 μM
36.1
18.8
>60
Caseamembrin U (27) A549
HeLa
Hep-G2
33.2
15.6
>60
Caseakurzin A (28) QIR assay
A549
IC50 μM
10.8
Caseakurzin B (29) QIR assay
A549
IC50 μM
4.4
Cell apoptosis assay Apoptosis of A549
Caseakurzin C (30) QIR assay
A549
IC50 μM
30.3
Caseakurzin D (31) 27.8
Caseakurzin E (32) 32.7
Caseakurzin F (33) 26.8
Caseakurzin J (34) QIR assay
A549
IC50 μM
4.6
Cell apoptosis assay Apoptosis of A549
Kurzipene A (35) MTT assay
Hep-G2
A549
HeLa
K562
IC50 μM
>60
>60
>60
>60
Kurzipene B (36) Hep-G2
A549
HeLa
K562
>60
32.6
54.6
>60
Kurzipene C (37) Hep-G2
A549
HeLa
K562
>60
>60
>60
>60
Kurzipene D (38) Hep-G2
A549
HeLa
K562
9.7
10.9
12.4
7.2
Flow cytometry Apoptosis of Hep-G2
Anti-tumor assay using zebrafish model It blocked tumor cell invasion and metastasis
Kurzipene E (39) Hep-G2
A549
HeLa
K562
>60
>60
>60
>60
Kurzipene F (40) Hep-G2
A549
HeLa
K562
>60
>60
33.1
>60
Corymbulosin V (41) Hep-G2
A549
HeLa
K562
16.8
11.2
14.2
10.3
Corymbulosin M (25) Hep-G2
A549
HeLa
K562
20.6
18.4
17.5
16.5
Casearia
sylvestris
Casearin X (42) Induced sarcoma tumor
25 mg/kg/day
Tumor inhibition %
90.0
[30]
Croton
caudatus
Crocleropene A (43) MTT assay
MCF-7
IC50 μM
35.8
[31]
Crocleropene B (44) MCF-7 40.2
Croton
crassifolius
Crassifolius A (45) Morphology Induced apoptosis [32,33,34]
Western blot Caspase activation
MTT assay
Hep3B
Hep-G2
IC50 µM
17.91
42.04
Crassifolin C (46) Hep-G2 51.63
Compound 47 Hep-G2 45.22
Crassifolin B (48) CT26.WT 96.6
Crassifolin Q (49) HUVEC assay Compounds 4951 and 53 inhibited angiogenesis
Crassifolin R (50)
Crassifolin S (51)
Crassifolin T (52) HUVEC assay Anti-angiogenesis effect
Crassifolin U (53) HUVEC assay
Junction densities
Vessel areas
Vessel lengths
IC50 μM
7.20
48.27
8.62
Croton
echioides
CEH-1 (54) MTT assay
HTC
Compound 54 diminished 67% cell viability and 55 < 76%. [35]
CEH-4 (55)
Croton
oligandrus
Megalocarpoidolide D (56) MTT assay
A549
MCF-7
IC50 µM
63.8
136.2.
[36]
12-epi-megalocarpodolide D (57) A549
MCF-7
138.6
171.3
Gottschelia schizopleura Schizopleurolide A (58) MTT assay
HL-60
B16-F10
IC50 µM
38.47
47.25
[37]
Schizopleurolide B (59) HL-60
B16-F10
36.13
44.33
Laetia corymbulosa Corymbulosin I (60) Flow cytometry Compounds 60, 61, 12 and 11 induced apoptosis in MDA-MB-231 [38]
SRB assay
A549
MDA-MB-231
MCF-7
KB
KB-VIN
IC50 µM
0.66
0.48
0.68
0.56
0.98
Corymbulosin K (61) A549
MDA-MB-231
MCF-7
KB
KB-VIN
0.47
0.49
0.50
0.45
0.49
Corymbulosin L (62) A549
MDA-MB-231
MCF-7
KB
KB-VIN
4.60
4.95
4.94
5.19
4.92
Corymbulosin N (63) A549
MDA-MB-231
MCF-7
KB
KB-VIN
5.04
4.90
5.82
5.23
5.19
Corymbulosin O (64) A549
MDA-MB-231
MCF-7
KB
KB-VIN
4.75
3.31
4.65
4.25
4.76
Corymbulosin P (65) A549
MDA-MB-231
MCF-7
KB
KB-VIN
5.98
4.93
6.39
5.16
5.03
Corymbulosin Q (66) A549
MDA-MB-231
MCF-7
KB
KB-VIN
40.2
20.5
31.7
19.8
39.2
Corymbulosin S (67) A549
MDA-MB-231
MCF-7
KB
KB-VIN
>40
22.9
26.2
25.1
26.6
Corymbulosin T (68) A549
MDA-MB-231
MCF-7
KB
KB-VIN
2.29
0.49
0.69
0.56
0.61
Corymbulosin V (41) A549
MDA-MB-231
MCF-7
KB
KB-VIN
4.76
4.73
5.19
4.74
4.88
Caseamembrin S (12) A549
MDA-MB-231
MCF-7
KB
KB-VIN
0.58
0.45
0.66
0.53
0.90
Caseamembrin E (69) A549
MDA-MB-231
MCF-7
KB
KB-VIN
0.53
0.40
0.55
0.43
0.51
Corymbulosin A (70) A549
MDA-MB-231
MCF-7
KB
KB-VIN
0.45
0.43
0.44
0.42
0.45
Compound 11 A549
MDA-MB-231
MCF-7
KB
KB-VIN
4.15
0.54
0.89
0.73
4.07
Linaria
japonica
Linarenone C (71) MTT assay
A549
IC50 µM
51.2
[39]
Linarenone E (72) 86.5
Linarienone (73) 79.0
Polyalthia longifolia 16-hydroxy-cleroda-4(18),13-dien-16,15-olide (74) Evaluation of morphometric liver and biochemical parameters in (NDEA+PB)-induced HCC rats Compound 75 and 77 restored the parameters’ biochemical and liver morphology [40]
MTT assay
Hep-G2
IC50 µg/mL
34.33
3α,16α-dihydroxy-cleroda-4(18),13(14)Z-dien-15,16-olide (75) Hep-G2
HuH-7
14.34
47.32
16α-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (76) Hep-G2 29.21
3β-16a-dihydroxy-cleroda-4(18),13(14)Z-dien-15,16-olide (77) Hep-G2
HuH-7
24.91
48.57
Polyalthia laui Polylauiester A (78) MTT assay
HeLa
MCF-7
A549
IC50 μM
34.84
33.21
35.65
[41]
(4→2)-abeo-2,13-diformyl-cleroda-2,12E-dien-14-oic acid (79) HeLa
MCF-7
A549
39.31
37.35
37.82
Polylauiamide B (80) HeLa
MCF-7
A549
28.09
29.16
29.25
Polylauiamide C (81) HeLa
MCF-7
A549
25.01
30.30
28.65
Polylauiamide D (82) HeLa
MCF-7
A549
26.73
27.03
28.88
Salvia
amarissima
Teotihuacanin (83) SRB assay
MDA-MB-231
HeLa
HCT-15
HCT-116
MCF-7
IC50 μM
12.3
13.7
12.9
10.9
>20
[42,43,44]
Amarissinin A (84) MCF-7
MCF-7/Vin+
MDA-MB-231
HeLa
18.2
0.27
19.3
14.0
Amarissinin B (85) SRB assay 83, 84, 85, 86 and 87 exhibited MDR modulatory effects in mammalian cancer cells
Amarissinin C (86)
Amarisolide F (87) SRB assay
MCF-7
HeLa
HCT-15
HCT-116
MDA-MB-231
IC50 μM
42.1
>42
>42
>42
>42
Salvia involucrata Involucratin A (88) U251
PC-3
K562
SKLU-1
49.6
14.7
24.8
12.6
[45]
Involucratin B (89) U251
PC-3
K562
HCT-15
MCF-7
SKLU-1
COS-7
5.1
23.5
34.7
11.8
0.5
36.7
21.6
Involucratin C (90) PC-3
K562
HCT-15
SKLU-1
COS-7
11.0
19.4
9.7
16.8
11.9
(-)-Hardwickiic acid (91) U251
PC-3
K562
HCT-15
MCF-7
SKLU-1
COS-7
22.4
1.8
45.5
10.4
1.4
11.5
19.8
7α-hydroxybacchotricuneatin A (92) U251
PC-3
K562
HCT-15
SKLU-1
COS-7
3.8
12.8
20.2
13.3
33.0
14.2
Kingidiol (93) SRB assay
U251
PC-3
K562
HCT-15
MCF-7
SKLU-1
COS-7
IC50 μM
22.4
13.0
51.6
15.5
0.8
22.9
19.7
Salvia
leucantha
Salvileucantholide (94) MTT assay
HCT-116
BT474
HepG2
Hsp90
IC50 µM
32.61
25.02
37.35
6.78
[46]
Scutellaria barbata Scubatine A (95) MTT assay
HL-60
A549
IC50 µM
>20
>20
[47,48,49,50]
Scubatine B (96) HL-60
A549
>20
>20
Scubatine C (97) HL-60
A549
>20
>20
Scubatine D (98) HL-60
A549
>20
>20
Scubatine E (99) HL-60
A549
>20
>20
Scubatine F (100) HL-60
A549
15.3
10.4
Scutebata E (101) MTT assay
HL-60
A549
LoVo
IC50 µM
>20
>20
61.23
Scutolide K (102) HL-60
A549
>20
>20
Scutebata X (103) SGC-7901
MCF-7
A549
>40
37.2
>40
Scutebata Y (104) SGC-7901
MCF-7
A549
>40
>40
>40
Scutebata Z (105) SGC-7901
MCF-7
A549
>40
>40
>40
Scutebata A1 (106) SGC-7901
MCF-7
A549
>40
>40
35.5
Scutebata B1 (107) SGC-7901
MCF-7
A549
>40
>40
>40
Scutebata C1 (108) SGC-7901
MCF-7
A549
17.9
29.9
35.7
Barbatin H. (109) LoVo
MCF-7
SMMC-7721
HCT-116
32.44
49.86
48.75
44.24
Scuterbarbatine F (110) LoVo
MCF-7
SMMC-7721
HCT-116
23.32
49.19
58.12
78.83
6-O-nicotinoylscutebarbatine G (111) LoVo
SMMC-7721
HCT-116
29.44
65.51
54.44
Scutebata G (112) LoVo
MCF-7
SMMC-7721
HCT-116
22.56
31.33
32.49
28.29
Scutebata D (113) LoVo
MCF-7
SMMC-7721
HCT-116
20.75
31.42
29.24
62.66
Barbatin C (114) LoVo
MCF-7
SMMC-7721
HCT-116
37.99
28.06
72.69
32.94
Scutebarbatine A (115) LoVo 67.77
Scutebarbatine G (116) LoVo
SMMC-7721
HCT-116
56.46
70.16
44.25
6,7-di-O-acetoxybarbatin A (117) LoVo
MCF-7
SMMC-7721
HCT-116
60.33
37.31
77.93
32.28
Scutebarbatine X (118) LoVo
MCF-7
SMMC-7721
HCT-116
43.21
74.83
46.14
62.11
Barbatin F (119) LoVo
HCT-116
56.46
44.25
Barbatin G (120) LoVo
SMMC-7721
MCF-7
HCT-116
60.33
37.31
77.93
32.28
Scutebata A (121) LoVo
SMMC-7721
MCF-7
HCT-116
HL-60
A549
4.57
7.68
5.31
6.23
>20
>20
Scutebata B (122) LoVo
SMMC-7721
MCF-7
HCT-116
10.73
18.96
10.27
28.48
Scutebata C (123) LoVo
SMMC-7721
MCF-7
47.15
33.18
38.79
Scutebata P (124) LoVo
SMMC-7721
MCF-7
HCT-116
HL-60
A549
HCT-116
15.17
42.63
32.49
23.97
5.6
21.7
23.97
Scutellaria strigillosa Scutestrigillosin A (125) REMA assay
P-388
HONE-1,
HT-29
MCF-7
IC50 μM
5.8
3.5
4.7
5.7
[51,52]
Scutestrigillosin B (126) P-388
HONE-1
HT-29
MCF-7
5.2
4.2
4.1
6.0
Scutestrigillosin C (127) P-388
HONE-1,
HT-29
MCF-7
7.1
3.9
6.4
7.7
Scutestrigillosin D (128) P388
HONE 1
HT-29
MCF-7
5.6
3.4
4.7
5.2
Scutestrigillosin E (129) P388
HONE 1
HT-29
MCF-7
8.9
7.3
8.1
7.4
Sheareria nana Sheareria A (130) CCK8 assay
HeLa
PANC-1
A549
IC50 µM
11.6
7.1
9.3
[53]
Sheareria B (131) HeLa
PANC-1
A549
9.4
5.6
6.8
Sheareria C (132) HeLa
PANC-1
A549
17.2
9.8
12.5
Tinospora cordifolia Tinocapillin A (133) MTT assay
A549
HepG2
HeLa
OS-RC-2
IC50 µM
14.0
9.9
9.7
10.6
[54]
Tinocapillin B (134) A549
HepG2
HeLa
OS-RC-2
9.6
10.1
12.0
19.1
Tinocapillin C (135) A549
HeLa
53.2
67.5
Tinocallone A (136) A549
HepG2
HeLa
67.8
68.4
79.3
Tinocallone C (137) A549
HepG2
HeLa
OS-RC-2
16.3
13.8
17.5
12.8
Columbin (138) A549
HeLa
77.3
58.4
Tinospora capillipes ECD (epoxy clerodane diterpene) (139) MTT assay
V79
MCF-7
Vero
IC50 µM
52.7
3.2
45.8
[55]
qPCR analysis Inhibited MCF-7 grow by regulation the expression of genes such Cdkn2A, Rb1, Mdm2 y p53
Tinospora sagittata Tinosporin A (140) MTT assay
HL-60
MCF-7
IC50 µM
18.63
23.58
[56]

