Skip to main content
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering logoLink to Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering
. 2021 Feb 25;38(1):178–184. [Article in Chinese] doi: 10.7507/1001-5515.202004027

肝脏疾病的体外细胞模型研究进展

A review on cell-based models of human liver disease in vitro

刘 婷 1,2, 葛 玉卿 2,*, 袁 敏 1,*, 熊 巧 3, 赵 建龙 2
PMCID: PMC10307582  PMID: 33899443

Abstract

不健康的饮食、作息和滥用药物会引起多种肝脏疾病,包括脂肪性肝炎、肝纤维化、肝硬化和肝癌等,严重影响人体健康。构筑体外细胞模型在研究肝病及其药物开发中具有重要意义。目前,国内外研究者已经开发出多种体外肝脏疾病模型。本文概括了体外肝脏病理模型构建的常用策略,并从原料、方法、指标等方面介绍了四种典型肝病相关的体外细胞模型,期望可为肝病模型相关研究人员提供参考。

Keywords: 肝脏疾病, 体外模型, 微环境, 肝功能, 标志蛋白

引言

肝脏作为维持体内稳态最重要的器官,承担着人体大部分的代谢功能,在葡萄糖、脂质、氨基酸、异源生物代谢和蛋白质、凝血因子、胆汁生成等方面都起着关键性作用[1]。如何有效治疗肝脏疾病一直是困扰人类健康的一大难题。通常情况下,肝脏在受到一定的物理与化学损伤后具有可再生修复的能力,但是过度或持续的损伤会打破肝脏组织损伤与修复之间的平衡,使肝脏发生不可逆病变,导致肝纤维化、肝硬化甚至导致肝细胞癌(hepatocellular carcinoma,HCC)[2-3]

在体外研发可以模拟肝脏结构、再生能力以及代谢作用的精确仿生模型对肝病研究非常重要。目前研究中常用的动物模型,由于构造时间相对较长,并且药物在动物体内发挥作用的机制与人体存在较大差异,不能完全反映药物或者肝脏疾病在人体内的实际进展状况,存在局限性[4]。而在体外培养的人源细胞会因缺乏炎症因子、细胞间的相互作用以及与体内相似微环境,而迅速丧失某些重要的细胞功能,导致体外验证结果与体内差异较大[5]。因此研究者在体外开发了很多维持细胞稳定性的工程肝脏模型,结合代谢组学、蛋白质组学和转录组学等新技术,应用于肝病相关机制和药物作用等方面的研究。

本文首先根据肝脏具有的生理微环境,概括了目前体外肝脏病理模型构建的常用策略,然后针对酒精性肝病(alcoholic liver disease,ALD)、非酒精性肝病(nonalcoholic fatty liver disease,NAFLD)、药物性肝损伤(drug-induced liver injury,DILI)和感染性肝病相关模型特点进行总结,最后对体外肝脏病理模型的未来发展趋势提出总结和展望。

1. 构建体外肝脏模型的常用策略

体外肝脏模型是根据细胞生物学、材料学、组织学与工程学的原理,在体外构造出与体内生理环境类似的细胞体外微环境,从而使细胞在体外培养也能获得与体内细胞相当的生存能力与生理功能,由此来对肝脏的生理与病理进行研究。

1.1. 肝脏微环境组成

肝脏具有复杂的微环境,整体上可以分为细胞部分与非细胞部分。肝脏的细胞是由 60%~70% 的肝实质细胞和 30%~40% 非实质细胞(non-parenchymal cell,NPC)构成。肝实质细胞负责肝脏的主要功能,例如血糖代谢、氨的分解和胆汁酸的合成[6]。NPC 则由多种细胞组成,主要由具有大膜孔的肝窦内皮细胞(liver sinusoidal endothelial cells,LSECs)、具有多种免疫作用的库普夫细胞(kupffer cells,KCs)、能储存脂质和维生素 A 的星状细胞(hepatic stellate cells,HSCs)以及可与癌细胞病毒和细菌发生反应的自然杀伤细胞(natural killer cells,NKs)组成,它们及其周围介质共同构成了肝细胞生长的细胞微环境[1]。NPC 主要作用是识别和降解到达肝脏的外来大分子,同时分泌细胞因子、生长因子和激素等促进细胞之间的通信以及肝脏再生[7]

非细胞部分则是由细胞外基质蛋白、细胞因子以及肝脏特定的生理结构组成。肝脏具有复杂且规律的生理结构,整个肝脏可以看作是两个相互依赖的器官,具有双重传入的血液供应:肠道代谢的所有物质由肠肝循环(门循环)进入肝脏,其他器官和组织的物质则从肝动脉进入肝脏,经过消化代谢后由中央静脉进入全身。门静脉与肝动脉有许多分支,分别形成微静脉和小叶间动脉,伸入肝小叶,最终将血液汇入肝窦。肝脏内部各处组分、压力、剪切力等因素差异较大,也因此造成不同位置的肝细胞功能存在差异。位于静脉区的细胞主要参与氧化代谢,而位于中央静脉区的细胞在厌氧糖酵解、脂肪代谢生酮、脂蛋白和谷氨酰胺合成中更加活跃[1]。除此之外,微环境中的组成成分对肝脏细胞也存在较大影响,细胞微环境遭到破坏后会导致细胞状态发生改变,例如当细胞外基质蛋白过量时,组织空隙之间的弹性会遭到破坏,血液流动受阻,组织的通透性降低,激活 HSCs,进而诱发肝脏纤维化[8]