Compound 1 (1S,4aS,5R,6S,8R,8aS)-8-acetoxy-5-((R)-2-acetoxy-2-(5-oxo-2,5-dihydrofuran-3-yl)ethyl)-2-hydroxy-5,6-dimethyloctahydro-8aH-spiro[naphthalene-1,2′-oxiran]-8a-yl)methyl (E)-2-methylbut-2-enoate; Compound 11 (2R,5S,6S,8R,9R,10S,18R,19S)-18,19-di-O-acetyl-18,19-epoxy-6-hydroxy-2-(2′-methylbutanoyloxy)cleroda-3,13-(16),14triene; Compound 47 6-[2-(furan-3-yl)-2-oxoethyl]-1,5,6-trimethyl-10-oxatricyclo[7.2.1.02,7] dodec-2(7)-en-11-one. 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT); sulforhodamine B (SRB); N-nitrosodiethylamine and phenobarbital sodium (NDEA+PB); cell counting kit 8 assay (CCK8); resazurin microplate assay (REMA); protein 90 kDa of family of chaperones (Hsp90); concentration cytotoxic at 50% (CC50); quinone reductase assay (QIR); selective index (SI); total growth inhibitory (TGI); breast cancer (MCF-7); breast cancer resistant at vinblastine (MCF-7/Vin); breast ductal carcinoma (BT474); cervix adenocarcinoma (HeLa); cervix squamous carcinoma (SiHa); colon adenocarcinoma (SW620, HCT-15, HCT-116 and HT-29) colon cancer (LoVo); chronic myeloid leukemia (K562); epidermoid carcinoma of the nasopharynx (KB); Ewing sarcoma (A-673); gastric carcinoma (KATO-III, SGC-7901); glioblastoma (U251); hepatocarcinoma (Hep293TT, Hep3B, Hep-G2, SMMC-7721, HCC, HuH-7); human umbilical vein endothelial cells (HUVEC); liver tumor cells of Rattus norvegicus (HTC); lymphoma cells (P388); lung adenocarcinoma (LU-1, SKLU-1, A549); medulloblastoma (D283); mouse colon adenocarcinoma (CT26.WT); mouse embryonic fibroblast cell line (NIH-3T3); musculus skin melanoma (B16-F10); normal green monkey kidney cell line (Vero); normal monkey kidney (COS-7); normal prostate epithelium (PNT2); promyelocytic leukemia (HL-60); prostate cancer (PC-3); P-gp-overexpressing MDR subline of KB (KB-VIN); pancreatic carcinoma (PANC-1); renal carcinoma (OS-RC-2); rhabdomyosarcoma (SJCRH30); triple-negative breast cancer (MDA-MB-231); two epithelial tumor cell lines (HNE-1 and HONE-1; undifferentiated lung carcinoma (Chago-K1).

Figure 3.

Figure 3

Isolated compound of Ajuga decumbens and Anacolosa clarkii.

Figure 4.

Figure 4

Isolated compounds of different species of Casearia.

Figure 5.

Figure 5

Isolated compounds of different species of Casearia (continued).

Figure 6.

Figure 6

Isolated compounds of different species of Croton.

Figure 7.

Figure 7

Isolated compounds of Gottschelia schizopleura and Laetia corymbulosa.

Figure 8.

Figure 8

Isolated compounds of Linaria japonica and Polyalthia longifolia.

Figure 9.

Figure 9

Isolated compounds of different species of Salvia.

Figure 10.

Figure 10

Isolated compounds of Scutellaria barbata (continued).

Figure 11.

Figure 11

Isolated compounds of Scutellaria barbata.

Figure 12.

Figure 12

Isolated compounds of Scutellaria strigillosa.

Figure 13.

Figure 13

Isolated compounds of Sheareria nana, Tinospora capillipes, Tinospora cordifolia and Tinospora sagittata.

Clerodanes and neo-clerodanes’ anti-inflammatory activities are summarized in Table 3, and their structures are shown in Figure 14, Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19.

Table 3.

Clerodane diterpenes with anti-inflammatory activity.

Plant Source Compound Name Methods Results References
Ajuga
pantantha
Ajugapantin C (141) Western Blot Analysis Compounds 141, 142 and 146 downregulated iNOS and COX-2 protein levels [57,58]
Docking Analysis Compounds 141, 142 and 146 have strong interactions with the iNOS and COX-2 proteins
Griess assay
BV-2 cells stimulated LPS
IC50 µM
20.2
Ajugapantin E (142) Griess assay
BV-2 cells stimulated LPS
IC50 µM
45.5.
Ajugapantin F (143) 34.0
Ajugapantin G (144) 27.0
Ajugapantin H (145) 45.0
Ajugapantin I (146) 25.8
Pantanpene α (147) Griess assay
BV-2 cells stimulated LPS
IC50 μM
65.7
Pantanpene B (148) 37.7
Pantanpene C (149) 61.7
Pantanpene d (150) >50% inhibition at 30 μM
Pantanpene E (151) Griess assay
BV-2 cells stimulated LPS
IC50 μM
21.7
Anti-inflammatory assay in zebrafish model The anti-inflammatory effect was confirmed
Docking Analysis Compounds 148 and 151 have strong interactions with the iNOS and COX-2 proteins
Callicarpa arborea Callicarpin A (152) NLRP3 Inflammasome activation assay
J774A.1 cells were primed with LPS
IC50 μM
16.6
[59]
Callicarpin B (153) 4.0
Callicarpin C (154) 25.4
(16S)-Tris-O-Acetylcallicarpin C (155) 5.3
Callicarpin E (156) 24.7
Callicarpin F (157) 1.5
Callicarpin G (158) NLRP3 Inflammasome activation assay
J774A.1 cells were primed with LPS
IC50 μM
1.4
Pyroptosis fluorescence microscopy The compound 153 inhibited pyroptosis and blocked NLRP3 inflammasome activation by hampering Casp-1 cleavage and IL-1β secretion
Callicarpa cathayana Cathayanalactone A (159) Griess assay
RAW264.7 macrophages stimulated LPS
IC50 µM
22.92
[60]
Cathayanalactone B (160) 13.25
Cathayanalactone C (161) Griess assay
RAW264.7 macrophages stimulated LPS
IC50 µM
82.82
15-methoxypatagonic acid (162) 35.35
16-hydroxycleroda-3, 13-dien-16, 15-olide-18-oic acid (163) Griess assay
RAW264.7 macrophages stimulated LPS
IC50 µM
17.49
ELISA assay
Quantification of TNF-α, IL-6 and IL-1β
Compounds 161163 inhibited IL-1β, IL-6 and TNF-α
Callicarpa hypoleucophylla Callihypolin A (164) Inhibitory activities in
- superoxide anion generation and
- elastase release
in formyl-methionyl-leucyl-phenylalanine (fMLF)/cytochalasin (CB)-induced human neutrophils
% of inhibition
20.28
8.26
[61]
Callihypolin B (165) 32.19
17.55
Compound 166 31.19
12.15
Patagonic acid (167) 32.88
13.57
Limbatolide F (168) 23.65
7.33
Limbatolide A (169) 8.44
10.50
Compound 170 7.93
9.30
Clerodermic acid (171) 15.23
11.80
Visclerodol acid (172) 18.80
16.30
Croton crassifolius Crassifolin Q (49) ELISA assay
IL-6
TNF-α
% of production
72.23
89.38
[32,62]
Crassifolin R (50) 77.88
77.73
Crassifolin S (51) 73.36
79.23
Crassifolin T (52) 35.48
54.14
Crassifolin U (53) 32.78
12.53
Compound 173 Griess assay
RAW264.7 macrophages stimulated LPS
IC50 μM
25.8
Compound 174 173 at 178 < 50% inhibition at 50 µM
C-6 epimer of crotoeuricin C (175)
Crotocaudin (176)
Teucvin (177)
Crassifolin F (178)
Croton
floribundus
Croflorin A (179) Griess assay
RAW264.7 macrophages stimulated LPS
IC50 μM
28.52
[63]
Croflorin B (180) 40.26
Croflorin C (181) 25.47
Croflorin D (182) 35.78
3α-hydroxy-5,10-didehydrochiliolide (183) 40.58
Croton laui 3S-acetoxyl-mollotucin D dilactone ester (184) Griess assay
RAW264.7 macrophages stimulated LPS
IC50 µM
weak activity
[64]
6S-crotoeurin C (185) 1.2
Crotoeurin C (186) 1.6
Mollotucin D dilactone
ester (187)
weak activity
Crassifolin F compound 178 weak activity
Croton
poomae
Crotonolide K (188) Griess assay
RAW264.7 macrophages stimulated LPS
IC50 µM
46.43
[65]
Furocrotinsulolide A acetate (189) 31.99
Furocrotinsulolide A (190) 81.97
Compound 191 86.98
Compound 192 48.85
Crotonolide E (193) 74.78
Crotonolide F (194) 42.04
Compound 195 32.19
Dodonaea viscosa Hautriwaic acid (196) Arthritis in mice induced by
caolin/carrageenan
Doses mg/kg
5
10
20
% inflammation of edema after 15 days
 