1.2. 构建肝脏结构微环境

体外常用的肝实质细胞主要有三种。人原代肝细胞(primary human hepatocytes,PHHs),这是预测体外构造细胞模型的金标准,但新鲜分离的 PHHs 在常规培养中会迅速去分化,丢失重要的代谢酶和药物转运蛋白的表达,从而限制了他们在肝生物学、药物毒性和代谢研究中的作用[9-10]。永生化肝细胞系,虽然不如 PHHs 具有预测性,但具有重复性好、可控性强等优点,广泛用于体外生理、病理条件构建和肝毒性评估[11]。诱导干细胞衍生肝细胞样细胞(induced pluripotent stem cell-derived human hepatocytelike cells,iHep)近年来也逐渐发展成为可靠的体外肝细胞来源。将一种或多种 NPC 与肝细胞共培养可以使肝细胞获得相对应的细胞微环境,从而建立如纤维化模型、免疫模型等不同功能的模型。

在体外,肝脏生理结构通常通过以下方式实现:① 利用胶原蛋白使细胞图案化,使得细胞在平面上的分布符合一定的规律;② 模型中添加水凝胶、胶原蛋白或者特朗斯韦尔(Transwell)脚手架来增加细胞分布的空间维度,使得细胞在立体空间上有序分布,增加细胞间相互作用;③ 利用旋转培养法、悬滴法、低吸附表面培养等方法,使细胞形成更为稳定的球体结构;④ 通过生物三维打印技术使细胞与生物材料结合,构建出更复杂的结构。而细胞微环境中物理化学条件的实现可以通过灌注培养替代传统静态培养,从而模拟体内液体流动,为细胞提供压力、剪切力、氧气和营养物质[12]。肝脏功能的实现依赖于肝脏细胞和肝脏微环境的相互作用,利用这些方式对肝脏微环境进行体外仿生,构筑体外细胞模型,使细胞获得与体内环境相似的微环境,从而维持细胞长期的稳定性,获得可靠结果。

2. 体外细胞平台构建病理模型

2.1. 酒精性肝病模型

由过度饮酒造成的 ALD 是全球范围内主要的慢性肝脏疾病。过量饮酒会引发一系列的肝病,包括脂肪性肝炎、肝纤维化、肝硬化和肝癌[13]。此外,饮酒还会使患有其他类型肝病(如病毒性肝炎和 NAFLD)的患者加速肝纤维化,加重病情,导致不良结果[14]

通常通过在培养基中直接添加乙醇诱导体外细胞模型获得酒精性肝损伤。不同浓度和诱导时间对于肝脏损伤程度不同,由此可以建立可逆损伤和不可逆损伤的 ALD 模型[15]。单层贴壁培养的肝细胞会在较高酒精浓度的诱导下迅速出现酒精肝表型,与体内损伤情况不符,通过增加 NPC 可以更真实地模拟肝病发生过程。Deng 等[16]采用聚二甲基硅氧烷(polydimethylsiloxane,PDMS)与多孔膜多层累积培养的方式,将肝细胞(HepG2)与 HSCs(LX-2)、人脐静脉细胞融合细胞(EAhy926)以及 KCs(U937)细胞按照一定的空间结构整合,模拟不同种细胞在肝窦中的分布,并利用蠕动泵以 1 μL/min 的流速持续灌注,重现了酒精诱导肝细胞和 NPC 的损伤过程,分析了 NPC 在 ALD 发生过程的作用。与单一肝细胞模型相比,多种细胞共培养的模型系统会显示出一些更具有活力的结构,细胞外基质(extracellular matrix,ECM)组成也相对更复杂,更接近于体内微环境生理情况[17]。与二维模型相比,三维模型具有更高几率的细胞接触,有利于促进细胞相互作用,维持更稳定的肝功能和表型,对酒精的刺激响应更贴合于真实的人体肝脏。此外,三维球体模型中的肝细胞对于酒精的耐受度远远高于二维平面培养肝细胞。利用大鼠的原代肝细胞与 HSCs 进行球状共培养,可以在动态培养的条件下,观察到经过酒精损伤肝组织恢复的过程[15]

绝大多数体外 ALD 模型研究表明,肝细胞在酒精诱导后,合成代谢能力会逐渐丧失,白蛋白与尿素生成会降低,而氨基转移酶量会上升。例如,用 600 mmol/L 乙醇处理的 HepG2 上清液中血清丙氨酸氨基转移酶(serum alanine aminotransferase,ALT)与天冬氨酸转氨酶(aspartate aminotransferase,AST)的量分别增加了 4 倍和 3.8 倍[18]。除此之外,酒精的诱导还会导致 NPC 分泌的炎症介质例如 α-肿瘤坏死因子(tumor necrosis factor-α,TNF-α)、活性氧(reactive oxygen species,ROS)以及细胞外基质蛋白的分泌量增加[19]。对于这些细胞因子的监控,可以了解和控制细胞的受损情况[20]。尽管迄今为止尚无模型能够对于 ALD 整个过程进行监控,但它对于研究 ALD 发病机制、测试新药和开发新的治疗策略提供了宝贵的工具。

2.2. 非酒精性肝病模型

NAFLD 是全球发展最快的疾病之一[21]。NAFLD 的发展过程与 ALD 类似,肝脏在没有饮酒、病毒感染或其他特定病因的情况下,从甘油三酸酯的过量累积(肝脂肪变性)到伴有炎症的脂肪变性,例如非酒精性脂肪性肝炎(nonalcoholic steatohepatitis,NASH),进一步发展为肝纤维化和肝硬化,最终导致 HCC[22]。体外构建的 NAFLD 模型主要有两种类型:一种是利用来自 NAFLD 或者 NASH 患者的肝组织捕获基因和表观遗传因子,另一种是通过添加一些疾病诱导因子来诱发体外有机组织发生疾病变性[23]。常见的疾病诱导因子,例如葡萄糖、果糖、游离脂肪酸(free fatty acids,FFA)和胰岛素均可以在体外将肝脏模型诱变为脂肪变性模型[4]。通过数周的过度营养物的刺激,比如用富含 FFA 的培养基代替常规培养基进行诱导会导致细胞内的甘油三脂(triglyceride,TG)和 ROS 增加,白蛋白分泌减少,从而诱发 NASH[24]。Kostrzewski 等[25]利用胶原蛋白包被在商品化的肝芯片 Liver Chip(MPS-LC12,CN Bio Innovations Inc.,英国)生物反应器壁上,形成三维支架,PHHs 黏附在反应壁上生长,并利用反应器底部的气泵分别进行高油脂含量与低油脂含量培养基灌注培养,发现高脂肪培养的 PHHs 的脂肪累积量是低脂肪培养的 3 倍,与 NFALD 相关的疾病基因发生上调,但肝细胞代谢活性受损,与之相关的代谢酶细胞色素 P450 超家族(cytochromeP450 proteins,CYP)中 CYP3A4 和 CYP2C9 的活性显著降低。