27
20
13
[66]
ELISA assay
Quantification of IL-10, TNF-α, IL-6 and IL-1β
Compound 196 diminished TNF-α, IL-6 and IL-1β and increased IL-10
Dysoxylum lukii. neoclerod-13Z-ene-3α, 4β, 15-triol (197) Griess assay
RAW264.7 macrophages stimulated LPS
IC50 µM.
25.5
[67]
Jamesoniella
autumnalis
Jamesoniellide Q (198) Griess assay
RAW264.7 macrophages stimulated LPS
IC50 µM
45.10
[68]
Jamesoniellide R (199) 82.98
Monoon membranifolium 2β-Methoxyhardwickiic acid (200) Griess assay
RAW264.7 macrophages stimulated LPS
IC50 µM
65.4
[69]
(-)-hardwickiic acid (91) 38.9
2β-acetoxyhardwickiic acid (201) 16.1
2β-hydroxyhardwickiic acid (202) 82.4
15-methoxypatagonic acid (203) 28.9
Nepeta suavis. Nepetolide (204) Carrageenan-induced hind paw edema
Docking Analysis
In silico evaluation
Compound 204 inhibited hind paw edema
Target Cox-2 EGFR and Lox-2
[70]
Polyalthia longifolia 16-oxo-cleroda-3,13(14)E-dien-15-oic acid (205) Cyclooxygenase inhibitory assay 5-LOX kit
COX-1
COX-2
5-LOX
IC50 µM
8.00
8.41
8.41
[40,71]
16-hydroxy-cleroda-3,13-dien-15-oic acid (206) COX-1
COX-2
5-LOX
9.75
4.07
9.78
16-hydroxy-cleroda-4(18),13-dien-16,15-olide (74) COX-1
COX-2
5-LOX
3.77
2.71
4.06
3α,16α-dihydroxy-cleroda-4(18),13(14)Z-dien-15,16-olide (75) COX-1
COX-2
5-LOX
3.63
4.29
5.67
16α-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (76) COX-1
COX-2
5-LOX
3.01
3.29
4.58
Docking Analysis
In silico evaluation
Compounds 7476 have interactions with COX-1/2 and LOX enzymes
3β-16a-dihydroxy-cleroda-4(18),13(14)Z-dien-15,16-olide (77) ELISA assay
Quantification of cytokines such as TNF-α, TGF-β, IL-6, IL-10 and IL-1β
Compounds 74 and 77 inhibited production of proinfammatory cytokines and increased IL-10 and TGF-β
Docking Analysis
In silico evaluation
Compound 74 docked into the active sites of MDM2, TNF-α, FAK and IL-6
Compound 77 docked into the active sites of MDM2, TNF-α, TGF-β and FAK
Scutellaria
barbata
Scuttenline C (207) Griess assay
RAW264.7 macrophages stimulated LPS
IC50 μM
1.9
[72]
Barbatin A (208) 12.6
Scutebarbatine F (209) 3.7
Teucrium fructicans 11-hidroxyfruticolone (210) Griess assay
RAW264.7 macrophages stimulated LPS
IC50 μM
39.3
[73]
Tinospora crispa Crispinoid D (211) qPCR assay
IL-1β, IL-6, TNF-α, iNOs, CCL12 and COX-2
Compounds 211213 diminish the production of pro-inflammatory mediators [74,75]
Luciferase assay:
Inhibition of NF-κB
IC50 μM
5.94
Tinosporol C (212) Inhibition of NF-κB 6.32
marrubiagenin-methylester (213) Inhibition of NF-κB 25.20
Tinopanoid A (214) Griess assay
BV-2 cells stimulated LPS
IC50 μM
>60
Tinopanoid B (215) >60
Tinopanoid C (216) 24.1
Tinopanoid D (217) 41.1
Tinopanoid E (218) 7.5
Tinopanoid F (219) 50.8
Tinopanoid G (220) 10.6
Tinopanoid H (221) 39.4
Tinopanoid I (222) 59.1
Tinopanoid J (223) 45.9
Tinospin C (224) >60
borapetol B (225) >60
Tinotufolin D (226) 14.5
Tinospora sagittata Fibaruretin H (227) Griess assay
RAW264.7 macrophages stimulated LPS
% inhibition at 24 µM
27.0%
[76]
Fibaruretin I (228) 33.1%

Compound 166 (4aR,5S,6R,8aR)-5-[2-(2,5-dihydro-5-methoxy-2-oxofuran-3-yl)ethyl]-3,4,4a,5,6,7,8,8a-octahydro-5,6,8a-trimethylnaphthalene-1-carboxylic acid); Compound 170 (methyl (4aR,5S,6R,8S,8aR)-3,4,4a,5,6,7,8,8a-octahydro-8-hydroxy-5,6,8a-trimethyl-5-[2-(2-oxo-2,5-dihydrofuran-3-yl)ethyl]naphthalene-1-carboxylate); Compound 173 (3S,4S,6S,8R,9R,12S)-3-acetoxy-18-methoxycarbonyl-6,19:15,16-diepoxy-halim-5(10),13(16),14-triene-20,12-olide; Compound 174 (3S,4S,6S,8R,9R,12S)-3,19-diacetoxy-18-methoxycar-bonyl-15,16-epoxy-6-hydroxyhalim-5(10),13(16),14-triene-20,12-olide; Compound 191 (3,4,15,16-diepoxycleroda-13(16),14-diene-12,17-olide); Compound 192 (15,16-epoxy-3β-hydroxy-5(10),13(16),14-dien-12,17-olide; Compound 195 (3β,4β:15,16-diepoxy-13(16),14-clerodadiene; Compound 226 (2aβ,3α,5aβ,6β,7α,8aα)-6-[2-(3-furanyl)ethyl]-2a,3,4,5,5a,6,7,8,8a,8b-decahydro-2a,3-dihydroxy-6,7,8b-trimethyl-2H-naphtho[1,8-bc]furan-2-one). Cells are immortalized by v-raf/v-myc carrying J2 retrovirus (BV-2); inducible nitric oxide synthase (iNOS); cyclooxygenase 2 (COX-2); key sensor molecule in the inflammasome activity (NLRP3); protein found on the surface of some cells that binds epidermal growth factor (EGFR); 5-lipoxigenasa (5-LOX); tumor necrosis factor-α (TNF-α); interleukin-6 (IL-6); interleukin 1β (IL-1β); proinflammatory–chemokine (C-C motif) ligand 12 (CCL12).

Figure 14.

Figure 14

Compounds of Ajuga pantantha and Callicarpa arborea with anti-inflammatory activity.

Figure 15.

Figure 15

Compounds of Callicarpa cathayana and Callicarpa hypoleucophylla with anti-inflammatory activity.

Figure 16.

Figure 16

Compounds of different species of Croton with anti-inflammatory activity.

Figure 17.

Figure 17

Compounds of different species of Croton with anti-inflammatory activity (continued).

Figure 18.

Figure 18

Compounds of Dodonaea viscosa, Dysoxylum lukii, Jamesoniella autumnalis, Monon membranifolium, Nepeta suavis, Polyalthia longifolia and Scutellaria barbata with anti-inflammatory activity.

Figure 19.

Figure 19

Compounds of different species of Teucrium fructicans, Tinospora crispa and Tinospora sagittata with anti-inflammatory activity.

2. Discussion

This review discusses research from the last 8 years on clerodane and neo-clerodane diterpenes that exhibit cytotoxic and anti-inflammatory activities. It presents studies on these diterpenes with anti-inflammatory effects from 18 species belonging to 7 families and those with cytotoxic activity from 25 species belong to 9 families. These plants mostly belong to the Lamiaceae, Salicaceae, Menispermaceae and Euphorbiaceae families. They include 228 clerodanes and neo-clerodanes, of which, 140 have cytotoxic activity, 88 have anti-inflammatory activity and crassifolin Q-U (4953), compounds 7477 and (-)-hardwickiic acid (91) have both activities. Compound 75 and 77 were alone in including acute toxicity, but they did not indicate LD50.

2.1. Cytotoxic Activity

All clerodanes included in this review are oxygenated; 58% of them have at least one acetate group, 47% a hydroxyl group, 49% a ring of lactone and 22% a ring of furan as substituents. Additionally, it was found that three diterpenes isolated from Sheareria nana (125127) have -OSO3H.

We found that 82 compounds out of 140 were evaluated using the MTT assay, which is broadly used to measure the cytotoxic effects of drugs on cancer cell lines, and it is considered a quantitative cytotoxicity analysis; the assay is used more often because in itself, it is relatively straightforward and provides benefits due to the ease of its utility.

Compared to standard cancer therapies, in vitro studies have shown the cytotoxic and antiproliferative properties of different clerodane compounds. The mechanisms involved include growth inhibition, apoptosis, interference with DNA synthesis and driving DNA fragmentation in many cancer cell lines of mesenchymal, epithelial and hematopoietic origin [1,3].

Some clerodane compounds inhibit growth in cancer cell lines. Anacolosins A–F (38) and corymbulosins X and Y (910) isolated from Anacolosa clarkii exhibit cytotoxic properties in four paediatric cancer types [21]. Caseakurzin B (29) and caseakurzin J (34) from Casearia kurzii were investigated in a lung epithelial carcinoma cell line; the former arrested the cell cycle at the G2/M phase and the second at the S phase. Obtained from the same plant, corymbulosin M (25), caseamembrin B (26) and caseamembrin U (27) were also cytotoxic in three types of cancer cell lines. Of note, corymbulosin M (25) was the most potent of them and apparently even more active than etoposide, and it was shown that it affects the cell cycle at the G0/G1 stage [28]. Kurzipene D (38), also obtained from C. kurzii, has a potent antiproliferative effect compared to other kurzipenes and affects proliferation at the S stage. Further, one in vivo study used a xenograft tumor model in zebra fish embryos; this compound suppressed tumor proliferation and migration comparable to etoposide [26]. Crassifolins Q-U (4953) from Croton crassifolius inhibited angiogenesis in HUVECs, and crassifolin U (53) had the strongest activity in this model [32]. Notably, the antitumor properties of casearins have been shown using in vivo and ex vivo methods [30]. Epoxy clerodane diterpene (139) isolated from Tinospora cordifolia had cytotoxic activity, inhibiting MCF7 growth by regulating the expression of the functional genes Rb1 and Mdm2 [55].

Several specific antiproliferative mechanisms related to the wide range of clerodanes known today have been described, since many of these compounds have been identified, some which we barely know their properties. It is very possible that there are even more compounds than those described today, in such a way that makes it an open field to discover. However, it is important to mention that clinical studies are required to demonstrate their efficacy in the therapy of the current cancer pandemic, and demonstrating their safety is also of great importance.

2.2. Anti-Inflammatory Activity

A total of 45% of the clerodanes with anti-inflammatory activity have at least one hydroxyl, 69% compounds contain a ring of lactones, 50% a ring of furans and 26% an acetate group as substituents.

We found that 63 compounds reported to have anti-inflammatory activity were evaluated for nitric oxide inhibition with the Griess assay on RAW264.7 macrophages or BV-2-cell-stimulated-LPS, and the clerodanes 157, 158, 185, 186 and 207 showed the best activity in this test with IC50 values of less than 2 µM. In this review, we found that in vivo studies have only been performed for hautriwaic acid (196) and nepetolide (204).

The anti-inflammatory activity of clerodane diterpenoids mediated by different mechanisms has been demonstrated in in vitro and in vivo animal models. Compounds 154, 155, 157 and 158 from Callicarpa arborea showed potent inhibitory effects against the NLRP3 inflammasome by inhibiting Casp-1 activation and IL-1β in reticulum cell sarcoma cells [59].

Clerodane 7477 and 206 from extracts of Polyalthia longifolia seeds inhibit inflammation, blocking the synthesis of prostaglandins and leukotrienes through highly selective binding to cyclooxygenases (COX) 1 and 2 and 5-lipooxygenase (5-LOX), respectively, compared to the nonsteroidal anti-inflammatory drugs diclofenac and indomethacin [71]. In 2008, clerodane 206 was associated with the suppression of neutrophil respiratory burst and degranulation, and it is thought that it is mediated at least in part by the inhibition of calcium mobilization, AKT (protein kinase B) and p38 mitogen-activated protein kinase pathways [77]. Hautriwaic acid (196) from Dodonaea viscosa leaves, used for rheumatism, exhibited anti-inflammatory activity in a mouse ear edema model [66]. Clerodane compounds 164175 from Callicarpa hypoleucophylla suppress superoxide anion generation and elastase release, inhibiting the function of human neutrophils [61]. Trans-crotonin inhibits dextran- and histamine-induced oedema [2].

Compounds derived from the Scutellaria genus have strong interactions with inducible nitric oxide synthase, and because of that, they inhibit nitric oxide production [72]. Five clerodane diterpenoids from Croton crassifolius roots, named crassifolins Q–U (4953), reduced the levels of IL-6 and TNF-α in lipopolysaccharide-stimulated RAW 264.7 cells [32]. Compounds 211213 from Tinospora crispa diminish the production of pro-inflammatory mediators (IL-1β, IL-6, TNF-α, iNOs, CCL12 and COX-2) [74].

3. Conclusions

In summary, clerodane diterpenes have activity against different cell cancer lines. Furthermore, some of the diterpenes presented in this review have already-known therapeutic targets, and therefore, their potential adverse effects can be predicted in some way, but the discovery of new compounds and new mechanisms remains to be seen. Anyway, the study of possible new therapies for inflammation continues to be important in order to expand the options for the treatment of inflammatory diseases that afflict the world.

More than 50% of clerodanes included in this review with cytotoxic activity contain acetate groups; on the other hand, 69% of the compounds with anti-inflammatory effects have a ring of lactone.