多细胞共培养有利于探索不同 NPC 在病变过程中发挥的作用,获得更多炎症因子的表达。利用 NPC 所释放的炎症因子来评估疾病终点,如通过监测胶原蛋白、TNF-α、白介素-1β(interleukin-1 beta,IL-1β)等指标来判断肝纤维化以及 NASH 的发生[26-27]。此外,NAFLD 模型可以通过微流控芯片结构设计实现微环境的差异性,从而研究 NAFLD 的空间异质性[28]。Bulutoglu 等[29]利用带有梯度结构的微流控芯片将含有亚油酸的培养基以浓度分配,使同一个培养区的不同位置培养细胞其非酒精性损伤程度不同,以探究 NAFLD 在发病机制上以及肝组织生理结构的异质性;通过对肝脏细胞的脂肪非线性积累情况分析,推测在较高 FFA 浓度时,FFA 的摄入是通过非线性的转运蛋白介导的,而并非简单的扩散。这种模型不仅仅适用于分析油脂对于肝脏影响,同样也适用于分析其他营养物质在肝脏不同部位形成的有差异的影响。

相比动物模型来说,工程化肝脏细胞 NAFLD 模型具有诱导参数可控,结果直观、高效等优点。目前部分研发产品已成功转化,如球体组织 3D inSight(MT-02-302-05,InSphero Inc.,瑞士)、PDMS 芯片 Liver Chip(S-1 Chips,Emulate Inc.,美国)以及三维打印组织 exVive3D tissue(Organovo Inc.,美国)均可以直接用于 NAFLD 和 NASH 的研究[30-32]。然而目前 NAFLD 模型的开发大多数停留在脂肪性肝炎以及肝纤维化阶段,对于肝硬化以及肝癌相关模型开发还具有一定的挑战性,需要多学科协同攻关才能推动其发展,发挥其巨大的潜能[33]

2.3. 药物性肝损伤模型

DILI 是制药行业关注的重要问题之一,由于药物的使用会加重肝脏的负担甚至造成急性肝功能衰竭,这是候选新药不能进入市场以及多种市售药物停止使用的主要原因,同时也会给药企带来巨大损失[34]。新药在首次人体试验之前,需要动物模拟实验来评估药物的安全性,尽管动物模型有助于人们了解药物在全身环境中的分布和作用,但是由于物种差异的局限,临床前的测试并不完全反映药物在人体的真实情况,有 38%~51% 化合物肝毒性未能在临床前检测到,因此存在巨大的经济与健康风险[35]。DILI 与其他的肝损伤不同,DILI 发病机制很复杂,涉及复杂的遗传代谢和免疫应答。举例来说,部分药物的肝毒性是剂量依赖型,如常见的对乙酰氨基酚(acetaminophen,APAP)和氨甲喋呤,这类药物损伤模型可以通过药物的多次暴露获得相应的表型[9];而某些药物毒性是由于免疫作用而产生,具有特异性,所以评估免疫系统对于药物的损伤必须包含多种 NPC 并维持长时间的稳定性[36]。三维培养系统中,培养细胞的表型与体内十分类似,具有长期稳定性,有望在人类药物代谢和毒性研究中取得重大突破,因此这些模型越来越受到学术界和工业界的关注[37-38]

目前,研究者已经研发成功可利用多种方式维持肝细胞功能来进行相应的药物毒性筛选。最简单的是利用“三明治”结构,将不同的肝细胞接种在多孔膜或者蛋白凝胶的两侧,既保留了细胞的极性也保证不同细胞之间的相互作用。利用微图案模式下的共培养,将原代人 LSECs 通过胶原蛋白图案化与 PHHs 进行共培养,诱导 PHHs 体外分泌白蛋白长达 11 d[39]。利用 Matrigel 基底胶和胶原蛋白混合的支架将大鼠的肝成纤维细胞与胆管上皮细胞进行共培养,可以模拟肝脏发育过程中胆管的形成[40]。细胞球体培养,这种三维培养方式利用细胞间的黏附而非人工底物黏附,解决了药物被支架吸附的问题[41]。将 HepG2 制成球体培养物可以获得更为敏感的 DILI 模型,已经用于含有胺碘酮、双氯芬酸、二甲双胍、苯乙双胍和丙戊酸的药物毒性预测[35],适用于对慢性暴露肝毒性化合物的研究。三维培养下人肝癌细胞(HepaRG)培养物经过代谢激活后对于对 APAP 和黄曲霉毒素具有更高敏感性。将诱导的多能干细胞(induced pluripotent stem cells,iPSC)分化而获得的 iHep 与 NPC 进行共培养,可以表达 CYP 家族中的 CYP1A 和 CYP3A,同时与药物代谢相关 I 期、II 期代谢酶的表达都会比单独肝细胞系的培养系统有所增强,更接近真实的人体微环境[42-43]。值得注意的是,iHep 可以从罕见的药物特异性反应患者中产生,为研究特定的反应提供独特的细胞来源[44]。目前 DILI 的体外模型尚且存在一些问题,对于药物剂量依赖型的 DILI 来说,不同的模型之间差异较大,缺乏可靠的标准化模型对同一药物进行准确评估。