Author Contributions

Conceptualization, J.P.-R. and S.P.-G.; methodology, R.M.M.-C., L.H.-V., A.M., L.S.-P., S.P.-G. and J.P.-R.; validation R.M.M.-C., L.H.-V., A.M., L.S.-P., S.P.-G. and J.P.-R.; formal analysis, R.M.M.-C., L.H.-V., A.M., L.S.-P., S.P.-G. and J.P.-R.; data curation, R.M.M.-C., L.H.-V., A.M., L.S.-P., S.P.-G. and J.P.-R.; writing—original draft preparation, S.P.-G. and A.M.; writing—review and editing, R.M.M.-C., L.H.-V., A.M., L.S.-P., S.P.-G. and J.P.-R. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This research received no external funding.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Acquaviva R., Malfa G.A., Loizzo M.R., Xiao J., Bianchi S., Tundis R. Advances on Natural Abietane, Labdane and Clerodane Diterpenes as Anti-Cancer Agents: Sources and Mechanisms of Action. Molecules. 2022;27:4791. doi: 10.3390/molecules27154791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Feng Z., Cao J., Zhang Q., Lin L. The Drug Likeness Analysis of Anti-Inflammatory Clerodane Diterpenoids. Chin. Med. 2020;15:126. doi: 10.1186/s13020-020-00407-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Li R., Morris-Natschke S.L., Lee K.-H. Clerodane Diterpenes: Sources, Structures, and Biological Activities. Nat. Prod. Rep. 2016;33:1166–1226. doi: 10.1039/C5NP00137D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.dos Lima J., Marinho E.M., Alencar de Menezes J.E., Mendes F.R.S., da Silva Antonio W., Maria K.A.F., Emmanuel S.M., Marinho M.M., Bandeira P.N., dos Santos H.S. Biological Properties of Clerodane-Type Diterpenes. J. Anal. Pharm. Res. 2022;11:56–64. doi: 10.15406/japlr.2022.11.00402. [DOI] [Google Scholar]
  • 5.Kumar A., Shukla R., Chaudhary A. Evaluation of Antiulcerogenic Activity of Clerodendron Infortunatum Extract on Albino Rat Gastric Ulceration. J. Drug Deliv. Ther. 2019;9:57–62. doi: 10.22270/jddt.v9i4-A.3337. [DOI] [Google Scholar]
  • 6.Ranganathan M., Schnakenberg A., Skosnik P.D., Cohen B.M., Pittman B., Sewell R.A., D’Souza D.C. Dose-Related Behavioral, Subjective, Endocrine, and Psychophysiological Effects of the κ Opioid Agonist Salvinorin A in Humans. Biol. Psychiatry. 2012;72:871–879. doi: 10.1016/j.biopsych.2012.06.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Cichon J., Liu R., Le H.V. Therapeutic Potential of Salvinorin A and Its Analogues in Various Neurological Disorders. Transl. Perioper. Pain Med. 2022;9:452–457. [PMC free article] [PubMed] [Google Scholar]
  • 8.Jiang H., Zhang G.-J., Liu Y.-F., Wang H.-S., Liang D. Clerodane Diterpenoid Glucosides from the Stems of Tinospora sinensis. J. Nat. Prod. 2017;80:975–982. doi: 10.1021/acs.jnatprod.6b00976. [DOI] [PubMed] [Google Scholar]
  • 9.Tokoroyama T. Synthesis of Clerodane Diterpenoids and Related Compounds—Stereoselective Construction of the Decalin Skeleton with Multiple Contiguous Stereogenic Centers. Synthesis. 2000;2000:611–633. doi: 10.1055/s-2000-6381. [DOI] [Google Scholar]
  • 10.Hagiwara H. Total Syntheses of Clerodane Diterpenoids—A Review. Nat. Prod. Commun. 2019;14:1934578X19843613. doi: 10.1177/1934578X19843613. [DOI] [Google Scholar]
  • 11.Soerjomataram I., Bray F. Planning for Tomorrow: Global Cancer Incidence and the Role of Prevention 2020–2070. Nat. Rev. Clin. Oncol. 2021;18:663–672. doi: 10.1038/s41571-021-00514-z. [DOI] [PubMed] [Google Scholar]
  • 12.Tsimberidou A.M., Fountzilas E., Nikanjam M., Kurzrock R. Review of Precision Cancer Medicine: Evolution of the Treatment Paradigm. Cancer Treat. Rev. 2020;86:102019. doi: 10.1016/j.ctrv.2020.102019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Wang H., He Y., Jian M., Fu X., Cheng Y., He Y., Fang J., Li L., Zhang D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules. 2022;27:7480. doi: 10.3390/molecules27217480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Gallego-Jara J., Lozano-Terol G., Sola-Martínez R.A., Cánovas-Díaz M., de Diego Puente T. A Compressive Review about Taxol®: History and Future Challenges. Molecules. 2020;25:5986. doi: 10.3390/molecules25245986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Li D., Xue M., Geng Z., Chen P. The Suppressive Effects of Bursopentine (BP5) on Oxidative Stress and NF-ĸB Activation in Lipopolysaccharide-Activated Murine Peritoneal Macrophages. Cell Physiol. Biochem. 2012;29:9–20. doi: 10.1159/000337581. [DOI] [PubMed] [Google Scholar]
  • 16.Pahwa R., Goyal A., Jialal I. Chronic Inflammation. StatPearls Publishing; Treasure Island, FL, USA: 2022. [PubMed] [Google Scholar]
  • 17.Nathan C., Ding A. Nonresolving Inflammation. Cell. 2010;140:871–882. doi: 10.1016/j.cell.2010.02.029. [DOI] [PubMed] [Google Scholar]
  • 18.Fuller B. Role of PGE-2 and Other Inflammatory Mediators in Skin Aging and Their Inhibition by Topical Natural Anti-Inflammatories. Cosmetics. 2019;6:6. doi: 10.3390/cosmetics6010006. [DOI] [Google Scholar]
  • 19.Araruna M.E., Serafim C., Alves Júnior E., Hiruma-Lima C., Diniz M., Batista L. Intestinal Anti-Inflammatory Activity of Terpenes in Experimental Models (2010–2020): A Review. Molecules. 2020;25:5430. doi: 10.3390/molecules25225430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Olatunde O.Z., Yong J., Lu C. New Neo-Clerodane Diterpenoids Isolated from Ajuga decumbens Thunb., Planted at Pingtan Island of Fujian Province with the Potent Anticancer Activity. Anti-Cancer Agents Med. Chem. 2023;23:237–244. doi: 10.2174/1871520622666220620151225. [DOI] [PubMed] [Google Scholar]
  • 21.Cai S., Risinger A.L., Petersen C.L., Grkovic T., O’Keefe B.R., Mooberry S.L., Cichewicz R.H. Anacolosins A-F and Corymbulosins X and Y, Clerodane Diterpenes from Anacolosa clarkii Exhibiting Cytotoxicity toward Pediatric Cancer Cell Lines. J. Nat. Prod. 2019;82:928–936. doi: 10.1021/acs.jnatprod.8b01015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Vila-Luna M.L., Moo-Puc R.E., Torres-Tapia L.W., Peraza-Sánchez S.R. Cytotoxic Activity of Casearborin c Isolated from Casearia corymbosa. J. Mex. Chem Soc. 2018;62:24–28. doi: 10.29356/jmcs.v62i3.370. [DOI] [Google Scholar]
  • 23.Meesakul P., Ritthiwigrom T., Cheenpracha S., Sripisut T., Maneerat W., Machan T., Laphookhieo S. A New Cytotoxic Clerodane Diterpene from Casearia graveolens Twigs. Nat. Prod. Commun. 2016;11:13–15. doi: 10.1177/1934578X1601100105. [DOI] [PubMed] [Google Scholar]
  • 24.Nuanyai T., Chailap B., Buakeaw A., Puthong S. Cytotoxicity of Clerodane Diterpenoids from Fresh Ripe Fruits of Casearia grewiifolia. J. Sci. Technol. 2017;39:517–521. doi: 10.1021/np070083y. [DOI] [Google Scholar]
  • 25.Nguyen H.T.T., Truong N.B., Doan H.T.M., Litaudon M., Retailleau P., Do T.T., Nguyen H.V., Chau M.V., Pham C.V. Cytotoxic Clerodane Diterpenoids from the Leaves of Casearia grewiifolia. J. Nat. Prod. 2015;78:2726–2730. doi: 10.1021/acs.jnatprod.5b00677. [DOI] [PubMed] [Google Scholar]
  • 26.Liang Y., Zhang Q., Yang X., Li Y., Zhang X., Li Y., Du Q., Jin D.-Q., Cui J., Lall N., et al. Diterpenoids from the Leaves of Casearia kurzii Showing Cytotoxic Activities. Bioorg. Chem. 2020;98:103741. doi: 10.1016/j.bioorg.2020.103741. [DOI] [PubMed] [Google Scholar]
  • 27.Zhang L.-T., Wang X.-L., Wang T., Zhang J.-S., Huang Z.-Q., Shen T., Lou H.-X., Ren D.-M., Wang X.-N. Dolabellane and Clerodane Diterpenoids from the Twigs and Leaves of Casearia kurzii. J. Nat. Prod. 2020;83:2817–2830. doi: 10.1021/acs.jnatprod.9b00427. [DOI] [PubMed] [Google Scholar]
  • 28.Shuo Y., Zhang C., Yang X., Liu F., Zhang Q., Li A., Ma J., Lee D., Ohizumi Y., Guo Y. Clerodane Diterpenoids from Casearia kurzii and Their Cytotoxic Activities. J. Nat. Med. 2019;73:826–833. doi: 10.1007/s11418-019-01324-5. [DOI] [PubMed] [Google Scholar]
  • 29.Liu F., Zhang Q., Yang X., Xi Y., Zhang X., Wang H., Zhang J., Tuerhong M., Jin D.-Q., Lee D., et al. Cytotoxic Diterpenoids as Potential Anticancer Agents from the Twigs of Casearia kurzii. Bioorg. Chem. 2019;89:102995. doi: 10.1016/j.bioorg.2019.102995. [DOI] [PubMed] [Google Scholar]
  • 30.Ferreira P.M.P., Bezerra D.P., do Nascimento Silva J., da Costa M.P., de Oliveira Ferreira J.R., Alencar N.M.N., de Figueiredo I.S.T., Cavalheiro A.J., Machado C.M.L., Chammas R., et al. Preclinical Anticancer Effectiveness of a Fraction from Casearia Sylvestris and Its Component Casearin X: In Vivo and Ex Vivo Methods and Microscopy Examinations. J. Ethnopharmacol. 2016;186:270–279. doi: 10.1016/j.jep.2016.04.011. [DOI] [PubMed] [Google Scholar]
  • 31.Zou M.-F., Pan Y.-H., Hu R., Yuan F.-Y., Huang D., Tang G.-H., Li W., Yin S. Highly Modified Nor-Clerodane Diterpenoids from Croton yanhuii. Fitoterapia. 2021;153:104979. doi: 10.1016/j.fitote.2021.104979. [DOI] [PubMed] [Google Scholar]
  • 32.Li C., Sun X., Yin W., Zhan Z., Tang Q., Wang W., Zhuo X., Wu Z., Zhang H., Li Y., et al. Crassifolins Q−W: Clerodane Diterpenoids From Croton crassifolius With Anti-Inflammatory and Anti-Angiogenesis Activities. Front. Chem. 2021;9:733350. doi: 10.3389/fchem.2021.733350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Tian J.-L., Yao G.-D., Wang Y.-X., Gao P.-Y., Wang D., Li L.-Z., Lin B., Huang X.-X., Song S.-J. Cytotoxic Clerodane Diterpenoids from Croton crassifolius. Bioorg. Med. Chem. Lett. 2017;27:1237–1242. doi: 10.1016/j.bmcl.2017.01.055. [DOI] [PubMed] [Google Scholar]
  • 34.Qiu M., Cao D., Gao Y., Li S., Zhu J., Yang B., Zhou L., Zhou Y., Jin J., Zhao Z. New Clerodane Diterpenoids from Croton crassifolius. Fitoterapia. 2016;108:81–86. doi: 10.1016/j.fitote.2015.11.016. [DOI] [PubMed] [Google Scholar]
  • 35.Vendruscolo I., Venturella S.R.T., Bressiani P.A., Marco I.G., Novello C.R., Almeida I.V., Vicentini V.E.P., Mello J.C.P., Düsman E. Cytotoxicity of Extracts and Compounds Isolated from Croton echioides in Animal Tumor Cell (HTC) Braz. J. Biol. 2022;82:e264356. doi: 10.1590/1519-6984.264356. [DOI] [PubMed] [Google Scholar]
  • 36.Guetchueng S.T., Nahar L., Ritchie K.J., Ismail F.M.D., Evans A.R., Sarker S.D. Ent-Clerodane Diterpenes from the Bark of Croton oligandrus Pierre Ex Hutch. and Assessment of Their Cytotoxicity against Human Cancer Cell Lines. Molecules. 2018;23:410. doi: 10.3390/molecules23020410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Ng S.-Y., Kamada T., Suleiman M., Vairappan C.S. Two New Clerodane-Type Diterpenoids from Bornean Liverwort Gottschelia schizopleura and Their Cytotoxic Activity. Nat. Prod. Res. 2018;32:1832–1837. doi: 10.1080/14786419.2017.1405409. [DOI] [PubMed] [Google Scholar]
  • 38.Aimaiti S., Suzuki A., Saito Y., Fukuyoshi S., Goto M., Miyake K., Newman D.J., O’Keefe B.R., Lee K.-H., Nakagawa-Goto K. Corymbulosins I–W, Cytotoxic Clerodane Diterpenes from the Bark of Laetia corymbulosa. J. Org. Chem. 2018;83:951–963. doi: 10.1021/acs.joc.7b02951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Widyowati R., Sugimoto S., Yamano Y., Sukardiman, Otsuka H., Matsunami K. New Cis-Ent-Clerodanes from Linaria japonica. Phytochem. Lett. 2015;14:56–62. doi: 10.1016/j.phytol.2015.09.002. [DOI] [Google Scholar]
  • 40.Tatipamula V.B., Thonangi C.V., Dakal T.C., Vedula G.S., Dhabhai B., Polimati H., Akula A., Nguyen H.T. Potential Anti-Hepatocellular Carcinoma Properties and Mechanisms of Action of Clerodane Diterpenes Isolated from Polyalthia longifolia Seeds. Sci. Rep. 2022;12:9267. doi: 10.1038/s41598-022-13383-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Yu Z.-X., Fu Y.-H., Chen G.-Y., Song X.-P., Han C.-R., Li X.-B., Song X.-M., Wu A.-Z., Chen S.-C. New Clerodane Diterpenoids from the Roots of Polyalthia laui. Fitoterapia. 2016;111:36–41. doi: 10.1016/j.fitote.2016.03.017. [DOI] [PubMed] [Google Scholar]
  • 42.Bautista E., Fragoso-Serrano M., Ortiz-Pastrana N., Toscano R.A., Ortega A. Structural Elucidation and Evaluation of Multidrug-Resistance Modulatory Capability of Amarissinins A–C, Diterpenes Derived from Salvia amarissima. Fitoterapia. 2016;114:1–6. doi: 10.1016/j.fitote.2016.08.007. [DOI] [PubMed] [Google Scholar]
  • 43.Fragoso-Serrano M., Ortiz-Pastrana N., Luna-Cruz N., Toscano R.A., Alpuche-Solís A.G., Ortega A., Bautista E. Amarisolide F, an Acylated Diterpenoid Glucoside and Related Terpenoids from Salvia amarissima. J. Nat. Prod. 2019;82:631–635. doi: 10.1021/acs.jnatprod.8b00565. [DOI] [PubMed] [Google Scholar]
  • 44.Bautista E., Fragoso-Serrano M., Toscano R.A., García-Peña M.d.R., Ortega A. Teotihuacanin, a Diterpene with an Unusual Spiro-10/6 System from Salvia amarissima with Potent Modulatory Activity of Multidrug Resistance in Cancer Cells. Org. Lett. 2015;17:3280–3282. doi: 10.1021/acs.orglett.5b01320. [DOI] [PubMed] [Google Scholar]
  • 45.Bustos-Brito C., Pérez-Juanchi D., Rivera-Chávez J., Hernández-Herrera A.D., Bedolla-García B.Y., Zamudio S., Ramírez-Apan T., Quijano L., Esquivel B. Clerodane and 5 10-Seco-Clerodane-Type Diterpenoids from Salvia involucrata. J. Mol. Struct. 2021;1237:130367. doi: 10.1016/j.molstruc.2021.130367. [DOI] [Google Scholar]
  • 46.Jiang Y.-J., Su J., Shi X., Wu X.-D., Chen X.-Q., He J., Shao L.-D., Li X.-N., Peng L.-Y., Li R.-T., et al. Neo-Clerodanes from the Aerial Parts of Salvia leucantha. Tetrahedron. 2016;72:5507–5514. doi: 10.1016/j.tet.2016.07.037. [DOI] [Google Scholar]
  • 47.Wang M., Chen Y., Hu P., Ji J., Li X., Chen J. Neoclerodane Diterpenoids from Scutellaria barbata with Cytotoxic Activities. Nat. Prod. Res. 2020;34:1345–1351. doi: 10.1080/14786419.2018.1514399. [DOI] [PubMed] [Google Scholar]
  • 48.Yang G.-C., Hu J.-H., Li B.-L., Liu H., Wang J.-Y., Sun L.-X. Six New Neo-Clerodane Diterpenoids from Aerial Parts of Scutellaria barbata and Their Cytotoxic Activities. Planta Med. 2018;84:1292–1299. doi: 10.1055/a-0638-8255. [DOI] [PubMed] [Google Scholar]
  • 49.Yuan Q.-Q., Song W.-B., Wang W.-Q., Xuan L.-J. Scubatines A–F, New Cytotoxic Neo-Clerodane Diterpenoids from Scutellaria barbata D. Don. Fitoterapia. 2017;119:40–44. doi: 10.1016/j.fitote.2017.03.012. [DOI] [PubMed] [Google Scholar]
  • 50.Wang M., Ma C., Chen Y., Li X., Chen J. Cytotoxic Neo-Clerodane Diterpenoids from Scutellaria barbata D.Don. Chem. Biodivers. 2019;16:e1800499. doi: 10.1002/cbdv.201800499. [DOI] [PubMed] [Google Scholar]
  • 51.Dai S.-J., Xiao K., Zhang L., Han Q.-T. New Neo-Clerodane Diterpenoids from Scutellaria strigillosa with Cytotoxic Activities. J. Asian Nat. Prod. Res. 2016;18:456–461. doi: 10.1080/10286020.2015.1132707. [DOI] [PubMed] [Google Scholar]
  • 52.Dai S.-J., Zhang L., Xiao K., Han Q.-T. New Cytotoxic Neo-Clerodane Diterpenoids from Scutellaria strigillosa. Bioorg. Med. Chem. Lett. 2016;26:1750–1753. doi: 10.1016/j.bmcl.2016.02.045. [DOI] [PubMed] [Google Scholar]