2.4. 感染性肝病模型

由于部分病原体仅对于人类肝脏细胞具有特异性,很难在小鼠等动物身上进行模拟。因此,具有人源性肝脏细胞的体外模型成为研究肝脏传染病的重要工具[45]。乙型肝炎病毒(hepatitis B virus,HBV)和丙型肝炎病毒(hepatitis C virus,HCV)是影响人类健康的主要病原体,全球范围内有将近 3.25 亿人长期感染 HBV 和 HCV,而我国现有 HBV 携带者也多达 7 000 万人[46]。对于肝脏传染病的认识不足是导致疾病多发的主要原因。利用体外细胞模型可以帮助研究者认识肝脏传染病的发生过程并且可以实行相关的药物筛选。PHHs 被认为是最合适感染 HBV 的细胞,但很难在体外长期维持稳定。永生化细胞系通常不易被感染,但在补充二甲基亚砜(dimethyl sulfoxide,DMSO)后的 HepG2 和补充聚乙二醇(polyethylene glycol,PEG)的 HepaRG 可以用于 HBV 感染[47]。除此之外,iHep 也被应用于体外 HBV 的感染,为体外建立病毒感染细胞模型提供基础[48]

在体外利用胶原蛋白图案化将 PHHs 和 iHep 与成纤维细胞(J2-3T3)进行共培养,可以在体外 3 周内维持 HBV 受体钠牛磺胆酸盐共转运多肽(sodium taurocholate cotransporting polypetide,NTCP)的表达能力,进而实现进行 HBV 感染[49]。对于图案的精确控制有助于实现体外细胞微环境,无需进行任何灌流就可以在体外维持肝功能长达 6 周[50]。但是这种模型无法模拟体内免疫系统对于病毒入侵的反应,细胞种类单一,无法提供相应的免疫应答,并且二维 HBV 系统都需要较高的接种量才能建立,感染效率低。而利用三维球状结构与灌注相结合,可在体构建具有功能性胆管的肝窦结构,获得细胞极化作用,使得模型感染能力与临床 HBV 感染相当[51]

除了对肝脏特异性感染的病毒外,其他引起全身感染的病毒和微生物,如疟原虫等也可以靶向肝并造成严重的肝损害。疟原虫感染具有高复发性,这是消除疟疾在东南亚以及非洲地区传播的主要障碍[52]。研究疟原虫对肝脏的影响需要维持模型中细胞的长期稳定性。因为在疟原虫感染肝脏后会有休眠状态,这个状态可以维持数周至数月,需要长期的细胞活力和肝细胞特性使得疟原虫能够从孢子充分发育。Gural 等[53]利用弹性柱状 PDMS 在 384 孔板底部对胶原蛋白进行图案化,建立 PHHs 微球与间日疟原虫共培养物,重现了间日疟原虫对于肝脏感染的过程,实现长期裂殖体的建立、释放,同时利用该模型在体外进行药物的筛选,为开发药物治疗疟原虫感染研究提供了有效工具。

除了在体外开发与体内微环境类似的易感模型外,构建病原体的易检模型也具有重要意义。HBV 的感染通常使用聚合酶链式反应(polymerase chain reaction,PCR)对于病毒 DNA,例如共价闭合环状 DNA(covalently closed circularDNA,cccDNA)和松弛环状的双链 DNA(relaxed circularDNA,rcDNA)进行分析,而 HCV 和恶性疟原虫可以通过实时观察具有荧光的报告基因来确定感染情况[54-55]。结合特定的问题以及实验室条件进一步开发能够概括真实的宿主与病原体之间相互作用的易检出模型,对于肝脏传染病的治疗以及干预具有重要意义。

3. 总结与展望

本文根据不同的疾病诱因,将体外肝脏病理模型分为 ALD、NAFLD、DILI 和感染性肝病等模型,并对以上四种肝脏疾病模型的肝细胞类型、NPC 种类、构造特点、相关评价指标上进行总结,如表 1 所示。不同的模型构造方式可以灵活应用于各种不同的肝脏疾病中,以满足不同的需求,并结合相应的指标进行评价,有利于研究者开发各种形式的体外模型对肝脏疾病进行模拟。

1.

Summary of cell-based models of human liver disease in vitro

肝脏疾病体外细胞模型总结

疾病模型种类 肝细胞类型 主要材料 加工方式 结构类型 评价指标
ALD 原代细胞[15]
肝细胞系[16, 18]
PDMS[15-16]
多孔膜[16]
模塑法[15]
机械组装[16]
三维球状细胞[15]
微流控芯片[15-16]
白蛋白、尿素、Ⅰ型胶原蛋白、α-平滑肌动蛋白、ROS、CYP2E1
NAFLD 原代细胞[23-24, 29, 32]
肝细胞系[26]
PDMS[26, 29]
低吸附培养皿[23, 26]
软光刻[26, 29] 三维球状细胞[23, 26]
微流控芯片[25, 29]
白蛋白、尿素、乳酸脱氢酶、α-平滑肌动蛋白、腺嘌呤核苷三磷酸、AST、ALT、ROS、CYP3A4、TG
DILI 原代细胞[30-31, 39]
肝细胞系[36, 42]
PDMS[30]
水凝胶[31, 40]
低吸附培养皿[36]
软光刻[30]
三维打印[31]
微流控芯片[30]
三维打印组织[31]
三维球状细胞[36, 42]
微模式共培养[39]
白蛋白、尿素、乳酸脱氢酶、腺嘌呤核苷三磷酸、AST、ALT、ROS、CYP3A4、CYP2A6、CYP1A
感染性肝病 原代细胞[50-51, 53]
肝细胞系[47]
iPSC[48-49]
胶原蛋白[39-40] 光刻[50]拓印[53] 微模式共培养[49, 53]
微流控芯片[51]
三维球状细胞[51]
白蛋白、尿素、CYP450、NTCP、病原体 DNA、cccDNA、rcDNA

目前研究者已经开发出多种可供使用的三维体外肝脏模型,这些模型是研究肝病发展、促进药物研究和进行药物毒性测试的宝贵工具。但是,体外细胞模型仍然处于起步阶段,开发具有通用性、标准化的模型进行诸如 ALD、NAFLD 以及病原体感染等疾病的病理学研究具有重要意义。随着生物材料、细胞体外培养技术、基因组学、蛋白质组学以及电子信息技术地不断发展,未来将会开发出更加贴近体内生理微环境,并且能在体外长时间维持肝功能的体外模型来进一步研究肝病。通过完善与改进,未来体外肝脏模型的构建将会更注重于实时监控,获取更加全面的动态信息,有助于了解完整的疾病发生过程。同时,提出具有多种功能的标准化模型来替代传统的细胞模型,在药物毒性评估和肝病研究中都具有更为广阔的应用前景。

利益冲突声明:本文全体作者均声明不存在利益冲突。

Funding Statement

国家重点研发计划项目(2018YFA0108202);核高基重大专项(20182X01031301)

National Key R&D Program of China; the Program of Science and Technology Commission of Shanghai Municipality

Contributor Information

葛 玉卿 (Yuqing GE), Email: yqge@mail.sim.ac.cn.

袁 敏 (Min YUAN), Email: yuanmin986@126.com.

References

  • 1.Casotti V, Lorenzo D. Basic principles of liver physiology. Berlin: Springer International Publishing, 2019: 21-39.
  • 2.de Boer Y S, Kosinski A S, Urban T J, et al Features of autoimmune hepatitis in patients with drug-induced liver injury. Clin Gastroenterol Hepatol. 2017;15(1):103–112. doi: 10.1016/j.cgh.2016.05.043. [de Boer Y S, Kosinski A S, Urban T J, et al. Features of autoimmune hepatitis in patients with drug-induced liver injury. Clin Gastroenterol Hepatol, 2017, 15(1): 103-112. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Ramachandran P, Dobie R, Wilson-Kanamori J R, et al Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575(7783):512–518. doi: 10.1038/s41586-019-1631-3. [Ramachandran P, Dobie R, Wilson-Kanamori J R, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature, 2019, 575(7783): 512-518. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Cole B K, Feaver R E, Wamhoff B R, et al Non-alcoholic fatty liver disease (NAFLD) models in drug discovery. Expert Opin Drug Discov. 2018;13(2):193–205. doi: 10.1080/17460441.2018.1410135. [Cole B K, Feaver R E, Wamhoff B R, et al. Non-alcoholic fatty liver disease (NAFLD) models in drug discovery. Expert Opin Drug Discov, 2018, 13(2): 193-205. ] [DOI] [PubMed] [Google Scholar]
  • 5.卢贤欢, 赵华琛, 王雪, 等 体外肝脏 3D 模型在药物肝毒性评价中的优势. 药学学报. 2017;52(12):1859–1864. [卢贤欢, 赵华琛, 王雪, 等. 体外肝脏 3D 模型在药物肝毒性评价中的优势. 药学学报, 2017, 52(12): 1859-1864.] [Google Scholar]
  • 6.Williamson T, Sultanpuram N, Sendi H The role of liver microenvironment in hepatic metastasis. Clin Transl Med. 2019;8(1):21. doi: 10.1186/s40169-019-0237-6. [Williamson T, Sultanpuram N, Sendi H. The role of liver microenvironment in hepatic metastasis. Clin Transl Med, 2019, 8(1): 21.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Utoh R, Komori J, Kuge H, et al Adult hepatocytes direct liver organogenesis through non-parenchymal cell recruitment in the kidney. J Hepatol. 2018;68(4):744–753. doi: 10.1016/j.jhep.2017.12.016. [Utoh R, Komori J, Kuge H, et al. Adult hepatocytes direct liver organogenesis through non-parenchymal cell recruitment in the kidney. J Hepatol, 2018, 68(4): 744-753. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Wang M, Liu S, Xu Z, et al Characterizing poroelasticity of biological tissues by spherical indentation: an improved theory for large relaxation. J Mech Phys Solids. 2020;138:103920. doi: 10.1016/j.jmps.2020.103920. [Wang M, Liu S, Xu Z, et al. Characterizing poroelasticity of biological tissues by spherical indentation: an improved theory for large relaxation. J Mech Phys Solids, 2020, 138: 103920. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Underhill G H, Khetani S R Bioengineered liver models for drug testing and cell differentiation studies. Cell Mol Gastroenterol Hepatol. 2018;5(3):426–439. doi: 10.1016/j.jcmgh.2017.11.012. [Underhill G H, Khetani S R. Bioengineered liver models for drug testing and cell differentiation studies. Cell Mol Gastroenterol Hepatol, 2018, 5(3): 426-439.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Vilas-Boas V, Cooreman A, Gijbels E, et al Primary hepatocytes and their cultures for the testing of drug-induced liver injury. Adv Pharmacol. 2019;85:1–30. doi: 10.1016/bs.apha.2018.08.001. [Vilas-Boas V, Cooreman A, Gijbels E, et al. Primary hepatocytes and their cultures for the testing of drug-induced liver injury. Adv Pharmacol, 2019, 85: 1-30. ] [DOI] [PubMed] [Google Scholar]
  • 11.Xu J Y, Oda S, Yokoi T Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury. Toxicol In Vitro. 2018;48:286–301. doi: 10.1016/j.tiv.2018.01.019. [Xu J Y, Oda S, Yokoi T. Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury. Toxicol In Vitro, 2018, 48: 286-301. ] [DOI] [PubMed] [Google Scholar]
  • 12.Abdellatef S A, Ohi A, Nabatame T, et al The effect of physical and chemical cues on hepatocellular function and morphology. Int J Mol Sci. 2014;15(3):4299–4317. doi: 10.3390/ijms15034299. [Abdellatef S A, Ohi A, Nabatame T, et al. The effect of physical and chemical cues on hepatocellular function and morphology. Int J Mol Sci, 2014, 15(3): 4299-4317. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Seitz H K, Bataller R, Cortez-Pinto H, et al Alcoholic liver disease. Nat Rev Dis Primers. 2018;4(1):16. doi: 10.1038/s41572-018-0014-7. [Seitz H K, Bataller R, Cortez-Pinto H, et al. Alcoholic liver disease. Nat Rev Dis Primers, 2018, 4(1): 16. ] [DOI] [PubMed] [Google Scholar]
  • 14.Mahli A, Koch A, Fresse K, et al Iso-alpha acids from hops (Humulus lupulus) inhibit hepatic steatosis, inflammation, and fibrosis. Lab Invest. 2018;98(12):1614–1626. doi: 10.1038/s41374-018-0112-x. [Mahli A, Koch A, Fresse K, et al. Iso-alpha acids from hops (Humulus lupulus) inhibit hepatic steatosis, inflammation, and fibrosis. Lab Invest, 2018, 98(12): 1614-1626. ] [DOI] [PubMed] [Google Scholar]
  • 15.Lee J, Choi B, No D Y, et al A 3D alcoholic liver disease model on a chip. Integr Biol (Camb) 2016;8(3):302–308. doi: 10.1039/C5IB00298B. [Lee J, Choi B, No D Y, et al. A 3D alcoholic liver disease model on a chip. Integr Biol (Camb), 2016, 8(3): 302-308. ] [DOI] [PubMed] [Google Scholar]
  • 16.Deng J, Chen Z, Zhang X, et al A liver-chip-based alcoholic liver disease model featuring multi-non-parenchymal cells. Biomed Microdevices. 2019;21(3):57. doi: 10.1007/s10544-019-0414-9. [Deng J, Chen Z, Zhang X, et al. A liver-chip-based alcoholic liver disease model featuring multi-non-parenchymal cells. Biomed Microdevices, 2019, 21(3): 57. ] [DOI] [PubMed] [Google Scholar]
  • 17.Huang G, Li F, Zhao X, et al Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev. 2017;117(20):12764–12850. doi: 10.1021/acs.chemrev.7b00094. [Huang G, Li F, Zhao X, et al. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev, 2017, 117(20): 12764-12850. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Zhang Y, Wang C, Yu B, et al Gastrodin protects against ethanol-induced liver injury and apoptosis in HepG2 cells and animal models of alcoholic liver disease. Biol Pharm Bull. 2018;41(5):670–679. doi: 10.1248/bpb.b17-00825. [Zhang Y, Wang C, Yu B, et al. Gastrodin protects against ethanol-induced liver injury and apoptosis in HepG2 cells and animal models of alcoholic liver disease. Biol Pharm Bull, 2018, 41(5): 670-679. ] [DOI] [PubMed] [Google Scholar]
  • 19.Choi W M, Kim M H, Jeong W I Functions of hepatic nonparenchymal cells in alcoholic liver disease. Liver Research. 2019;3:80–87. doi: 10.1016/j.livres.2019.04.002. [Choi W M, Kim M H, Jeong W I. Functions of hepatic nonparenchymal cells in alcoholic liver disease. Liver Research, 2019, 3: 80-87.] [DOI] [Google Scholar]
  • 20.Kirchner V A, Tak E, Kim K, et al The evolving microenvironment of the human hepatocyte: healthy vs. cirrhotic liver vs. isolated cells . Tissue Cell. 2020;62:101310. doi: 10.1016/j.tice.2019.101310. [Kirchner V A, Tak E, Kim K, et al. The evolving microenvironment of the human hepatocyte: healthy vs. cirrhotic liver vs. isolated cells. Tissue Cell, 2020, 62: 101310. ] [DOI] [PubMed] [Google Scholar]
  • 21.Bedossa P Pathology of non-alcoholic fatty liver disease. Liver Int. 2017;37(Suppl 1):85–89. doi: 10.1111/liv.13301. [Bedossa P. Pathology of non-alcoholic fatty liver disease. Liver Int, 2017, 37(Suppl 1): 85-89.] [DOI] [PubMed] [Google Scholar]
  • 22.Friedman S L, Neuschwander-Tetri B A, Rinella M, et al Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–922. doi: 10.1038/s41591-018-0104-9. [Friedman S L, Neuschwander-Tetri B A, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med, 2018, 24(7): 908-922. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kozyra M, Johansson I, Nordling Å, et al Human hepatic 3D spheroids as a model for steatosis and insulin resistance. Sci Rep. 2018;8(1):14297. doi: 10.1038/s41598-018-32722-6. [Kozyra M, Johansson I, Nordling Å, et al. Human hepatic 3D spheroids as a model for steatosis and insulin resistance. Sci Rep, 2018, 8(1): 14297. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Bessone F, Razori M V, Roma M G Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2019;76(1):99–128. doi: 10.1007/s00018-018-2947-0. [Bessone F, Razori M V, Roma M G. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci, 2019, 76(1): 99-128.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Kostrzewski T, Cornforth T, Snow S A, et al Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease . World J Gastroenterol. 2017;23(2):204–215. doi: 10.3748/wjg.v23.i2.204. [Kostrzewski T, Cornforth T, Snow S A, et al. Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease. World J Gastroenterol, 2017, 23(2): 204-215. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Suurmond C-a E, Lasli S, van den Dolder F W, et al In vitro human liver model of nonalcoholic steatohepatitis by coculturing hepatocytes, endothelial cells, and kupffer cells . Adv Healthc Mater. 2019;8(24):e1901379. doi: 10.1002/adhm.201901379. [Suurmond C-a E, Lasli S, van den Dolder F W, et al. In vitro human liver model of nonalcoholic steatohepatitis by coculturing hepatocytes, endothelial cells, and kupffer cells. Adv Healthc Mater, 2019, 8(24): e1901379. ] [DOI] [PubMed] [Google Scholar]
  • 27.Magee N, Zou A, Zhang Y X Pathogenesis of nonalcoholic steatohepatitis: interactions between liver parenchymal and nonparenchymal cells. Biomed Res Int. 2016:5170402. doi: 10.1155/2016/5170402. [Magee N, Zou A, Zhang Y X. Pathogenesis of nonalcoholic steatohepatitis: interactions between liver parenchymal and nonparenchymal cells. Biomed Res Int, 2016: 5170402.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Hall Z, Bond N J, Ashmore T, et al Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology. 2017;65(4):1165–1180. doi: 10.1002/hep.28953. [Hall Z, Bond N J, Ashmore T, et al. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology, 2017, 65(4): 1165-1180. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Bulutoglu B, Rey-Bedón C, Kang Y, et al A microfluidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation. Lab Chip. 2019;19(18):3022–3031. doi: 10.1039/C9LC00354A. [Bulutoglu B, Rey-Bedón C, Kang Y, et al. A microfluidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation. Lab Chip, 2019, 19(18): 3022-3031. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Jang K J, Otieno M, Ronxhi J, et al Reproducing human and cross-species drug toxicities using a liver-chip. Sci Transl Med. 2019;11(517):eaax5516. doi: 10.1126/scitranslmed.aax5516. [Jang K J, Otieno M, Ronxhi J, et al. Reproducing human and cross-species drug toxicities using a liver-chip. Sci Transl Med, 2019, 11(517): eaax5516. ] [DOI] [PubMed] [Google Scholar]
  • 31.Nguyen D G, Funk J, Robbins J B, et al Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro . PLoS One. 2016;11(7):e0158674. doi: 10.1371/journal.pone.0158674. [Nguyen D G, Funk J, Robbins J B, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One, 2016, 11(7): e0158674. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Mukherjee S, Zhelnin L, Sanfiz A, et al Development and validation of an in vitro 3D model of NASH with severe fibrotic phenotype . Am J Transl Res. 2019;11(3):1531–1540. [Mukherjee S, Zhelnin L, Sanfiz A, et al. Development and validation of an in vitro 3D model of NASH with severe fibrotic phenotype. Am J Transl Res, 2019, 11(3): 1531-1540. ] [PMC free article] [PubMed] [Google Scholar]
  • 33.Underhill G H, Khetani S R Emerging trends in modeling human liver disease in vitro . APL Bioeng. 2019;3(4):040902. doi: 10.1063/1.5119090. [Underhill G H, Khetani S R. Emerging trends in modeling human liver disease in vitro. APL Bioeng, 2019, 3(4): 040902. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Andrade R J, Chalasani N, Björnsson E S, et al Drug-induced liver injury. Nat Rev Dis Primers. 2019;5(1):58. doi: 10.1038/s41572-019-0105-0. [Andrade R J, Chalasani N, Björnsson E S, et al. Drug-induced liver injury. Nat Rev Dis Primers, 2019, 5(1): 58. ] [DOI] [PubMed] [Google Scholar]
  • 35.Zhou Y T, Shen J X, Lauschke V M Comprehensive evaluation of organotypic and microphysiological liver models for prediction of drug-induced liver injury. Front Pharmacol. 2019;10:1093. doi: 10.3389/fphar.2019.01093. [Zhou Y T, Shen J X, Lauschke V M. Comprehensive evaluation of organotypic and microphysiological liver models for prediction of drug-induced liver injury. Front Pharmacol, 2019, 10: 1093.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Fey S J, Wrzesinski K Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicological Sciences. 2012;127(2):403–411. doi: 10.1093/toxsci/kfs122. [Fey S J, Wrzesinski K. Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicological Sciences, 2012, 127(2): 403-411.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Ewart L, Dehne E M, Fabre K, et al Application of microphysiological systems to enhance safety assessment in drug discovery. Annu Rev Pharmacol Toxicol. 2018;58:65–82. doi: 10.1146/annurev-pharmtox-010617-052722. [Ewart L, Dehne E M, Fabre K, et al. Application of microphysiological systems to enhance safety assessment in drug discovery. Annu Rev Pharmacol Toxicol, 2018, 58: 65-82. ] [DOI] [PubMed] [Google Scholar]
  • 38.Kuna L, Bozic I, Kizivat T, et al Models of drug induced liver injury (Dili) - current issues and future perspectives. Curr Drug Metab. 2018;19(10):830–838. doi: 10.2174/1389200219666180523095355. [Kuna L, Bozic I, Kizivat T, et al. Models of drug induced liver injury (Dili) - current issues and future perspectives. Curr Drug Metab, 2018, 19(10): 830-838. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Ware B R, Durham M J, Monckton C P, et al A cell culture platform to maintain long-term phenotype of primary human hepatocytes and endothelial cells. Cell Mol Gastroenterol Hepatol. 2018;5(3):187–207. doi: 10.1016/j.jcmgh.2017.11.007. [Ware B R, Durham M J, Monckton C P, et al. A cell culture platform to maintain long-term phenotype of primary human hepatocytes and endothelial cells. Cell Mol Gastroenterol Hepatol, 2018, 5(3): 187-207. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Rizki-Safitri A, Shinohara M, Tanaka M, et al Tubular bile duct structure mimicking bile duct morphogenesis for prospective in vitro liver metabolite recovery . J Biol Eng. 2020;14(1):11. doi: 10.1186/s13036-020-0230-z. [Rizki-Safitri A, Shinohara M, Tanaka M, et al. Tubular bile duct structure mimicking bile duct morphogenesis for prospective in vitro liver metabolite recovery. J Biol Eng, 2020, 14(1): 11. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Baze A, Parmentier C, Hendriks D, et al Three-Dimensional spheroid primary human hepatocytes in monoculture and coculture with nonparenchymal cells. Tissue Eng Part C Methods. 2018;24(9):534–545. doi: 10.1089/ten.tec.2018.0134. [Baze A, Parmentier C, Hendriks D, et al. Three-Dimensional spheroid primary human hepatocytes in monoculture and coculture with nonparenchymal cells. Tissue Eng Part C Methods, 2018, 24(9): 534-545. ] [DOI] [PubMed] [Google Scholar]
  • 42.Corbett J L, Duncan S A iPSC-Derived hepatocytes as a platform for disease modeling and drug discovery. Front Med (Lausanne) 2019;6:265. doi: 10.3389/fmed.2019.00265. [Corbett J L, Duncan S A. iPSC-Derived hepatocytes as a platform for disease modeling and drug discovery. Front Med (Lausanne), 2019, 6: 265.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Ott L M, Ramachandran K, Stehno-Bittel L An automated multiplexed hepatotoxicity and CYP induction assay using HepaRG cells in 2D and 3D. SLAS Discov. 2017;22(5):614–625. doi: 10.1177/2472555217701058. [Ott L M, Ramachandran K, Stehno-Bittel L. An automated multiplexed hepatotoxicity and CYP induction assay using HepaRG cells in 2D and 3D. SLAS Discov, 2017, 22(5): 614-625.] [DOI] [PubMed] [Google Scholar]
  • 44.Kizawa H, Nagao E, Shimamura M, et al Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochem Biophys Rep. 2017;10:186–191. doi: 10.1016/j.bbrep.2017.04.004. [Kizawa H, Nagao E, Shimamura M, et al. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochem Biophys Rep, 2017, 10: 186-191. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Gural N, Mancio-Silva L, HE J, et al Engineered livers for infectious diseases. Cell Mol Gastroenterol Hepatol. 2018;5(2):131–144. doi: 10.1016/j.jcmgh.2017.11.005. [Gural N, Mancio-Silva L, HE J, et al. Engineered livers for infectious diseases. Cell Mol Gastroenterol Hepatol, 2018, 5(2): 131-144. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Li M, Wang Z Q, Zhang L, et al Burden of cirrhosis and other chronic liver diseases caused by specific etiologies in China, 1990-2016: findings from the global burden of disease study 2016. Biomed Environ Sci: BES. 2020;33(1):1–10. doi: 10.3967/bes2020.001. [Li M, Wang Z Q, Zhang L, et al. Burden of cirrhosis and other chronic liver diseases caused by specific etiologies in China, 1990-2016: findings from the global burden of disease study 2016. Biomed Environ Sci: BES, 2020, 33(1): 1-10. ] [DOI] [PubMed] [Google Scholar]
  • 47.Paran N, Geiger B, Shaul Y HBV infection of cell culture: evidence for multivalent and cooperative attachment. EMBO J. 2001;20(16):4443–4453. doi: 10.1093/emboj/20.16.4443. [Paran N, Geiger B, Shaul Y. HBV infection of cell culture: evidence for multivalent and cooperative attachment. EMBO J, 2001, 20(16): 4443-4453.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Xia Y, Carpentier A, Cheng X, et al Human stem cell-derived hepatocytes as a model for hepatitis B virus infection, spreading and virus-host interactions. J Hepatol. 2017;66(3):494–503. doi: 10.1016/j.jhep.2016.10.009. [Xia Y, Carpentier A, Cheng X, et al. Human stem cell-derived hepatocytes as a model for hepatitis B virus infection, spreading and virus-host interactions. J Hepatol, 2017, 66(3): 494-503. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Shlomai A, Schwartz R E, Ramanan V, et al Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci U S A. 2014;111(33):12193–12198. doi: 10.1073/pnas.1412631111. [Shlomai A, Schwartz R E, Ramanan V, et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci U S A, 2014, 111(33): 12193-12198. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.March S, Ramanan V, Trehan K, et al Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat Protoc. 2015;10(12):2027–2053. doi: 10.1038/nprot.2015.128. [March S, Ramanan V, Trehan K, et al. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat Protoc, 2015, 10(12): 2027-2053. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Ortega-Prieto A M, Skelton J K, Wai S N, et al 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun. 2018;9(1):682. doi: 10.1038/s41467-018-02969-8. [Ortega-Prieto A M, Skelton J K, Wai S N, et al. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun, 2018, 9(1): 682. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.World Health Organization World malaria report 2016. Geneva Switzerland Who. 2016;30(1):189–206. [World Health Organization. World malaria report 2016. Geneva Switzerland Who, 2016, 30(1): 189-206.] [Google Scholar]
  • 53.Gural N, Mancio-Silva L, Miller A B, et al In vitro culture, drug sensitivity, and transcriptome of plasmodium vivax hypnozoites . Cell Host Microbe. 2018;23(3):395–406. doi: 10.1016/j.chom.2018.01.002. [Gural N, Mancio-Silva L, Miller A B, et al. In vitro culture, drug sensitivity, and transcriptome of plasmodium vivax hypnozoites. Cell Host Microbe, 2018, 23(3): 395-406. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Talman A M, Blagborough A M, Sinden R E A plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle. PLoS One. 2010;5(2):e9156. doi: 10.1371/journal.pone.0009156. [Talman A M, Blagborough A M, Sinden R E. A plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle. PLoS One, 2010, 5(2): e9156.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Bao C Y, Hung H C, Chen Y W, et al Requirement of cyclin-dependent kinase function for hepatitis B virus cccDNA synthesis as measured by digital PCR. Ann Hepatol. 2020;19(3):280–286. doi: 10.1016/j.aohep.2019.12.005. [Bao C Y, Hung H C, Chen Y W, et al. Requirement of cyclin-dependent kinase function for hepatitis B virus cccDNA synthesis as measured by digital PCR. Ann Hepatol, 2020, 19(3): 280-286. ] [DOI] [PubMed] [Google Scholar]

Articles from Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering are provided here courtesy of West China Hospital of Sichuan University

RESOURCES