  • 53.Tang Z., Shen J., Zhang F., Liang J., Xia Z. Sulfated Neo-Clerodane Diterpenoids and Triterpenoid Saponins from Sheareria nana S. Moore. Fitoterapia. 2018;124:12–16. doi: 10.1016/j.fitote.2017.10.002. [DOI] [PubMed] [Google Scholar]
  • 54.Wang B., Zhang P.-L., Zhou M.-X., Shen T., Zou Y.-X., Lou H.-X., Wang X.-N. New Nor-Clerodane-Type Furanoditerpenoids from the Rhizomes of Tinospora capillipes. Phytochem. Lett. 2016;15:225–229. doi: 10.1016/j.phytol.2016.02.007. [DOI] [Google Scholar]
  • 55.Subash-Babu P., Alshammari G.M., Ignacimuthu S., Alshatwi A.A. Epoxy Clerodane Diterpene Inhibits MCF-7 Human Breast Cancer Cell Growth by Regulating the Expression of the Functional Apoptotic Genes Cdkn2A, Rb1, Mdm2 and P53. Biomed. Pharmacother. 2017;87:388–396. doi: 10.1016/j.biopha.2016.12.091. [DOI] [PubMed] [Google Scholar]
  • 56.Qin N., Wang A., Li D., Wang K., Lin B., Li Z., Hua H. Cytotoxic Clerodane Furanoditerpenoids from the Root of Tinospora sagittata. Phytochem. Lett. 2015;12:173–176. doi: 10.1016/j.phytol.2015.03.014. [DOI] [Google Scholar]
  • 57.Liu W., Song Z., Wang H., Yang X., Joubert E., Zhang J., Li S., Tuerhong M., Abudukeremu M., Jin J., et al. Diterpenoids as Potential Anti-Inflammatory Agents from Ajuga pantantha. Bioorg. Chem. 2020;101:103966. doi: 10.1016/j.bioorg.2020.103966. [DOI] [PubMed] [Google Scholar]
  • 58.Dong B., Yang X., Liu W., An L., Zhang X., Tuerhong M., Du Q., Wang C., Abudukeremu M., Xu J., et al. Anti-Inflammatory Neo-Clerodane Diterpenoids from Ajuga pantantha. J. Nat. Prod. 2020;83:894–904. doi: 10.1021/acs.jnatprod.9b00629. [DOI] [PubMed] [Google Scholar]
  • 59.Pu D.-B., Zhang X.-J., Bi D.-W., Gao J.-B., Yang Y., Li X.-L., Lin J., Li X.-N., Zhang R.-H., Xiao W.-L. Callicarpins, Two Classes of Rearranged Ent-Clerodane Diterpenoids from Callicarpa Plants Blocking NLRP3 Inflammasome-Induced Pyroptosis. J. Nat. Prod. 2020;83:2191–2199. doi: 10.1021/acs.jnatprod.0c00288. [DOI] [PubMed] [Google Scholar]
  • 60.Wang Y., Lin J., Wang Q., Shang K., Pu D.-B., Zhang R.-H., Li X.-L., Dai X.-C., Zhang X.-J., Xiao W.-L. Clerodane Diterpenoids with Potential Anti-Inflammatory Activity from the Leaves and Twigs of Callicarpa cathayana. Chin. J. Nat. Med. 2019;17:953–962. doi: 10.1016/S1875-5364(19)30118-9. [DOI] [PubMed] [Google Scholar]
  • 61.Lin Y.-C., Lin J.-J., Chen S.-R., Hwang T.-L., Fang S.-Y., Korinek M., Chen C.-Y., Lin Y.-S., Wu T.-Y., Yen M.-H., et al. Clerodane Diterpenoids from Callicarpa hypoleucophylla and Their Anti-Inflammatory Activity. Molecules. 2020;25:2288. doi: 10.3390/molecules25102288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Ye G.-H., Xue J.-J., Liang W.-L., Yang S.-J. Three New Bioactive Diterpenoids from the Roots of Croton crassifolius. Nat. Prod. Res. 2021;35:1421–1427. doi: 10.1080/14786419.2019.1652290. [DOI] [PubMed] [Google Scholar]
  • 63.Queiroz S.A.S., Pinto M.E.F., Bobey A.F., Russo H.M., Batista A.N.L., Batista J.M., Codo A.C., Medeiros A.I., Bolzani V.S. Diterpenoids with Inhibitory Activity of Nitrite Production from Croton floribundus. J. Ethnopharmacol. 2020;249:112320. doi: 10.1016/j.jep.2019.112320. [DOI] [PubMed] [Google Scholar]
  • 64.Li F., Zhang D.-B., Li J.-T., He F.-J., Zhu H.-L., Li N., Xiao X.-C., Ren L., Zheng W. Bioactive Terpenoids from Croton laui. Nat. Prod. Res. 2021;35:2849–2857. doi: 10.1080/14786419.2019.1675062. [DOI] [PubMed] [Google Scholar]
  • 65.Somteds A., Tantapakul C., Kanokmedhakul K., Laphookhieo S., Phukhatmuen P., Kanokmedhakul S. Inhibition of Nitric Oxide Production by Clerodane Diterpenoids from Leaves and Stems of Croton poomae Esser. Nat. Prod. Res. 2021;35:2722–2729. doi: 10.1080/14786419.2019.1667350. [DOI] [PubMed] [Google Scholar]
  • 66.Salinas-Sánchez D.O., Zamilpa A., Pérez S., Herrera-Ruiz M., Tortoriello J., González-Cortazar M., Jiménez-Ferrer E. Effect of Hautriwaic Acid Isolated from Dodonaea viscosa in a Model of Kaolin/Carrageenan-Induced Monoarthritis. Planta Med. 2015;81:1240–1247. doi: 10.1055/s-0035-1546197. [DOI] [PubMed] [Google Scholar]
  • 67.Zhang P.-Z., Zhang Y.-M., Lin Y., Wang F., Zhang G.-L. Three New Diterpenes from Dysoxylum lukii and Their NO Production Inhibitory Activity. J. Asian Nat. Prod. Res. 2020;22:531–536. doi: 10.1080/10286020.2019.1607839. [DOI] [PubMed] [Google Scholar]
  • 68.Li Y., Zhu R., Zhang J., Wu X., Shen T., Zhou J., Qiao Y., Gao Y., Lou H. Clerodane Diterpenoids from the Chinese Liverwort Jamesoniella autumnalis and Their Anti-Inflammatory Activity. Phytochemistry. 2018;154:85–93. doi: 10.1016/j.phytochem.2018.06.013. [DOI] [PubMed] [Google Scholar]
  • 69.Polbuppha I., Suthiphasilp V., Maneerat T., Charoensup R., Limtharakul T., Cheenpracha S., Pyne S.G., Laphookhieo S. Nitric Oxide Production Inhibitory Activity of Clerodane Diterpenes from Monoon membranifolium. Nat. Prod. Res. 2022;36:2513–2517. doi: 10.1080/14786419.2021.1912044. [DOI] [PubMed] [Google Scholar]
  • 70.ur Rehman T., Khan A., Abbas A., Hussain J., Khan F.U., Stieglitz K., Ali S. Investigation of Nepetolide as a Novel Lead Compound: Antioxidant, Antimicrobial, Cytotoxic, Anticancer, Anti-Inflammatory, Analgesic Activities and Molecular Docking Evaluation. Saudi Pharm. J. 2018;26:422–429. doi: 10.1016/j.jsps.2017.12.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Nguyen H.T., Vu T.-Y., Chandi V., Polimati H., Tatipamula V.B. Dual COX and 5-LOX Inhibition by Clerodane Diterpenes from Seeds of Polyalthia longifolia (Sonn.) Thwaites. Sci. Rep. 2020;10:15965. doi: 10.1038/s41598-020-72840-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Feng X.-S., Yan W., Bai L.-H., Wang K., Chen X.-Q. Neo-Clerodane Diterpenoids from the Aerial Parts of Scutellaria barbata with Anti-Inflammatory Activity. Chem. Biodivers. 2021;18:e2100693. doi: 10.1002/cbdv.202100693. [DOI] [PubMed] [Google Scholar]
  • 73.Lv H.-W., Luo J.-G., Zhu M.-D., Zhao H.-J., Kong L.-Y. Neo-Clerodane Diterpenoids from the Aerial Parts of Teucrium fruticans Cultivated in China. Phytochemistry. 2015;119:26–31. doi: 10.1016/j.phytochem.2015.09.011. [DOI] [PubMed] [Google Scholar]
  • 74.You J.-Q., Liu Y.-N., Zhou J.-S., Sun X.-Y., Lei C., Mu Q., Li J.-Y., Hou A.-J. Cis-Clerodane Diterpenoids with Structural Diversity and Anti-Inflammatory Activity from Tinospora crispa. Chin. J. Chem. 2022;40:2882–2892. doi: 10.1002/cjoc.202200433. [DOI] [Google Scholar]
  • 75.Zhu Y.-L., Deng L., Song J.-Q., Zhu Y., Yuan R.-W., Fan X.-Z., Zhou H., Huang Y.-S., Zhang L.-J., Liao H.-B. Clerodane Diterpenoids with Anti-Inflammatory and Synergistic Antibacterial Activities from Tinospora crispa. Org. Chem. Front. 2022;9:6945–6957. doi: 10.1039/D2QO01437H. [DOI] [Google Scholar]
  • 76.Zhang G., Ma H., Hu S., Xu H., Yang B., Yang Q., Xue Y., Cheng L., Jiang J., Zhang J., et al. Clerodane-Type Diterpenoids from Tuberous Roots of Tinospora sagittata (Oliv.) Gagnep. Fitoterapia. 2016;110:59–65. doi: 10.1016/j.fitote.2016.02.012. [DOI] [PubMed] [Google Scholar]
  • 77.Chang H.-L., Chang F.-R., Chen J.-S., Wang H.-P., Wu Y.-H., Wang C.-C., Wu Y.-C., Hwang T.-L. Inhibitory Effects of 16-Hydroxycleroda-3,13(14)E-Dien-15-Oic Acid on Superoxide Anion and Elastase Release in Human Neutrophils through Multiple Mechanisms. Eur. J. Pharmacol. 2008;586:332–339. doi: 10.1016/j.ejphar.2008.02.041. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.


Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES